mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-07 14:32:23 +00:00
e993db2d6e
The logical block size need to be smaller than the max_hw_sector setting, otherwise we can't even transfer a single LBA. Signed-off-by: Hannes Reinecke <hare@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: John Garry <john.g.garry@oracle.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
879 lines
28 KiB
C
879 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Functions related to setting various queue properties from drivers
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/backing-dev-defs.h>
|
|
#include <linux/gcd.h>
|
|
#include <linux/lcm.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-rq-qos.h"
|
|
#include "blk-wbt.h"
|
|
|
|
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
|
|
{
|
|
q->rq_timeout = timeout;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
|
|
|
|
/**
|
|
* blk_set_stacking_limits - set default limits for stacking devices
|
|
* @lim: the queue_limits structure to reset
|
|
*
|
|
* Prepare queue limits for applying limits from underlying devices using
|
|
* blk_stack_limits().
|
|
*/
|
|
void blk_set_stacking_limits(struct queue_limits *lim)
|
|
{
|
|
memset(lim, 0, sizeof(*lim));
|
|
lim->logical_block_size = SECTOR_SIZE;
|
|
lim->physical_block_size = SECTOR_SIZE;
|
|
lim->io_min = SECTOR_SIZE;
|
|
lim->discard_granularity = SECTOR_SIZE;
|
|
lim->dma_alignment = SECTOR_SIZE - 1;
|
|
lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
|
|
|
|
/* Inherit limits from component devices */
|
|
lim->max_segments = USHRT_MAX;
|
|
lim->max_discard_segments = USHRT_MAX;
|
|
lim->max_hw_sectors = UINT_MAX;
|
|
lim->max_segment_size = UINT_MAX;
|
|
lim->max_sectors = UINT_MAX;
|
|
lim->max_dev_sectors = UINT_MAX;
|
|
lim->max_write_zeroes_sectors = UINT_MAX;
|
|
lim->max_zone_append_sectors = UINT_MAX;
|
|
lim->max_user_discard_sectors = UINT_MAX;
|
|
}
|
|
EXPORT_SYMBOL(blk_set_stacking_limits);
|
|
|
|
static void blk_apply_bdi_limits(struct backing_dev_info *bdi,
|
|
struct queue_limits *lim)
|
|
{
|
|
/*
|
|
* For read-ahead of large files to be effective, we need to read ahead
|
|
* at least twice the optimal I/O size.
|
|
*/
|
|
bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
|
|
bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
|
|
}
|
|
|
|
static int blk_validate_zoned_limits(struct queue_limits *lim)
|
|
{
|
|
if (!lim->zoned) {
|
|
if (WARN_ON_ONCE(lim->max_open_zones) ||
|
|
WARN_ON_ONCE(lim->max_active_zones) ||
|
|
WARN_ON_ONCE(lim->zone_write_granularity) ||
|
|
WARN_ON_ONCE(lim->max_zone_append_sectors))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
|
|
return -EINVAL;
|
|
|
|
if (lim->zone_write_granularity < lim->logical_block_size)
|
|
lim->zone_write_granularity = lim->logical_block_size;
|
|
|
|
if (lim->max_zone_append_sectors) {
|
|
/*
|
|
* The Zone Append size is limited by the maximum I/O size
|
|
* and the zone size given that it can't span zones.
|
|
*/
|
|
lim->max_zone_append_sectors =
|
|
min3(lim->max_hw_sectors,
|
|
lim->max_zone_append_sectors,
|
|
lim->chunk_sectors);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check that the limits in lim are valid, initialize defaults for unset
|
|
* values, and cap values based on others where needed.
|
|
*/
|
|
static int blk_validate_limits(struct queue_limits *lim)
|
|
{
|
|
unsigned int max_hw_sectors;
|
|
unsigned int logical_block_sectors;
|
|
|
|
/*
|
|
* Unless otherwise specified, default to 512 byte logical blocks and a
|
|
* physical block size equal to the logical block size.
|
|
*/
|
|
if (!lim->logical_block_size)
|
|
lim->logical_block_size = SECTOR_SIZE;
|
|
if (lim->physical_block_size < lim->logical_block_size)
|
|
lim->physical_block_size = lim->logical_block_size;
|
|
|
|
/*
|
|
* The minimum I/O size defaults to the physical block size unless
|
|
* explicitly overridden.
|
|
*/
|
|
if (lim->io_min < lim->physical_block_size)
|
|
lim->io_min = lim->physical_block_size;
|
|
|
|
/*
|
|
* max_hw_sectors has a somewhat weird default for historical reason,
|
|
* but driver really should set their own instead of relying on this
|
|
* value.
|
|
*
|
|
* The block layer relies on the fact that every driver can
|
|
* handle at lest a page worth of data per I/O, and needs the value
|
|
* aligned to the logical block size.
|
|
*/
|
|
if (!lim->max_hw_sectors)
|
|
lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
|
|
if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
|
|
return -EINVAL;
|
|
logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
|
|
if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
|
|
return -EINVAL;
|
|
lim->max_hw_sectors = round_down(lim->max_hw_sectors,
|
|
logical_block_sectors);
|
|
|
|
/*
|
|
* The actual max_sectors value is a complex beast and also takes the
|
|
* max_dev_sectors value (set by SCSI ULPs) and a user configurable
|
|
* value into account. The ->max_sectors value is always calculated
|
|
* from these, so directly setting it won't have any effect.
|
|
*/
|
|
max_hw_sectors = min_not_zero(lim->max_hw_sectors,
|
|
lim->max_dev_sectors);
|
|
if (lim->max_user_sectors) {
|
|
if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
|
|
return -EINVAL;
|
|
lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
|
|
} else {
|
|
lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
|
|
}
|
|
lim->max_sectors = round_down(lim->max_sectors,
|
|
logical_block_sectors);
|
|
|
|
/*
|
|
* Random default for the maximum number of segments. Driver should not
|
|
* rely on this and set their own.
|
|
*/
|
|
if (!lim->max_segments)
|
|
lim->max_segments = BLK_MAX_SEGMENTS;
|
|
|
|
lim->max_discard_sectors =
|
|
min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
|
|
|
|
if (!lim->max_discard_segments)
|
|
lim->max_discard_segments = 1;
|
|
|
|
if (lim->discard_granularity < lim->physical_block_size)
|
|
lim->discard_granularity = lim->physical_block_size;
|
|
|
|
/*
|
|
* By default there is no limit on the segment boundary alignment,
|
|
* but if there is one it can't be smaller than the page size as
|
|
* that would break all the normal I/O patterns.
|
|
*/
|
|
if (!lim->seg_boundary_mask)
|
|
lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
|
|
if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Stacking device may have both virtual boundary and max segment
|
|
* size limit, so allow this setting now, and long-term the two
|
|
* might need to move out of stacking limits since we have immutable
|
|
* bvec and lower layer bio splitting is supposed to handle the two
|
|
* correctly.
|
|
*/
|
|
if (lim->virt_boundary_mask) {
|
|
if (!lim->max_segment_size)
|
|
lim->max_segment_size = UINT_MAX;
|
|
} else {
|
|
/*
|
|
* The maximum segment size has an odd historic 64k default that
|
|
* drivers probably should override. Just like the I/O size we
|
|
* require drivers to at least handle a full page per segment.
|
|
*/
|
|
if (!lim->max_segment_size)
|
|
lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
|
|
if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* We require drivers to at least do logical block aligned I/O, but
|
|
* historically could not check for that due to the separate calls
|
|
* to set the limits. Once the transition is finished the check
|
|
* below should be narrowed down to check the logical block size.
|
|
*/
|
|
if (!lim->dma_alignment)
|
|
lim->dma_alignment = SECTOR_SIZE - 1;
|
|
if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
|
|
return -EINVAL;
|
|
|
|
if (lim->alignment_offset) {
|
|
lim->alignment_offset &= (lim->physical_block_size - 1);
|
|
lim->misaligned = 0;
|
|
}
|
|
|
|
return blk_validate_zoned_limits(lim);
|
|
}
|
|
|
|
/*
|
|
* Set the default limits for a newly allocated queue. @lim contains the
|
|
* initial limits set by the driver, which could be no limit in which case
|
|
* all fields are cleared to zero.
|
|
*/
|
|
int blk_set_default_limits(struct queue_limits *lim)
|
|
{
|
|
/*
|
|
* Most defaults are set by capping the bounds in blk_validate_limits,
|
|
* but max_user_discard_sectors is special and needs an explicit
|
|
* initialization to the max value here.
|
|
*/
|
|
lim->max_user_discard_sectors = UINT_MAX;
|
|
return blk_validate_limits(lim);
|
|
}
|
|
|
|
/**
|
|
* queue_limits_commit_update - commit an atomic update of queue limits
|
|
* @q: queue to update
|
|
* @lim: limits to apply
|
|
*
|
|
* Apply the limits in @lim that were obtained from queue_limits_start_update()
|
|
* and updated by the caller to @q.
|
|
*
|
|
* Returns 0 if successful, else a negative error code.
|
|
*/
|
|
int queue_limits_commit_update(struct request_queue *q,
|
|
struct queue_limits *lim)
|
|
__releases(q->limits_lock)
|
|
{
|
|
int error = blk_validate_limits(lim);
|
|
|
|
if (!error) {
|
|
q->limits = *lim;
|
|
if (q->disk)
|
|
blk_apply_bdi_limits(q->disk->bdi, lim);
|
|
}
|
|
mutex_unlock(&q->limits_lock);
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_limits_commit_update);
|
|
|
|
/**
|
|
* queue_limits_set - apply queue limits to queue
|
|
* @q: queue to update
|
|
* @lim: limits to apply
|
|
*
|
|
* Apply the limits in @lim that were freshly initialized to @q.
|
|
* To update existing limits use queue_limits_start_update() and
|
|
* queue_limits_commit_update() instead.
|
|
*
|
|
* Returns 0 if successful, else a negative error code.
|
|
*/
|
|
int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
|
|
{
|
|
mutex_lock(&q->limits_lock);
|
|
return queue_limits_commit_update(q, lim);
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_limits_set);
|
|
|
|
/**
|
|
* blk_queue_chunk_sectors - set size of the chunk for this queue
|
|
* @q: the request queue for the device
|
|
* @chunk_sectors: chunk sectors in the usual 512b unit
|
|
*
|
|
* Description:
|
|
* If a driver doesn't want IOs to cross a given chunk size, it can set
|
|
* this limit and prevent merging across chunks. Note that the block layer
|
|
* must accept a page worth of data at any offset. So if the crossing of
|
|
* chunks is a hard limitation in the driver, it must still be prepared
|
|
* to split single page bios.
|
|
**/
|
|
void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
|
|
{
|
|
q->limits.chunk_sectors = chunk_sectors;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_chunk_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_discard_sectors - set max sectors for a single discard
|
|
* @q: the request queue for the device
|
|
* @max_discard_sectors: maximum number of sectors to discard
|
|
**/
|
|
void blk_queue_max_discard_sectors(struct request_queue *q,
|
|
unsigned int max_discard_sectors)
|
|
{
|
|
struct queue_limits *lim = &q->limits;
|
|
|
|
lim->max_hw_discard_sectors = max_discard_sectors;
|
|
lim->max_discard_sectors =
|
|
min(max_discard_sectors, lim->max_user_discard_sectors);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_discard_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
|
|
* @q: the request queue for the device
|
|
* @max_sectors: maximum number of sectors to secure_erase
|
|
**/
|
|
void blk_queue_max_secure_erase_sectors(struct request_queue *q,
|
|
unsigned int max_sectors)
|
|
{
|
|
q->limits.max_secure_erase_sectors = max_sectors;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_write_zeroes_sectors - set max sectors for a single
|
|
* write zeroes
|
|
* @q: the request queue for the device
|
|
* @max_write_zeroes_sectors: maximum number of sectors to write per command
|
|
**/
|
|
void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
|
|
unsigned int max_write_zeroes_sectors)
|
|
{
|
|
q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_zone_append_sectors - set max sectors for a single zone append
|
|
* @q: the request queue for the device
|
|
* @max_zone_append_sectors: maximum number of sectors to write per command
|
|
*
|
|
* Sets the maximum number of sectors allowed for zone append commands. If
|
|
* Specifying 0 for @max_zone_append_sectors indicates that the queue does
|
|
* not natively support zone append operations and that the block layer must
|
|
* emulate these operations using regular writes.
|
|
**/
|
|
void blk_queue_max_zone_append_sectors(struct request_queue *q,
|
|
unsigned int max_zone_append_sectors)
|
|
{
|
|
unsigned int max_sectors = 0;
|
|
|
|
if (WARN_ON(!blk_queue_is_zoned(q)))
|
|
return;
|
|
|
|
if (max_zone_append_sectors) {
|
|
max_sectors = min(q->limits.max_hw_sectors,
|
|
max_zone_append_sectors);
|
|
max_sectors = min(q->limits.chunk_sectors, max_sectors);
|
|
|
|
/*
|
|
* Signal eventual driver bugs resulting in the max_zone_append
|
|
* sectors limit being 0 due to the chunk_sectors limit (zone
|
|
* size) not set or the max_hw_sectors limit not set.
|
|
*/
|
|
WARN_ON_ONCE(!max_sectors);
|
|
}
|
|
|
|
q->limits.max_zone_append_sectors = max_sectors;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
|
|
|
|
/**
|
|
* blk_queue_logical_block_size - set logical block size for the queue
|
|
* @q: the request queue for the device
|
|
* @size: the logical block size, in bytes
|
|
*
|
|
* Description:
|
|
* This should be set to the lowest possible block size that the
|
|
* storage device can address. The default of 512 covers most
|
|
* hardware.
|
|
**/
|
|
void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
|
|
{
|
|
struct queue_limits *limits = &q->limits;
|
|
|
|
limits->logical_block_size = size;
|
|
|
|
if (limits->discard_granularity < limits->logical_block_size)
|
|
limits->discard_granularity = limits->logical_block_size;
|
|
|
|
if (limits->physical_block_size < size)
|
|
limits->physical_block_size = size;
|
|
|
|
if (limits->io_min < limits->physical_block_size)
|
|
limits->io_min = limits->physical_block_size;
|
|
|
|
limits->max_hw_sectors =
|
|
round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
|
|
limits->max_sectors =
|
|
round_down(limits->max_sectors, size >> SECTOR_SHIFT);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_logical_block_size);
|
|
|
|
/**
|
|
* blk_queue_physical_block_size - set physical block size for the queue
|
|
* @q: the request queue for the device
|
|
* @size: the physical block size, in bytes
|
|
*
|
|
* Description:
|
|
* This should be set to the lowest possible sector size that the
|
|
* hardware can operate on without reverting to read-modify-write
|
|
* operations.
|
|
*/
|
|
void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
|
|
{
|
|
q->limits.physical_block_size = size;
|
|
|
|
if (q->limits.physical_block_size < q->limits.logical_block_size)
|
|
q->limits.physical_block_size = q->limits.logical_block_size;
|
|
|
|
if (q->limits.discard_granularity < q->limits.physical_block_size)
|
|
q->limits.discard_granularity = q->limits.physical_block_size;
|
|
|
|
if (q->limits.io_min < q->limits.physical_block_size)
|
|
q->limits.io_min = q->limits.physical_block_size;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_physical_block_size);
|
|
|
|
/**
|
|
* blk_queue_zone_write_granularity - set zone write granularity for the queue
|
|
* @q: the request queue for the zoned device
|
|
* @size: the zone write granularity size, in bytes
|
|
*
|
|
* Description:
|
|
* This should be set to the lowest possible size allowing to write in
|
|
* sequential zones of a zoned block device.
|
|
*/
|
|
void blk_queue_zone_write_granularity(struct request_queue *q,
|
|
unsigned int size)
|
|
{
|
|
if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
|
|
return;
|
|
|
|
q->limits.zone_write_granularity = size;
|
|
|
|
if (q->limits.zone_write_granularity < q->limits.logical_block_size)
|
|
q->limits.zone_write_granularity = q->limits.logical_block_size;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
|
|
|
|
/**
|
|
* blk_queue_alignment_offset - set physical block alignment offset
|
|
* @q: the request queue for the device
|
|
* @offset: alignment offset in bytes
|
|
*
|
|
* Description:
|
|
* Some devices are naturally misaligned to compensate for things like
|
|
* the legacy DOS partition table 63-sector offset. Low-level drivers
|
|
* should call this function for devices whose first sector is not
|
|
* naturally aligned.
|
|
*/
|
|
void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
|
|
{
|
|
q->limits.alignment_offset =
|
|
offset & (q->limits.physical_block_size - 1);
|
|
q->limits.misaligned = 0;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_alignment_offset);
|
|
|
|
void disk_update_readahead(struct gendisk *disk)
|
|
{
|
|
blk_apply_bdi_limits(disk->bdi, &disk->queue->limits);
|
|
}
|
|
EXPORT_SYMBOL_GPL(disk_update_readahead);
|
|
|
|
/**
|
|
* blk_limits_io_min - set minimum request size for a device
|
|
* @limits: the queue limits
|
|
* @min: smallest I/O size in bytes
|
|
*
|
|
* Description:
|
|
* Some devices have an internal block size bigger than the reported
|
|
* hardware sector size. This function can be used to signal the
|
|
* smallest I/O the device can perform without incurring a performance
|
|
* penalty.
|
|
*/
|
|
void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
|
|
{
|
|
limits->io_min = min;
|
|
|
|
if (limits->io_min < limits->logical_block_size)
|
|
limits->io_min = limits->logical_block_size;
|
|
|
|
if (limits->io_min < limits->physical_block_size)
|
|
limits->io_min = limits->physical_block_size;
|
|
}
|
|
EXPORT_SYMBOL(blk_limits_io_min);
|
|
|
|
/**
|
|
* blk_queue_io_min - set minimum request size for the queue
|
|
* @q: the request queue for the device
|
|
* @min: smallest I/O size in bytes
|
|
*
|
|
* Description:
|
|
* Storage devices may report a granularity or preferred minimum I/O
|
|
* size which is the smallest request the device can perform without
|
|
* incurring a performance penalty. For disk drives this is often the
|
|
* physical block size. For RAID arrays it is often the stripe chunk
|
|
* size. A properly aligned multiple of minimum_io_size is the
|
|
* preferred request size for workloads where a high number of I/O
|
|
* operations is desired.
|
|
*/
|
|
void blk_queue_io_min(struct request_queue *q, unsigned int min)
|
|
{
|
|
blk_limits_io_min(&q->limits, min);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_io_min);
|
|
|
|
/**
|
|
* blk_limits_io_opt - set optimal request size for a device
|
|
* @limits: the queue limits
|
|
* @opt: smallest I/O size in bytes
|
|
*
|
|
* Description:
|
|
* Storage devices may report an optimal I/O size, which is the
|
|
* device's preferred unit for sustained I/O. This is rarely reported
|
|
* for disk drives. For RAID arrays it is usually the stripe width or
|
|
* the internal track size. A properly aligned multiple of
|
|
* optimal_io_size is the preferred request size for workloads where
|
|
* sustained throughput is desired.
|
|
*/
|
|
void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
|
|
{
|
|
limits->io_opt = opt;
|
|
}
|
|
EXPORT_SYMBOL(blk_limits_io_opt);
|
|
|
|
static int queue_limit_alignment_offset(const struct queue_limits *lim,
|
|
sector_t sector)
|
|
{
|
|
unsigned int granularity = max(lim->physical_block_size, lim->io_min);
|
|
unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
|
|
<< SECTOR_SHIFT;
|
|
|
|
return (granularity + lim->alignment_offset - alignment) % granularity;
|
|
}
|
|
|
|
static unsigned int queue_limit_discard_alignment(
|
|
const struct queue_limits *lim, sector_t sector)
|
|
{
|
|
unsigned int alignment, granularity, offset;
|
|
|
|
if (!lim->max_discard_sectors)
|
|
return 0;
|
|
|
|
/* Why are these in bytes, not sectors? */
|
|
alignment = lim->discard_alignment >> SECTOR_SHIFT;
|
|
granularity = lim->discard_granularity >> SECTOR_SHIFT;
|
|
if (!granularity)
|
|
return 0;
|
|
|
|
/* Offset of the partition start in 'granularity' sectors */
|
|
offset = sector_div(sector, granularity);
|
|
|
|
/* And why do we do this modulus *again* in blkdev_issue_discard()? */
|
|
offset = (granularity + alignment - offset) % granularity;
|
|
|
|
/* Turn it back into bytes, gaah */
|
|
return offset << SECTOR_SHIFT;
|
|
}
|
|
|
|
static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
|
|
{
|
|
sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
|
|
if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
|
|
sectors = PAGE_SIZE >> SECTOR_SHIFT;
|
|
return sectors;
|
|
}
|
|
|
|
/**
|
|
* blk_stack_limits - adjust queue_limits for stacked devices
|
|
* @t: the stacking driver limits (top device)
|
|
* @b: the underlying queue limits (bottom, component device)
|
|
* @start: first data sector within component device
|
|
*
|
|
* Description:
|
|
* This function is used by stacking drivers like MD and DM to ensure
|
|
* that all component devices have compatible block sizes and
|
|
* alignments. The stacking driver must provide a queue_limits
|
|
* struct (top) and then iteratively call the stacking function for
|
|
* all component (bottom) devices. The stacking function will
|
|
* attempt to combine the values and ensure proper alignment.
|
|
*
|
|
* Returns 0 if the top and bottom queue_limits are compatible. The
|
|
* top device's block sizes and alignment offsets may be adjusted to
|
|
* ensure alignment with the bottom device. If no compatible sizes
|
|
* and alignments exist, -1 is returned and the resulting top
|
|
* queue_limits will have the misaligned flag set to indicate that
|
|
* the alignment_offset is undefined.
|
|
*/
|
|
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
|
|
sector_t start)
|
|
{
|
|
unsigned int top, bottom, alignment, ret = 0;
|
|
|
|
t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
|
|
t->max_user_sectors = min_not_zero(t->max_user_sectors,
|
|
b->max_user_sectors);
|
|
t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
|
|
t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
|
|
t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
|
|
b->max_write_zeroes_sectors);
|
|
t->max_zone_append_sectors = min(queue_limits_max_zone_append_sectors(t),
|
|
queue_limits_max_zone_append_sectors(b));
|
|
t->bounce = max(t->bounce, b->bounce);
|
|
|
|
t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
|
|
b->seg_boundary_mask);
|
|
t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
|
|
b->virt_boundary_mask);
|
|
|
|
t->max_segments = min_not_zero(t->max_segments, b->max_segments);
|
|
t->max_discard_segments = min_not_zero(t->max_discard_segments,
|
|
b->max_discard_segments);
|
|
t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
|
|
b->max_integrity_segments);
|
|
|
|
t->max_segment_size = min_not_zero(t->max_segment_size,
|
|
b->max_segment_size);
|
|
|
|
t->misaligned |= b->misaligned;
|
|
|
|
alignment = queue_limit_alignment_offset(b, start);
|
|
|
|
/* Bottom device has different alignment. Check that it is
|
|
* compatible with the current top alignment.
|
|
*/
|
|
if (t->alignment_offset != alignment) {
|
|
|
|
top = max(t->physical_block_size, t->io_min)
|
|
+ t->alignment_offset;
|
|
bottom = max(b->physical_block_size, b->io_min) + alignment;
|
|
|
|
/* Verify that top and bottom intervals line up */
|
|
if (max(top, bottom) % min(top, bottom)) {
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
t->logical_block_size = max(t->logical_block_size,
|
|
b->logical_block_size);
|
|
|
|
t->physical_block_size = max(t->physical_block_size,
|
|
b->physical_block_size);
|
|
|
|
t->io_min = max(t->io_min, b->io_min);
|
|
t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
|
|
t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
|
|
|
|
/* Set non-power-of-2 compatible chunk_sectors boundary */
|
|
if (b->chunk_sectors)
|
|
t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
|
|
|
|
/* Physical block size a multiple of the logical block size? */
|
|
if (t->physical_block_size & (t->logical_block_size - 1)) {
|
|
t->physical_block_size = t->logical_block_size;
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
/* Minimum I/O a multiple of the physical block size? */
|
|
if (t->io_min & (t->physical_block_size - 1)) {
|
|
t->io_min = t->physical_block_size;
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
/* Optimal I/O a multiple of the physical block size? */
|
|
if (t->io_opt & (t->physical_block_size - 1)) {
|
|
t->io_opt = 0;
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
/* chunk_sectors a multiple of the physical block size? */
|
|
if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
|
|
t->chunk_sectors = 0;
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
t->raid_partial_stripes_expensive =
|
|
max(t->raid_partial_stripes_expensive,
|
|
b->raid_partial_stripes_expensive);
|
|
|
|
/* Find lowest common alignment_offset */
|
|
t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
|
|
% max(t->physical_block_size, t->io_min);
|
|
|
|
/* Verify that new alignment_offset is on a logical block boundary */
|
|
if (t->alignment_offset & (t->logical_block_size - 1)) {
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
|
|
t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
|
|
t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
|
|
|
|
/* Discard alignment and granularity */
|
|
if (b->discard_granularity) {
|
|
alignment = queue_limit_discard_alignment(b, start);
|
|
|
|
if (t->discard_granularity != 0 &&
|
|
t->discard_alignment != alignment) {
|
|
top = t->discard_granularity + t->discard_alignment;
|
|
bottom = b->discard_granularity + alignment;
|
|
|
|
/* Verify that top and bottom intervals line up */
|
|
if ((max(top, bottom) % min(top, bottom)) != 0)
|
|
t->discard_misaligned = 1;
|
|
}
|
|
|
|
t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
|
|
b->max_discard_sectors);
|
|
t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
|
|
b->max_hw_discard_sectors);
|
|
t->discard_granularity = max(t->discard_granularity,
|
|
b->discard_granularity);
|
|
t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
|
|
t->discard_granularity;
|
|
}
|
|
t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
|
|
b->max_secure_erase_sectors);
|
|
t->zone_write_granularity = max(t->zone_write_granularity,
|
|
b->zone_write_granularity);
|
|
t->zoned = max(t->zoned, b->zoned);
|
|
if (!t->zoned) {
|
|
t->zone_write_granularity = 0;
|
|
t->max_zone_append_sectors = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(blk_stack_limits);
|
|
|
|
/**
|
|
* queue_limits_stack_bdev - adjust queue_limits for stacked devices
|
|
* @t: the stacking driver limits (top device)
|
|
* @bdev: the underlying block device (bottom)
|
|
* @offset: offset to beginning of data within component device
|
|
* @pfx: prefix to use for warnings logged
|
|
*
|
|
* Description:
|
|
* This function is used by stacking drivers like MD and DM to ensure
|
|
* that all component devices have compatible block sizes and
|
|
* alignments. The stacking driver must provide a queue_limits
|
|
* struct (top) and then iteratively call the stacking function for
|
|
* all component (bottom) devices. The stacking function will
|
|
* attempt to combine the values and ensure proper alignment.
|
|
*/
|
|
void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
|
|
sector_t offset, const char *pfx)
|
|
{
|
|
if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits,
|
|
get_start_sect(bdev) + offset))
|
|
pr_notice("%s: Warning: Device %pg is misaligned\n",
|
|
pfx, bdev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
|
|
|
|
/**
|
|
* blk_queue_update_dma_pad - update pad mask
|
|
* @q: the request queue for the device
|
|
* @mask: pad mask
|
|
*
|
|
* Update dma pad mask.
|
|
*
|
|
* Appending pad buffer to a request modifies the last entry of a
|
|
* scatter list such that it includes the pad buffer.
|
|
**/
|
|
void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
|
|
{
|
|
if (mask > q->dma_pad_mask)
|
|
q->dma_pad_mask = mask;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_update_dma_pad);
|
|
|
|
/**
|
|
* blk_set_queue_depth - tell the block layer about the device queue depth
|
|
* @q: the request queue for the device
|
|
* @depth: queue depth
|
|
*
|
|
*/
|
|
void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
|
|
{
|
|
q->queue_depth = depth;
|
|
rq_qos_queue_depth_changed(q);
|
|
}
|
|
EXPORT_SYMBOL(blk_set_queue_depth);
|
|
|
|
/**
|
|
* blk_queue_write_cache - configure queue's write cache
|
|
* @q: the request queue for the device
|
|
* @wc: write back cache on or off
|
|
* @fua: device supports FUA writes, if true
|
|
*
|
|
* Tell the block layer about the write cache of @q.
|
|
*/
|
|
void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
|
|
{
|
|
if (wc) {
|
|
blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
|
|
blk_queue_flag_set(QUEUE_FLAG_WC, q);
|
|
} else {
|
|
blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
|
|
blk_queue_flag_clear(QUEUE_FLAG_WC, q);
|
|
}
|
|
if (fua)
|
|
blk_queue_flag_set(QUEUE_FLAG_FUA, q);
|
|
else
|
|
blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_write_cache);
|
|
|
|
/**
|
|
* disk_set_zoned - inidicate a zoned device
|
|
* @disk: gendisk to configure
|
|
*/
|
|
void disk_set_zoned(struct gendisk *disk)
|
|
{
|
|
struct request_queue *q = disk->queue;
|
|
|
|
WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
|
|
|
|
/*
|
|
* Set the zone write granularity to the device logical block
|
|
* size by default. The driver can change this value if needed.
|
|
*/
|
|
q->limits.zoned = true;
|
|
blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
|
|
}
|
|
EXPORT_SYMBOL_GPL(disk_set_zoned);
|
|
|
|
int bdev_alignment_offset(struct block_device *bdev)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
|
|
if (q->limits.misaligned)
|
|
return -1;
|
|
if (bdev_is_partition(bdev))
|
|
return queue_limit_alignment_offset(&q->limits,
|
|
bdev->bd_start_sect);
|
|
return q->limits.alignment_offset;
|
|
}
|
|
EXPORT_SYMBOL_GPL(bdev_alignment_offset);
|
|
|
|
unsigned int bdev_discard_alignment(struct block_device *bdev)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
|
|
if (bdev_is_partition(bdev))
|
|
return queue_limit_discard_alignment(&q->limits,
|
|
bdev->bd_start_sect);
|
|
return q->limits.discard_alignment;
|
|
}
|
|
EXPORT_SYMBOL_GPL(bdev_discard_alignment);
|