mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-12 00:38:55 +00:00
e641a31783
Currently, the HPT code in HV KVM maintains a dirty bit per guest page in the rmap array, whether or not dirty page tracking has been enabled for the memory slot. In contrast, the radix code maintains a dirty bit per guest page in memslot->dirty_bitmap, and only does so when dirty page tracking has been enabled. This changes the HPT code to maintain the dirty bits in the memslot dirty_bitmap like radix does. This results in slightly less code overall, and will mean that we do not lose the dirty bits when transitioning between HPT and radix mode in future. There is one minor change to behaviour as a result. With HPT, when dirty tracking was enabled for a memslot, we would previously clear all the dirty bits at that point (both in the HPT entries and in the rmap arrays), meaning that a KVM_GET_DIRTY_LOG ioctl immediately following would show no pages as dirty (assuming no vcpus have run in the meantime). With this change, the dirty bits on HPT entries are not cleared at the point where dirty tracking is enabled, so KVM_GET_DIRTY_LOG would show as dirty any guest pages that are resident in the HPT and dirty. This is consistent with what happens on radix. This also fixes a bug in the mark_pages_dirty() function for radix (in the sense that the function no longer exists). In the case where a large page of 64 normal pages or more is marked dirty, the addressing of the dirty bitmap was incorrect and could write past the end of the bitmap. Fortunately this case was never hit in practice because a 2MB large page is only 32 x 64kB pages, and we don't support backing the guest with 1GB huge pages at this point. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
474 lines
11 KiB
C
474 lines
11 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Copyright SUSE Linux Products GmbH 2010
|
|
*
|
|
* Authors: Alexander Graf <agraf@suse.de>
|
|
*/
|
|
|
|
#ifndef __ASM_KVM_BOOK3S_64_H__
|
|
#define __ASM_KVM_BOOK3S_64_H__
|
|
|
|
#include <linux/string.h>
|
|
#include <asm/bitops.h>
|
|
#include <asm/book3s/64/mmu-hash.h>
|
|
|
|
/* Power architecture requires HPT is at least 256kiB, at most 64TiB */
|
|
#define PPC_MIN_HPT_ORDER 18
|
|
#define PPC_MAX_HPT_ORDER 46
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
|
|
static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
|
|
{
|
|
preempt_disable();
|
|
return &get_paca()->shadow_vcpu;
|
|
}
|
|
|
|
static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
|
|
{
|
|
preempt_enable();
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
|
|
static inline bool kvm_is_radix(struct kvm *kvm)
|
|
{
|
|
return kvm->arch.radix;
|
|
}
|
|
|
|
#define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */
|
|
#endif
|
|
|
|
/*
|
|
* We use a lock bit in HPTE dword 0 to synchronize updates and
|
|
* accesses to each HPTE, and another bit to indicate non-present
|
|
* HPTEs.
|
|
*/
|
|
#define HPTE_V_HVLOCK 0x40UL
|
|
#define HPTE_V_ABSENT 0x20UL
|
|
|
|
/*
|
|
* We use this bit in the guest_rpte field of the revmap entry
|
|
* to indicate a modified HPTE.
|
|
*/
|
|
#define HPTE_GR_MODIFIED (1ul << 62)
|
|
|
|
/* These bits are reserved in the guest view of the HPTE */
|
|
#define HPTE_GR_RESERVED HPTE_GR_MODIFIED
|
|
|
|
static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
|
|
{
|
|
unsigned long tmp, old;
|
|
__be64 be_lockbit, be_bits;
|
|
|
|
/*
|
|
* We load/store in native endian, but the HTAB is in big endian. If
|
|
* we byte swap all data we apply on the PTE we're implicitly correct
|
|
* again.
|
|
*/
|
|
be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
|
|
be_bits = cpu_to_be64(bits);
|
|
|
|
asm volatile(" ldarx %0,0,%2\n"
|
|
" and. %1,%0,%3\n"
|
|
" bne 2f\n"
|
|
" or %0,%0,%4\n"
|
|
" stdcx. %0,0,%2\n"
|
|
" beq+ 2f\n"
|
|
" mr %1,%3\n"
|
|
"2: isync"
|
|
: "=&r" (tmp), "=&r" (old)
|
|
: "r" (hpte), "r" (be_bits), "r" (be_lockbit)
|
|
: "cc", "memory");
|
|
return old == 0;
|
|
}
|
|
|
|
static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
|
|
{
|
|
hpte_v &= ~HPTE_V_HVLOCK;
|
|
asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
|
|
hpte[0] = cpu_to_be64(hpte_v);
|
|
}
|
|
|
|
/* Without barrier */
|
|
static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
|
|
{
|
|
hpte_v &= ~HPTE_V_HVLOCK;
|
|
hpte[0] = cpu_to_be64(hpte_v);
|
|
}
|
|
|
|
/*
|
|
* These functions encode knowledge of the POWER7/8/9 hardware
|
|
* interpretations of the HPTE LP (large page size) field.
|
|
*/
|
|
static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
|
|
{
|
|
unsigned int lphi;
|
|
|
|
if (!(h & HPTE_V_LARGE))
|
|
return 12; /* 4kB */
|
|
lphi = (l >> 16) & 0xf;
|
|
switch ((l >> 12) & 0xf) {
|
|
case 0:
|
|
return !lphi ? 24 : -1; /* 16MB */
|
|
break;
|
|
case 1:
|
|
return 16; /* 64kB */
|
|
break;
|
|
case 3:
|
|
return !lphi ? 34 : -1; /* 16GB */
|
|
break;
|
|
case 7:
|
|
return (16 << 8) + 12; /* 64kB in 4kB */
|
|
break;
|
|
case 8:
|
|
if (!lphi)
|
|
return (24 << 8) + 16; /* 16MB in 64kkB */
|
|
if (lphi == 3)
|
|
return (24 << 8) + 12; /* 16MB in 4kB */
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
|
|
{
|
|
return kvmppc_hpte_page_shifts(h, l) & 0xff;
|
|
}
|
|
|
|
static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
|
|
{
|
|
int tmp = kvmppc_hpte_page_shifts(h, l);
|
|
|
|
if (tmp >= 0x100)
|
|
tmp >>= 8;
|
|
return tmp;
|
|
}
|
|
|
|
static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
|
|
{
|
|
return 1ul << kvmppc_hpte_actual_page_shift(v, r);
|
|
}
|
|
|
|
static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
|
|
{
|
|
switch (base_shift) {
|
|
case 12:
|
|
switch (actual_shift) {
|
|
case 12:
|
|
return 0;
|
|
case 16:
|
|
return 7;
|
|
case 24:
|
|
return 0x38;
|
|
}
|
|
break;
|
|
case 16:
|
|
switch (actual_shift) {
|
|
case 16:
|
|
return 1;
|
|
case 24:
|
|
return 8;
|
|
}
|
|
break;
|
|
case 24:
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
|
|
unsigned long pte_index)
|
|
{
|
|
int a_pgshift, b_pgshift;
|
|
unsigned long rb = 0, va_low, sllp;
|
|
|
|
b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
|
|
if (a_pgshift >= 0x100) {
|
|
b_pgshift &= 0xff;
|
|
a_pgshift >>= 8;
|
|
}
|
|
|
|
/*
|
|
* Ignore the top 14 bits of va
|
|
* v have top two bits covering segment size, hence move
|
|
* by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
|
|
* AVA field in v also have the lower 23 bits ignored.
|
|
* For base page size 4K we need 14 .. 65 bits (so need to
|
|
* collect extra 11 bits)
|
|
* For others we need 14..14+i
|
|
*/
|
|
/* This covers 14..54 bits of va*/
|
|
rb = (v & ~0x7fUL) << 16; /* AVA field */
|
|
|
|
/*
|
|
* AVA in v had cleared lower 23 bits. We need to derive
|
|
* that from pteg index
|
|
*/
|
|
va_low = pte_index >> 3;
|
|
if (v & HPTE_V_SECONDARY)
|
|
va_low = ~va_low;
|
|
/*
|
|
* get the vpn bits from va_low using reverse of hashing.
|
|
* In v we have va with 23 bits dropped and then left shifted
|
|
* HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
|
|
* right shift it with (SID_SHIFT - (23 - 7))
|
|
*/
|
|
if (!(v & HPTE_V_1TB_SEG))
|
|
va_low ^= v >> (SID_SHIFT - 16);
|
|
else
|
|
va_low ^= v >> (SID_SHIFT_1T - 16);
|
|
va_low &= 0x7ff;
|
|
|
|
if (b_pgshift == 12) {
|
|
if (a_pgshift > 12) {
|
|
sllp = (a_pgshift == 16) ? 5 : 4;
|
|
rb |= sllp << 5; /* AP field */
|
|
}
|
|
rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */
|
|
} else {
|
|
int aval_shift;
|
|
/*
|
|
* remaining bits of AVA/LP fields
|
|
* Also contain the rr bits of LP
|
|
*/
|
|
rb |= (va_low << b_pgshift) & 0x7ff000;
|
|
/*
|
|
* Now clear not needed LP bits based on actual psize
|
|
*/
|
|
rb &= ~((1ul << a_pgshift) - 1);
|
|
/*
|
|
* AVAL field 58..77 - base_page_shift bits of va
|
|
* we have space for 58..64 bits, Missing bits should
|
|
* be zero filled. +1 is to take care of L bit shift
|
|
*/
|
|
aval_shift = 64 - (77 - b_pgshift) + 1;
|
|
rb |= ((va_low << aval_shift) & 0xfe);
|
|
|
|
rb |= 1; /* L field */
|
|
rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
|
|
}
|
|
rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */
|
|
return rb;
|
|
}
|
|
|
|
static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
|
|
{
|
|
return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static inline int hpte_is_writable(unsigned long ptel)
|
|
{
|
|
unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
|
|
|
|
return pp != PP_RXRX && pp != PP_RXXX;
|
|
}
|
|
|
|
static inline unsigned long hpte_make_readonly(unsigned long ptel)
|
|
{
|
|
if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
|
|
ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
|
|
else
|
|
ptel |= PP_RXRX;
|
|
return ptel;
|
|
}
|
|
|
|
static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
|
|
{
|
|
unsigned int wimg = hptel & HPTE_R_WIMG;
|
|
|
|
/* Handle SAO */
|
|
if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
|
|
cpu_has_feature(CPU_FTR_ARCH_206))
|
|
wimg = HPTE_R_M;
|
|
|
|
if (!is_ci)
|
|
return wimg == HPTE_R_M;
|
|
/*
|
|
* if host is mapped cache inhibited, make sure hptel also have
|
|
* cache inhibited.
|
|
*/
|
|
if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
|
|
return false;
|
|
return !!(wimg & HPTE_R_I);
|
|
}
|
|
|
|
/*
|
|
* If it's present and writable, atomically set dirty and referenced bits and
|
|
* return the PTE, otherwise return 0.
|
|
*/
|
|
static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
|
|
{
|
|
pte_t old_pte, new_pte = __pte(0);
|
|
|
|
while (1) {
|
|
/*
|
|
* Make sure we don't reload from ptep
|
|
*/
|
|
old_pte = READ_ONCE(*ptep);
|
|
/*
|
|
* wait until H_PAGE_BUSY is clear then set it atomically
|
|
*/
|
|
if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
|
|
cpu_relax();
|
|
continue;
|
|
}
|
|
/* If pte is not present return None */
|
|
if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT)))
|
|
return __pte(0);
|
|
|
|
new_pte = pte_mkyoung(old_pte);
|
|
if (writing && pte_write(old_pte))
|
|
new_pte = pte_mkdirty(new_pte);
|
|
|
|
if (pte_xchg(ptep, old_pte, new_pte))
|
|
break;
|
|
}
|
|
return new_pte;
|
|
}
|
|
|
|
static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
|
|
{
|
|
if (key)
|
|
return PP_RWRX <= pp && pp <= PP_RXRX;
|
|
return true;
|
|
}
|
|
|
|
static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
|
|
{
|
|
if (key)
|
|
return pp == PP_RWRW;
|
|
return pp <= PP_RWRW;
|
|
}
|
|
|
|
static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
|
|
{
|
|
unsigned long skey;
|
|
|
|
skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
|
|
((hpte_r & HPTE_R_KEY_LO) >> 9);
|
|
return (amr >> (62 - 2 * skey)) & 3;
|
|
}
|
|
|
|
static inline void lock_rmap(unsigned long *rmap)
|
|
{
|
|
do {
|
|
while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
|
|
cpu_relax();
|
|
} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
|
|
}
|
|
|
|
static inline void unlock_rmap(unsigned long *rmap)
|
|
{
|
|
__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
|
|
}
|
|
|
|
static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
|
|
unsigned long pagesize)
|
|
{
|
|
unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
|
|
|
|
if (pagesize <= PAGE_SIZE)
|
|
return true;
|
|
return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
|
|
}
|
|
|
|
/*
|
|
* This works for 4k, 64k and 16M pages on POWER7,
|
|
* and 4k and 16M pages on PPC970.
|
|
*/
|
|
static inline unsigned long slb_pgsize_encoding(unsigned long psize)
|
|
{
|
|
unsigned long senc = 0;
|
|
|
|
if (psize > 0x1000) {
|
|
senc = SLB_VSID_L;
|
|
if (psize == 0x10000)
|
|
senc |= SLB_VSID_LP_01;
|
|
}
|
|
return senc;
|
|
}
|
|
|
|
static inline int is_vrma_hpte(unsigned long hpte_v)
|
|
{
|
|
return (hpte_v & ~0xffffffUL) ==
|
|
(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
/*
|
|
* Note modification of an HPTE; set the HPTE modified bit
|
|
* if anyone is interested.
|
|
*/
|
|
static inline void note_hpte_modification(struct kvm *kvm,
|
|
struct revmap_entry *rev)
|
|
{
|
|
if (atomic_read(&kvm->arch.hpte_mod_interest))
|
|
rev->guest_rpte |= HPTE_GR_MODIFIED;
|
|
}
|
|
|
|
/*
|
|
* Like kvm_memslots(), but for use in real mode when we can't do
|
|
* any RCU stuff (since the secondary threads are offline from the
|
|
* kernel's point of view), and we can't print anything.
|
|
* Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
|
|
*/
|
|
static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
|
|
{
|
|
return rcu_dereference_raw_notrace(kvm->memslots[0]);
|
|
}
|
|
|
|
extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
|
|
|
|
extern void kvmhv_rm_send_ipi(int cpu);
|
|
|
|
static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
|
|
{
|
|
/* HPTEs are 2**4 bytes long */
|
|
return 1UL << (hpt->order - 4);
|
|
}
|
|
|
|
static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
|
|
{
|
|
/* 128 (2**7) bytes in each HPTEG */
|
|
return (1UL << (hpt->order - 7)) - 1;
|
|
}
|
|
|
|
/* Set bits in a dirty bitmap, which is in LE format */
|
|
static inline void set_dirty_bits(unsigned long *map, unsigned long i,
|
|
unsigned long npages)
|
|
{
|
|
|
|
if (npages >= 8)
|
|
memset((char *)map + i / 8, 0xff, npages / 8);
|
|
else
|
|
for (; npages; ++i, --npages)
|
|
__set_bit_le(i, map);
|
|
}
|
|
|
|
static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
|
|
unsigned long npages)
|
|
{
|
|
if (npages >= 8)
|
|
memset((char *)map + i / 8, 0xff, npages / 8);
|
|
else
|
|
for (; npages; ++i, --npages)
|
|
set_bit_le(i, map);
|
|
}
|
|
|
|
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
|
|
|
|
#endif /* __ASM_KVM_BOOK3S_64_H__ */
|