linux-next/block/blk-sysfs.c
Nilay Shroff be26ba9642 block: Fix potential deadlock while freezing queue and acquiring sysfs_lock
For storing a value to a queue attribute, the queue_attr_store function
first freezes the queue (->q_usage_counter(io)) and then acquire
->sysfs_lock. This seems not correct as the usual ordering should be to
acquire ->sysfs_lock before freezing the queue. This incorrect ordering
causes the following lockdep splat which we are able to reproduce always
simply by accessing /sys/kernel/debug file using ls command:

[   57.597146] WARNING: possible circular locking dependency detected
[   57.597154] 6.12.0-10553-gb86545e02e8c #20 Tainted: G        W
[   57.597162] ------------------------------------------------------
[   57.597168] ls/4605 is trying to acquire lock:
[   57.597176] c00000003eb56710 (&mm->mmap_lock){++++}-{4:4}, at: __might_fault+0x58/0xc0
[   57.597200]
               but task is already holding lock:
[   57.597207] c0000018e27c6810 (&sb->s_type->i_mutex_key#3){++++}-{4:4}, at: iterate_dir+0x94/0x1d4
[   57.597226]
               which lock already depends on the new lock.

[   57.597233]
               the existing dependency chain (in reverse order) is:
[   57.597241]
               -> #5 (&sb->s_type->i_mutex_key#3){++++}-{4:4}:
[   57.597255]        down_write+0x6c/0x18c
[   57.597264]        start_creating+0xb4/0x24c
[   57.597274]        debugfs_create_dir+0x2c/0x1e8
[   57.597283]        blk_register_queue+0xec/0x294
[   57.597292]        add_disk_fwnode+0x2e4/0x548
[   57.597302]        brd_alloc+0x2c8/0x338
[   57.597309]        brd_init+0x100/0x178
[   57.597317]        do_one_initcall+0x88/0x3e4
[   57.597326]        kernel_init_freeable+0x3cc/0x6e0
[   57.597334]        kernel_init+0x34/0x1cc
[   57.597342]        ret_from_kernel_user_thread+0x14/0x1c
[   57.597350]
               -> #4 (&q->debugfs_mutex){+.+.}-{4:4}:
[   57.597362]        __mutex_lock+0xfc/0x12a0
[   57.597370]        blk_register_queue+0xd4/0x294
[   57.597379]        add_disk_fwnode+0x2e4/0x548
[   57.597388]        brd_alloc+0x2c8/0x338
[   57.597395]        brd_init+0x100/0x178
[   57.597402]        do_one_initcall+0x88/0x3e4
[   57.597410]        kernel_init_freeable+0x3cc/0x6e0
[   57.597418]        kernel_init+0x34/0x1cc
[   57.597426]        ret_from_kernel_user_thread+0x14/0x1c
[   57.597434]
               -> #3 (&q->sysfs_lock){+.+.}-{4:4}:
[   57.597446]        __mutex_lock+0xfc/0x12a0
[   57.597454]        queue_attr_store+0x9c/0x110
[   57.597462]        sysfs_kf_write+0x70/0xb0
[   57.597471]        kernfs_fop_write_iter+0x1b0/0x2ac
[   57.597480]        vfs_write+0x3dc/0x6e8
[   57.597488]        ksys_write+0x84/0x140
[   57.597495]        system_call_exception+0x130/0x360
[   57.597504]        system_call_common+0x160/0x2c4
[   57.597516]
               -> #2 (&q->q_usage_counter(io)#21){++++}-{0:0}:
[   57.597530]        __submit_bio+0x5ec/0x828
[   57.597538]        submit_bio_noacct_nocheck+0x1e4/0x4f0
[   57.597547]        iomap_readahead+0x2a0/0x448
[   57.597556]        xfs_vm_readahead+0x28/0x3c
[   57.597564]        read_pages+0x88/0x41c
[   57.597571]        page_cache_ra_unbounded+0x1ac/0x2d8
[   57.597580]        filemap_get_pages+0x188/0x984
[   57.597588]        filemap_read+0x13c/0x4bc
[   57.597596]        xfs_file_buffered_read+0x88/0x17c
[   57.597605]        xfs_file_read_iter+0xac/0x158
[   57.597614]        vfs_read+0x2d4/0x3b4
[   57.597622]        ksys_read+0x84/0x144
[   57.597629]        system_call_exception+0x130/0x360
[   57.597637]        system_call_common+0x160/0x2c4
[   57.597647]
               -> #1 (mapping.invalidate_lock#2){++++}-{4:4}:
[   57.597661]        down_read+0x6c/0x220
[   57.597669]        filemap_fault+0x870/0x100c
[   57.597677]        xfs_filemap_fault+0xc4/0x18c
[   57.597684]        __do_fault+0x64/0x164
[   57.597693]        __handle_mm_fault+0x1274/0x1dac
[   57.597702]        handle_mm_fault+0x248/0x484
[   57.597711]        ___do_page_fault+0x428/0xc0c
[   57.597719]        hash__do_page_fault+0x30/0x68
[   57.597727]        do_hash_fault+0x90/0x35c
[   57.597736]        data_access_common_virt+0x210/0x220
[   57.597745]        _copy_from_user+0xf8/0x19c
[   57.597754]        sel_write_load+0x178/0xd54
[   57.597762]        vfs_write+0x108/0x6e8
[   57.597769]        ksys_write+0x84/0x140
[   57.597777]        system_call_exception+0x130/0x360
[   57.597785]        system_call_common+0x160/0x2c4
[   57.597794]
               -> #0 (&mm->mmap_lock){++++}-{4:4}:
[   57.597806]        __lock_acquire+0x17cc/0x2330
[   57.597814]        lock_acquire+0x138/0x400
[   57.597822]        __might_fault+0x7c/0xc0
[   57.597830]        filldir64+0xe8/0x390
[   57.597839]        dcache_readdir+0x80/0x2d4
[   57.597846]        iterate_dir+0xd8/0x1d4
[   57.597855]        sys_getdents64+0x88/0x2d4
[   57.597864]        system_call_exception+0x130/0x360
[   57.597872]        system_call_common+0x160/0x2c4
[   57.597881]
               other info that might help us debug this:

[   57.597888] Chain exists of:
                 &mm->mmap_lock --> &q->debugfs_mutex --> &sb->s_type->i_mutex_key#3

[   57.597905]  Possible unsafe locking scenario:

[   57.597911]        CPU0                    CPU1
[   57.597917]        ----                    ----
[   57.597922]   rlock(&sb->s_type->i_mutex_key#3);
[   57.597932]                                lock(&q->debugfs_mutex);
[   57.597940]                                lock(&sb->s_type->i_mutex_key#3);
[   57.597950]   rlock(&mm->mmap_lock);
[   57.597958]
                *** DEADLOCK ***

[   57.597965] 2 locks held by ls/4605:
[   57.597971]  #0: c0000000137c12f8 (&f->f_pos_lock){+.+.}-{4:4}, at: fdget_pos+0xcc/0x154
[   57.597989]  #1: c0000018e27c6810 (&sb->s_type->i_mutex_key#3){++++}-{4:4}, at: iterate_dir+0x94/0x1d4

Prevent the above lockdep warning by acquiring ->sysfs_lock before
freezing the queue while storing a queue attribute in queue_attr_store
function. Later, we also found[1] another function __blk_mq_update_nr_
hw_queues where we first freeze queue and then acquire the ->sysfs_lock.
So we've also updated lock ordering in __blk_mq_update_nr_hw_queues
function and ensured that in all code paths we follow the correct lock
ordering i.e. acquire ->sysfs_lock before freezing the queue.

[1] https://lore.kernel.org/all/CAFj5m9Ke8+EHKQBs_Nk6hqd=LGXtk4mUxZUN5==ZcCjnZSBwHw@mail.gmail.com/

Reported-by: kjain@linux.ibm.com
Fixes: af2814149883 ("block: freeze the queue in queue_attr_store")
Tested-by: kjain@linux.ibm.com
Cc: hch@lst.de
Cc: axboe@kernel.dk
Cc: ritesh.list@gmail.com
Cc: ming.lei@redhat.com
Cc: gjoyce@linux.ibm.com
Signed-off-by: Nilay Shroff <nilay@linux.ibm.com>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Link: https://lore.kernel.org/r/20241210144222.1066229-1-nilay@linux.ibm.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-12-13 10:51:58 -07:00

879 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Functions related to sysfs handling
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/blktrace_api.h>
#include <linux/debugfs.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-debugfs.h"
#include "blk-mq-sched.h"
#include "blk-rq-qos.h"
#include "blk-wbt.h"
#include "blk-cgroup.h"
#include "blk-throttle.h"
struct queue_sysfs_entry {
struct attribute attr;
ssize_t (*show)(struct gendisk *disk, char *page);
ssize_t (*store)(struct gendisk *disk, const char *page, size_t count);
void (*load_module)(struct gendisk *disk, const char *page, size_t count);
};
static ssize_t
queue_var_show(unsigned long var, char *page)
{
return sysfs_emit(page, "%lu\n", var);
}
static ssize_t
queue_var_store(unsigned long *var, const char *page, size_t count)
{
int err;
unsigned long v;
err = kstrtoul(page, 10, &v);
if (err || v > UINT_MAX)
return -EINVAL;
*var = v;
return count;
}
static ssize_t queue_requests_show(struct gendisk *disk, char *page)
{
return queue_var_show(disk->queue->nr_requests, page);
}
static ssize_t
queue_requests_store(struct gendisk *disk, const char *page, size_t count)
{
unsigned long nr;
int ret, err;
if (!queue_is_mq(disk->queue))
return -EINVAL;
ret = queue_var_store(&nr, page, count);
if (ret < 0)
return ret;
if (nr < BLKDEV_MIN_RQ)
nr = BLKDEV_MIN_RQ;
err = blk_mq_update_nr_requests(disk->queue, nr);
if (err)
return err;
return ret;
}
static ssize_t queue_ra_show(struct gendisk *disk, char *page)
{
return queue_var_show(disk->bdi->ra_pages << (PAGE_SHIFT - 10), page);
}
static ssize_t
queue_ra_store(struct gendisk *disk, const char *page, size_t count)
{
unsigned long ra_kb;
ssize_t ret;
ret = queue_var_store(&ra_kb, page, count);
if (ret < 0)
return ret;
disk->bdi->ra_pages = ra_kb >> (PAGE_SHIFT - 10);
return ret;
}
#define QUEUE_SYSFS_LIMIT_SHOW(_field) \
static ssize_t queue_##_field##_show(struct gendisk *disk, char *page) \
{ \
return queue_var_show(disk->queue->limits._field, page); \
}
QUEUE_SYSFS_LIMIT_SHOW(max_segments)
QUEUE_SYSFS_LIMIT_SHOW(max_discard_segments)
QUEUE_SYSFS_LIMIT_SHOW(max_integrity_segments)
QUEUE_SYSFS_LIMIT_SHOW(max_segment_size)
QUEUE_SYSFS_LIMIT_SHOW(logical_block_size)
QUEUE_SYSFS_LIMIT_SHOW(physical_block_size)
QUEUE_SYSFS_LIMIT_SHOW(chunk_sectors)
QUEUE_SYSFS_LIMIT_SHOW(io_min)
QUEUE_SYSFS_LIMIT_SHOW(io_opt)
QUEUE_SYSFS_LIMIT_SHOW(discard_granularity)
QUEUE_SYSFS_LIMIT_SHOW(zone_write_granularity)
QUEUE_SYSFS_LIMIT_SHOW(virt_boundary_mask)
QUEUE_SYSFS_LIMIT_SHOW(dma_alignment)
QUEUE_SYSFS_LIMIT_SHOW(max_open_zones)
QUEUE_SYSFS_LIMIT_SHOW(max_active_zones)
QUEUE_SYSFS_LIMIT_SHOW(atomic_write_unit_min)
QUEUE_SYSFS_LIMIT_SHOW(atomic_write_unit_max)
#define QUEUE_SYSFS_LIMIT_SHOW_SECTORS_TO_BYTES(_field) \
static ssize_t queue_##_field##_show(struct gendisk *disk, char *page) \
{ \
return sysfs_emit(page, "%llu\n", \
(unsigned long long)disk->queue->limits._field << \
SECTOR_SHIFT); \
}
QUEUE_SYSFS_LIMIT_SHOW_SECTORS_TO_BYTES(max_discard_sectors)
QUEUE_SYSFS_LIMIT_SHOW_SECTORS_TO_BYTES(max_hw_discard_sectors)
QUEUE_SYSFS_LIMIT_SHOW_SECTORS_TO_BYTES(max_write_zeroes_sectors)
QUEUE_SYSFS_LIMIT_SHOW_SECTORS_TO_BYTES(atomic_write_max_sectors)
QUEUE_SYSFS_LIMIT_SHOW_SECTORS_TO_BYTES(atomic_write_boundary_sectors)
QUEUE_SYSFS_LIMIT_SHOW_SECTORS_TO_BYTES(max_zone_append_sectors)
#define QUEUE_SYSFS_LIMIT_SHOW_SECTORS_TO_KB(_field) \
static ssize_t queue_##_field##_show(struct gendisk *disk, char *page) \
{ \
return queue_var_show(disk->queue->limits._field >> 1, page); \
}
QUEUE_SYSFS_LIMIT_SHOW_SECTORS_TO_KB(max_sectors)
QUEUE_SYSFS_LIMIT_SHOW_SECTORS_TO_KB(max_hw_sectors)
#define QUEUE_SYSFS_SHOW_CONST(_name, _val) \
static ssize_t queue_##_name##_show(struct gendisk *disk, char *page) \
{ \
return sysfs_emit(page, "%d\n", _val); \
}
/* deprecated fields */
QUEUE_SYSFS_SHOW_CONST(discard_zeroes_data, 0)
QUEUE_SYSFS_SHOW_CONST(write_same_max, 0)
QUEUE_SYSFS_SHOW_CONST(poll_delay, -1)
static ssize_t queue_max_discard_sectors_store(struct gendisk *disk,
const char *page, size_t count)
{
unsigned long max_discard_bytes;
struct queue_limits lim;
ssize_t ret;
int err;
ret = queue_var_store(&max_discard_bytes, page, count);
if (ret < 0)
return ret;
if (max_discard_bytes & (disk->queue->limits.discard_granularity - 1))
return -EINVAL;
if ((max_discard_bytes >> SECTOR_SHIFT) > UINT_MAX)
return -EINVAL;
lim = queue_limits_start_update(disk->queue);
lim.max_user_discard_sectors = max_discard_bytes >> SECTOR_SHIFT;
err = queue_limits_commit_update(disk->queue, &lim);
if (err)
return err;
return ret;
}
static ssize_t
queue_max_sectors_store(struct gendisk *disk, const char *page, size_t count)
{
unsigned long max_sectors_kb;
struct queue_limits lim;
ssize_t ret;
int err;
ret = queue_var_store(&max_sectors_kb, page, count);
if (ret < 0)
return ret;
lim = queue_limits_start_update(disk->queue);
lim.max_user_sectors = max_sectors_kb << 1;
err = queue_limits_commit_update(disk->queue, &lim);
if (err)
return err;
return ret;
}
static ssize_t queue_feature_store(struct gendisk *disk, const char *page,
size_t count, blk_features_t feature)
{
struct queue_limits lim;
unsigned long val;
ssize_t ret;
ret = queue_var_store(&val, page, count);
if (ret < 0)
return ret;
lim = queue_limits_start_update(disk->queue);
if (val)
lim.features |= feature;
else
lim.features &= ~feature;
ret = queue_limits_commit_update(disk->queue, &lim);
if (ret)
return ret;
return count;
}
#define QUEUE_SYSFS_FEATURE(_name, _feature) \
static ssize_t queue_##_name##_show(struct gendisk *disk, char *page) \
{ \
return sysfs_emit(page, "%u\n", \
!!(disk->queue->limits.features & _feature)); \
} \
static ssize_t queue_##_name##_store(struct gendisk *disk, \
const char *page, size_t count) \
{ \
return queue_feature_store(disk, page, count, _feature); \
}
QUEUE_SYSFS_FEATURE(rotational, BLK_FEAT_ROTATIONAL)
QUEUE_SYSFS_FEATURE(add_random, BLK_FEAT_ADD_RANDOM)
QUEUE_SYSFS_FEATURE(iostats, BLK_FEAT_IO_STAT)
QUEUE_SYSFS_FEATURE(stable_writes, BLK_FEAT_STABLE_WRITES);
#define QUEUE_SYSFS_FEATURE_SHOW(_name, _feature) \
static ssize_t queue_##_name##_show(struct gendisk *disk, char *page) \
{ \
return sysfs_emit(page, "%u\n", \
!!(disk->queue->limits.features & _feature)); \
}
QUEUE_SYSFS_FEATURE_SHOW(poll, BLK_FEAT_POLL);
QUEUE_SYSFS_FEATURE_SHOW(fua, BLK_FEAT_FUA);
QUEUE_SYSFS_FEATURE_SHOW(dax, BLK_FEAT_DAX);
static ssize_t queue_zoned_show(struct gendisk *disk, char *page)
{
if (blk_queue_is_zoned(disk->queue))
return sysfs_emit(page, "host-managed\n");
return sysfs_emit(page, "none\n");
}
static ssize_t queue_nr_zones_show(struct gendisk *disk, char *page)
{
return queue_var_show(disk_nr_zones(disk), page);
}
static ssize_t queue_iostats_passthrough_show(struct gendisk *disk, char *page)
{
return queue_var_show(!!blk_queue_passthrough_stat(disk->queue), page);
}
static ssize_t queue_iostats_passthrough_store(struct gendisk *disk,
const char *page, size_t count)
{
struct queue_limits lim;
unsigned long ios;
ssize_t ret;
ret = queue_var_store(&ios, page, count);
if (ret < 0)
return ret;
lim = queue_limits_start_update(disk->queue);
if (ios)
lim.flags |= BLK_FLAG_IOSTATS_PASSTHROUGH;
else
lim.flags &= ~BLK_FLAG_IOSTATS_PASSTHROUGH;
ret = queue_limits_commit_update(disk->queue, &lim);
if (ret)
return ret;
return count;
}
static ssize_t queue_nomerges_show(struct gendisk *disk, char *page)
{
return queue_var_show((blk_queue_nomerges(disk->queue) << 1) |
blk_queue_noxmerges(disk->queue), page);
}
static ssize_t queue_nomerges_store(struct gendisk *disk, const char *page,
size_t count)
{
unsigned long nm;
ssize_t ret = queue_var_store(&nm, page, count);
if (ret < 0)
return ret;
blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, disk->queue);
blk_queue_flag_clear(QUEUE_FLAG_NOXMERGES, disk->queue);
if (nm == 2)
blk_queue_flag_set(QUEUE_FLAG_NOMERGES, disk->queue);
else if (nm)
blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, disk->queue);
return ret;
}
static ssize_t queue_rq_affinity_show(struct gendisk *disk, char *page)
{
bool set = test_bit(QUEUE_FLAG_SAME_COMP, &disk->queue->queue_flags);
bool force = test_bit(QUEUE_FLAG_SAME_FORCE, &disk->queue->queue_flags);
return queue_var_show(set << force, page);
}
static ssize_t
queue_rq_affinity_store(struct gendisk *disk, const char *page, size_t count)
{
ssize_t ret = -EINVAL;
#ifdef CONFIG_SMP
struct request_queue *q = disk->queue;
unsigned long val;
ret = queue_var_store(&val, page, count);
if (ret < 0)
return ret;
if (val == 2) {
blk_queue_flag_set(QUEUE_FLAG_SAME_COMP, q);
blk_queue_flag_set(QUEUE_FLAG_SAME_FORCE, q);
} else if (val == 1) {
blk_queue_flag_set(QUEUE_FLAG_SAME_COMP, q);
blk_queue_flag_clear(QUEUE_FLAG_SAME_FORCE, q);
} else if (val == 0) {
blk_queue_flag_clear(QUEUE_FLAG_SAME_COMP, q);
blk_queue_flag_clear(QUEUE_FLAG_SAME_FORCE, q);
}
#endif
return ret;
}
static ssize_t queue_poll_delay_store(struct gendisk *disk, const char *page,
size_t count)
{
return count;
}
static ssize_t queue_poll_store(struct gendisk *disk, const char *page,
size_t count)
{
if (!(disk->queue->limits.features & BLK_FEAT_POLL))
return -EINVAL;
pr_info_ratelimited("writes to the poll attribute are ignored.\n");
pr_info_ratelimited("please use driver specific parameters instead.\n");
return count;
}
static ssize_t queue_io_timeout_show(struct gendisk *disk, char *page)
{
return sysfs_emit(page, "%u\n", jiffies_to_msecs(disk->queue->rq_timeout));
}
static ssize_t queue_io_timeout_store(struct gendisk *disk, const char *page,
size_t count)
{
unsigned int val;
int err;
err = kstrtou32(page, 10, &val);
if (err || val == 0)
return -EINVAL;
blk_queue_rq_timeout(disk->queue, msecs_to_jiffies(val));
return count;
}
static ssize_t queue_wc_show(struct gendisk *disk, char *page)
{
if (blk_queue_write_cache(disk->queue))
return sysfs_emit(page, "write back\n");
return sysfs_emit(page, "write through\n");
}
static ssize_t queue_wc_store(struct gendisk *disk, const char *page,
size_t count)
{
struct queue_limits lim;
bool disable;
int err;
if (!strncmp(page, "write back", 10)) {
disable = false;
} else if (!strncmp(page, "write through", 13) ||
!strncmp(page, "none", 4)) {
disable = true;
} else {
return -EINVAL;
}
lim = queue_limits_start_update(disk->queue);
if (disable)
lim.flags |= BLK_FLAG_WRITE_CACHE_DISABLED;
else
lim.flags &= ~BLK_FLAG_WRITE_CACHE_DISABLED;
err = queue_limits_commit_update(disk->queue, &lim);
if (err)
return err;
return count;
}
#define QUEUE_RO_ENTRY(_prefix, _name) \
static struct queue_sysfs_entry _prefix##_entry = { \
.attr = { .name = _name, .mode = 0444 }, \
.show = _prefix##_show, \
};
#define QUEUE_RW_ENTRY(_prefix, _name) \
static struct queue_sysfs_entry _prefix##_entry = { \
.attr = { .name = _name, .mode = 0644 }, \
.show = _prefix##_show, \
.store = _prefix##_store, \
};
#define QUEUE_RW_LOAD_MODULE_ENTRY(_prefix, _name) \
static struct queue_sysfs_entry _prefix##_entry = { \
.attr = { .name = _name, .mode = 0644 }, \
.show = _prefix##_show, \
.load_module = _prefix##_load_module, \
.store = _prefix##_store, \
}
QUEUE_RW_ENTRY(queue_requests, "nr_requests");
QUEUE_RW_ENTRY(queue_ra, "read_ahead_kb");
QUEUE_RW_ENTRY(queue_max_sectors, "max_sectors_kb");
QUEUE_RO_ENTRY(queue_max_hw_sectors, "max_hw_sectors_kb");
QUEUE_RO_ENTRY(queue_max_segments, "max_segments");
QUEUE_RO_ENTRY(queue_max_integrity_segments, "max_integrity_segments");
QUEUE_RO_ENTRY(queue_max_segment_size, "max_segment_size");
QUEUE_RW_LOAD_MODULE_ENTRY(elv_iosched, "scheduler");
QUEUE_RO_ENTRY(queue_logical_block_size, "logical_block_size");
QUEUE_RO_ENTRY(queue_physical_block_size, "physical_block_size");
QUEUE_RO_ENTRY(queue_chunk_sectors, "chunk_sectors");
QUEUE_RO_ENTRY(queue_io_min, "minimum_io_size");
QUEUE_RO_ENTRY(queue_io_opt, "optimal_io_size");
QUEUE_RO_ENTRY(queue_max_discard_segments, "max_discard_segments");
QUEUE_RO_ENTRY(queue_discard_granularity, "discard_granularity");
QUEUE_RO_ENTRY(queue_max_hw_discard_sectors, "discard_max_hw_bytes");
QUEUE_RW_ENTRY(queue_max_discard_sectors, "discard_max_bytes");
QUEUE_RO_ENTRY(queue_discard_zeroes_data, "discard_zeroes_data");
QUEUE_RO_ENTRY(queue_atomic_write_max_sectors, "atomic_write_max_bytes");
QUEUE_RO_ENTRY(queue_atomic_write_boundary_sectors,
"atomic_write_boundary_bytes");
QUEUE_RO_ENTRY(queue_atomic_write_unit_max, "atomic_write_unit_max_bytes");
QUEUE_RO_ENTRY(queue_atomic_write_unit_min, "atomic_write_unit_min_bytes");
QUEUE_RO_ENTRY(queue_write_same_max, "write_same_max_bytes");
QUEUE_RO_ENTRY(queue_max_write_zeroes_sectors, "write_zeroes_max_bytes");
QUEUE_RO_ENTRY(queue_max_zone_append_sectors, "zone_append_max_bytes");
QUEUE_RO_ENTRY(queue_zone_write_granularity, "zone_write_granularity");
QUEUE_RO_ENTRY(queue_zoned, "zoned");
QUEUE_RO_ENTRY(queue_nr_zones, "nr_zones");
QUEUE_RO_ENTRY(queue_max_open_zones, "max_open_zones");
QUEUE_RO_ENTRY(queue_max_active_zones, "max_active_zones");
QUEUE_RW_ENTRY(queue_nomerges, "nomerges");
QUEUE_RW_ENTRY(queue_iostats_passthrough, "iostats_passthrough");
QUEUE_RW_ENTRY(queue_rq_affinity, "rq_affinity");
QUEUE_RW_ENTRY(queue_poll, "io_poll");
QUEUE_RW_ENTRY(queue_poll_delay, "io_poll_delay");
QUEUE_RW_ENTRY(queue_wc, "write_cache");
QUEUE_RO_ENTRY(queue_fua, "fua");
QUEUE_RO_ENTRY(queue_dax, "dax");
QUEUE_RW_ENTRY(queue_io_timeout, "io_timeout");
QUEUE_RO_ENTRY(queue_virt_boundary_mask, "virt_boundary_mask");
QUEUE_RO_ENTRY(queue_dma_alignment, "dma_alignment");
/* legacy alias for logical_block_size: */
static struct queue_sysfs_entry queue_hw_sector_size_entry = {
.attr = {.name = "hw_sector_size", .mode = 0444 },
.show = queue_logical_block_size_show,
};
QUEUE_RW_ENTRY(queue_rotational, "rotational");
QUEUE_RW_ENTRY(queue_iostats, "iostats");
QUEUE_RW_ENTRY(queue_add_random, "add_random");
QUEUE_RW_ENTRY(queue_stable_writes, "stable_writes");
#ifdef CONFIG_BLK_WBT
static ssize_t queue_var_store64(s64 *var, const char *page)
{
int err;
s64 v;
err = kstrtos64(page, 10, &v);
if (err < 0)
return err;
*var = v;
return 0;
}
static ssize_t queue_wb_lat_show(struct gendisk *disk, char *page)
{
if (!wbt_rq_qos(disk->queue))
return -EINVAL;
if (wbt_disabled(disk->queue))
return sysfs_emit(page, "0\n");
return sysfs_emit(page, "%llu\n",
div_u64(wbt_get_min_lat(disk->queue), 1000));
}
static ssize_t queue_wb_lat_store(struct gendisk *disk, const char *page,
size_t count)
{
struct request_queue *q = disk->queue;
struct rq_qos *rqos;
ssize_t ret;
s64 val;
ret = queue_var_store64(&val, page);
if (ret < 0)
return ret;
if (val < -1)
return -EINVAL;
rqos = wbt_rq_qos(q);
if (!rqos) {
ret = wbt_init(disk);
if (ret)
return ret;
}
if (val == -1)
val = wbt_default_latency_nsec(q);
else if (val >= 0)
val *= 1000ULL;
if (wbt_get_min_lat(q) == val)
return count;
/*
* Ensure that the queue is idled, in case the latency update
* ends up either enabling or disabling wbt completely. We can't
* have IO inflight if that happens.
*/
blk_mq_quiesce_queue(q);
wbt_set_min_lat(q, val);
blk_mq_unquiesce_queue(q);
return count;
}
QUEUE_RW_ENTRY(queue_wb_lat, "wbt_lat_usec");
#endif
/* Common attributes for bio-based and request-based queues. */
static struct attribute *queue_attrs[] = {
&queue_ra_entry.attr,
&queue_max_hw_sectors_entry.attr,
&queue_max_sectors_entry.attr,
&queue_max_segments_entry.attr,
&queue_max_discard_segments_entry.attr,
&queue_max_integrity_segments_entry.attr,
&queue_max_segment_size_entry.attr,
&queue_hw_sector_size_entry.attr,
&queue_logical_block_size_entry.attr,
&queue_physical_block_size_entry.attr,
&queue_chunk_sectors_entry.attr,
&queue_io_min_entry.attr,
&queue_io_opt_entry.attr,
&queue_discard_granularity_entry.attr,
&queue_max_discard_sectors_entry.attr,
&queue_max_hw_discard_sectors_entry.attr,
&queue_discard_zeroes_data_entry.attr,
&queue_atomic_write_max_sectors_entry.attr,
&queue_atomic_write_boundary_sectors_entry.attr,
&queue_atomic_write_unit_min_entry.attr,
&queue_atomic_write_unit_max_entry.attr,
&queue_write_same_max_entry.attr,
&queue_max_write_zeroes_sectors_entry.attr,
&queue_max_zone_append_sectors_entry.attr,
&queue_zone_write_granularity_entry.attr,
&queue_rotational_entry.attr,
&queue_zoned_entry.attr,
&queue_nr_zones_entry.attr,
&queue_max_open_zones_entry.attr,
&queue_max_active_zones_entry.attr,
&queue_nomerges_entry.attr,
&queue_iostats_passthrough_entry.attr,
&queue_iostats_entry.attr,
&queue_stable_writes_entry.attr,
&queue_add_random_entry.attr,
&queue_poll_entry.attr,
&queue_wc_entry.attr,
&queue_fua_entry.attr,
&queue_dax_entry.attr,
&queue_poll_delay_entry.attr,
&queue_virt_boundary_mask_entry.attr,
&queue_dma_alignment_entry.attr,
NULL,
};
/* Request-based queue attributes that are not relevant for bio-based queues. */
static struct attribute *blk_mq_queue_attrs[] = {
&queue_requests_entry.attr,
&elv_iosched_entry.attr,
&queue_rq_affinity_entry.attr,
&queue_io_timeout_entry.attr,
#ifdef CONFIG_BLK_WBT
&queue_wb_lat_entry.attr,
#endif
NULL,
};
static umode_t queue_attr_visible(struct kobject *kobj, struct attribute *attr,
int n)
{
struct gendisk *disk = container_of(kobj, struct gendisk, queue_kobj);
struct request_queue *q = disk->queue;
if ((attr == &queue_max_open_zones_entry.attr ||
attr == &queue_max_active_zones_entry.attr) &&
!blk_queue_is_zoned(q))
return 0;
return attr->mode;
}
static umode_t blk_mq_queue_attr_visible(struct kobject *kobj,
struct attribute *attr, int n)
{
struct gendisk *disk = container_of(kobj, struct gendisk, queue_kobj);
struct request_queue *q = disk->queue;
if (!queue_is_mq(q))
return 0;
if (attr == &queue_io_timeout_entry.attr && !q->mq_ops->timeout)
return 0;
return attr->mode;
}
static struct attribute_group queue_attr_group = {
.attrs = queue_attrs,
.is_visible = queue_attr_visible,
};
static struct attribute_group blk_mq_queue_attr_group = {
.attrs = blk_mq_queue_attrs,
.is_visible = blk_mq_queue_attr_visible,
};
#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
static ssize_t
queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
{
struct queue_sysfs_entry *entry = to_queue(attr);
struct gendisk *disk = container_of(kobj, struct gendisk, queue_kobj);
ssize_t res;
if (!entry->show)
return -EIO;
mutex_lock(&disk->queue->sysfs_lock);
res = entry->show(disk, page);
mutex_unlock(&disk->queue->sysfs_lock);
return res;
}
static ssize_t
queue_attr_store(struct kobject *kobj, struct attribute *attr,
const char *page, size_t length)
{
struct queue_sysfs_entry *entry = to_queue(attr);
struct gendisk *disk = container_of(kobj, struct gendisk, queue_kobj);
struct request_queue *q = disk->queue;
ssize_t res;
if (!entry->store)
return -EIO;
/*
* If the attribute needs to load a module, do it before freezing the
* queue to ensure that the module file can be read when the request
* queue is the one for the device storing the module file.
*/
if (entry->load_module)
entry->load_module(disk, page, length);
mutex_lock(&q->sysfs_lock);
blk_mq_freeze_queue(q);
res = entry->store(disk, page, length);
blk_mq_unfreeze_queue(q);
mutex_unlock(&q->sysfs_lock);
return res;
}
static const struct sysfs_ops queue_sysfs_ops = {
.show = queue_attr_show,
.store = queue_attr_store,
};
static const struct attribute_group *blk_queue_attr_groups[] = {
&queue_attr_group,
&blk_mq_queue_attr_group,
NULL
};
static void blk_queue_release(struct kobject *kobj)
{
/* nothing to do here, all data is associated with the parent gendisk */
}
static const struct kobj_type blk_queue_ktype = {
.default_groups = blk_queue_attr_groups,
.sysfs_ops = &queue_sysfs_ops,
.release = blk_queue_release,
};
static void blk_debugfs_remove(struct gendisk *disk)
{
struct request_queue *q = disk->queue;
mutex_lock(&q->debugfs_mutex);
blk_trace_shutdown(q);
debugfs_remove_recursive(q->debugfs_dir);
q->debugfs_dir = NULL;
q->sched_debugfs_dir = NULL;
q->rqos_debugfs_dir = NULL;
mutex_unlock(&q->debugfs_mutex);
}
/**
* blk_register_queue - register a block layer queue with sysfs
* @disk: Disk of which the request queue should be registered with sysfs.
*/
int blk_register_queue(struct gendisk *disk)
{
struct request_queue *q = disk->queue;
int ret;
mutex_lock(&q->sysfs_dir_lock);
kobject_init(&disk->queue_kobj, &blk_queue_ktype);
ret = kobject_add(&disk->queue_kobj, &disk_to_dev(disk)->kobj, "queue");
if (ret < 0)
goto out_put_queue_kobj;
if (queue_is_mq(q)) {
ret = blk_mq_sysfs_register(disk);
if (ret)
goto out_put_queue_kobj;
}
mutex_lock(&q->sysfs_lock);
mutex_lock(&q->debugfs_mutex);
q->debugfs_dir = debugfs_create_dir(disk->disk_name, blk_debugfs_root);
if (queue_is_mq(q))
blk_mq_debugfs_register(q);
mutex_unlock(&q->debugfs_mutex);
ret = disk_register_independent_access_ranges(disk);
if (ret)
goto out_debugfs_remove;
if (q->elevator) {
ret = elv_register_queue(q, false);
if (ret)
goto out_unregister_ia_ranges;
}
ret = blk_crypto_sysfs_register(disk);
if (ret)
goto out_elv_unregister;
blk_queue_flag_set(QUEUE_FLAG_REGISTERED, q);
wbt_enable_default(disk);
/* Now everything is ready and send out KOBJ_ADD uevent */
kobject_uevent(&disk->queue_kobj, KOBJ_ADD);
if (q->elevator)
kobject_uevent(&q->elevator->kobj, KOBJ_ADD);
mutex_unlock(&q->sysfs_lock);
mutex_unlock(&q->sysfs_dir_lock);
/*
* SCSI probing may synchronously create and destroy a lot of
* request_queues for non-existent devices. Shutting down a fully
* functional queue takes measureable wallclock time as RCU grace
* periods are involved. To avoid excessive latency in these
* cases, a request_queue starts out in a degraded mode which is
* faster to shut down and is made fully functional here as
* request_queues for non-existent devices never get registered.
*/
blk_queue_flag_set(QUEUE_FLAG_INIT_DONE, q);
percpu_ref_switch_to_percpu(&q->q_usage_counter);
return ret;
out_elv_unregister:
elv_unregister_queue(q);
out_unregister_ia_ranges:
disk_unregister_independent_access_ranges(disk);
out_debugfs_remove:
blk_debugfs_remove(disk);
mutex_unlock(&q->sysfs_lock);
out_put_queue_kobj:
kobject_put(&disk->queue_kobj);
mutex_unlock(&q->sysfs_dir_lock);
return ret;
}
/**
* blk_unregister_queue - counterpart of blk_register_queue()
* @disk: Disk of which the request queue should be unregistered from sysfs.
*
* Note: the caller is responsible for guaranteeing that this function is called
* after blk_register_queue() has finished.
*/
void blk_unregister_queue(struct gendisk *disk)
{
struct request_queue *q = disk->queue;
if (WARN_ON(!q))
return;
/* Return early if disk->queue was never registered. */
if (!blk_queue_registered(q))
return;
/*
* Since sysfs_remove_dir() prevents adding new directory entries
* before removal of existing entries starts, protect against
* concurrent elv_iosched_store() calls.
*/
mutex_lock(&q->sysfs_lock);
blk_queue_flag_clear(QUEUE_FLAG_REGISTERED, q);
mutex_unlock(&q->sysfs_lock);
mutex_lock(&q->sysfs_dir_lock);
/*
* Remove the sysfs attributes before unregistering the queue data
* structures that can be modified through sysfs.
*/
if (queue_is_mq(q))
blk_mq_sysfs_unregister(disk);
blk_crypto_sysfs_unregister(disk);
mutex_lock(&q->sysfs_lock);
elv_unregister_queue(q);
disk_unregister_independent_access_ranges(disk);
mutex_unlock(&q->sysfs_lock);
/* Now that we've deleted all child objects, we can delete the queue. */
kobject_uevent(&disk->queue_kobj, KOBJ_REMOVE);
kobject_del(&disk->queue_kobj);
mutex_unlock(&q->sysfs_dir_lock);
blk_debugfs_remove(disk);
}