linux-next/kernel/dma/direct.c
Linus Torvalds c993e07be0 dma-mapping updates
- convert arm32 to the common dma-direct code (Arnd Bergmann, Robin Murphy,
    Christoph Hellwig)
  - restructure the PCIe peer to peer mapping support (Logan Gunthorpe)
  - allow the IOMMU code to communicate an optional DMA mapping length
    and use that in scsi and libata (John Garry)
  - split the global swiotlb lock (Tianyu Lan)
  - various fixes and cleanup (Chao Gao, Dan Carpenter, Dongli Zhang,
    Lukas Bulwahn, Robin Murphy)
 -----BEGIN PGP SIGNATURE-----
 
 iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAmLuIYULHGhjaEBsc3Qu
 ZGUACgkQD55TZVIEUYPS5A//Ty1ZNyXExmwZ6J6g7/oIvQlpAHilDr22mCd8tR8Y
 Ne7TgLa/X+usFvJTxJfkvg/LNMDjD7qx0J/mhDGm4reOFcEL4/PBy0rDSOgnmntV
 k/fPhgwnpuztiAQ+s+WkJ3pkrmG1HaEId7GGj2JaoYdas6RX2mGX7vL8uvUFepjw
 lYPAqWMtJHkOfsDK0PqqyQsr7dcC6lyFLqnn/wqvHtTJeKCfGs6W/SIrlWme2SZY
 3dNx84ZR1uPjaazAmtf2IWfjh/TBmd0ETRYycgUUKRP9iwsCkBQDBwsBGSIYXiWj
 BUKQ5oMvjAlUGRF0jYz9e77KuedE6GxWiXNQstitBmid142M37DHA5tvZRf65MPS
 THHcjTDmmoaO4YfFhhXOcFOrjG4/V8bF7fgHB6XkHDjhVVTcnIx8zuOAXIVBZvIV
 VAALmamBqEfIZZrCqgr7hzFssK2bip+TIMkdoD46Wcr+D7bAlujhuzWxubn9+ulT
 23v/pAvC80ut6LvKj6EA+GpRm/pejfOtEbjXPoO2hguNxvuUKvPQqNh9hy0q+v1e
 8n2Y/4lhy5bv02S7wKooNkfCoV753jBY1TIru45UmEYc3EkTQPii6okYe0DvW4QX
 VCnKgo156wSBfE+9eWdxCROv2SZqJFMV/wL3vw54dpJQMbDy7VkNsh4mGREdUkU1
 uek=
 =Bv19
 -----END PGP SIGNATURE-----

Merge tag 'dma-mapping-5.20-2022-08-06' of git://git.infradead.org/users/hch/dma-mapping

Pull dma-mapping updates from Christoph Hellwig:

 - convert arm32 to the common dma-direct code (Arnd Bergmann, Robin
   Murphy, Christoph Hellwig)

 - restructure the PCIe peer to peer mapping support (Logan Gunthorpe)

 - allow the IOMMU code to communicate an optional DMA mapping length
   and use that in scsi and libata (John Garry)

 - split the global swiotlb lock (Tianyu Lan)

 - various fixes and cleanup (Chao Gao, Dan Carpenter, Dongli Zhang,
   Lukas Bulwahn, Robin Murphy)

* tag 'dma-mapping-5.20-2022-08-06' of git://git.infradead.org/users/hch/dma-mapping: (45 commits)
  swiotlb: fix passing local variable to debugfs_create_ulong()
  dma-mapping: reformat comment to suppress htmldoc warning
  PCI/P2PDMA: Remove pci_p2pdma_[un]map_sg()
  RDMA/rw: drop pci_p2pdma_[un]map_sg()
  RDMA/core: introduce ib_dma_pci_p2p_dma_supported()
  nvme-pci: convert to using dma_map_sgtable()
  nvme-pci: check DMA ops when indicating support for PCI P2PDMA
  iommu/dma: support PCI P2PDMA pages in dma-iommu map_sg
  iommu: Explicitly skip bus address marked segments in __iommu_map_sg()
  dma-mapping: add flags to dma_map_ops to indicate PCI P2PDMA support
  dma-direct: support PCI P2PDMA pages in dma-direct map_sg
  dma-mapping: allow EREMOTEIO return code for P2PDMA transfers
  PCI/P2PDMA: Introduce helpers for dma_map_sg implementations
  PCI/P2PDMA: Attempt to set map_type if it has not been set
  lib/scatterlist: add flag for indicating P2PDMA segments in an SGL
  swiotlb: clean up some coding style and minor issues
  dma-mapping: update comment after dmabounce removal
  scsi: sd: Add a comment about limiting max_sectors to shost optimal limit
  ata: libata-scsi: cap ata_device->max_sectors according to shost->max_sectors
  scsi: scsi_transport_sas: cap shost opt_sectors according to DMA optimal limit
  ...
2022-08-06 10:56:45 -07:00

657 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018-2020 Christoph Hellwig.
*
* DMA operations that map physical memory directly without using an IOMMU.
*/
#include <linux/memblock.h> /* for max_pfn */
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/dma-map-ops.h>
#include <linux/scatterlist.h>
#include <linux/pfn.h>
#include <linux/vmalloc.h>
#include <linux/set_memory.h>
#include <linux/slab.h>
#include "direct.h"
/*
* Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
* it for entirely different regions. In that case the arch code needs to
* override the variable below for dma-direct to work properly.
*/
unsigned int zone_dma_bits __ro_after_init = 24;
static inline dma_addr_t phys_to_dma_direct(struct device *dev,
phys_addr_t phys)
{
if (force_dma_unencrypted(dev))
return phys_to_dma_unencrypted(dev, phys);
return phys_to_dma(dev, phys);
}
static inline struct page *dma_direct_to_page(struct device *dev,
dma_addr_t dma_addr)
{
return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
}
u64 dma_direct_get_required_mask(struct device *dev)
{
phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
u64 max_dma = phys_to_dma_direct(dev, phys);
return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
}
static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
u64 *phys_limit)
{
u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
/*
* Optimistically try the zone that the physical address mask falls
* into first. If that returns memory that isn't actually addressable
* we will fallback to the next lower zone and try again.
*
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
* zones.
*/
*phys_limit = dma_to_phys(dev, dma_limit);
if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
return GFP_DMA;
if (*phys_limit <= DMA_BIT_MASK(32))
return GFP_DMA32;
return 0;
}
static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
{
dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
if (dma_addr == DMA_MAPPING_ERROR)
return false;
return dma_addr + size - 1 <=
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
}
static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
{
if (!force_dma_unencrypted(dev))
return 0;
return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
}
static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
{
int ret;
if (!force_dma_unencrypted(dev))
return 0;
ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
if (ret)
pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
return ret;
}
static void __dma_direct_free_pages(struct device *dev, struct page *page,
size_t size)
{
if (swiotlb_free(dev, page, size))
return;
dma_free_contiguous(dev, page, size);
}
static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
{
struct page *page = swiotlb_alloc(dev, size);
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
swiotlb_free(dev, page, size);
return NULL;
}
return page;
}
static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
gfp_t gfp, bool allow_highmem)
{
int node = dev_to_node(dev);
struct page *page = NULL;
u64 phys_limit;
WARN_ON_ONCE(!PAGE_ALIGNED(size));
if (is_swiotlb_for_alloc(dev))
return dma_direct_alloc_swiotlb(dev, size);
gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
&phys_limit);
page = dma_alloc_contiguous(dev, size, gfp);
if (page) {
if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
(!allow_highmem && PageHighMem(page))) {
dma_free_contiguous(dev, page, size);
page = NULL;
}
}
again:
if (!page)
page = alloc_pages_node(node, gfp, get_order(size));
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
dma_free_contiguous(dev, page, size);
page = NULL;
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
phys_limit < DMA_BIT_MASK(64) &&
!(gfp & (GFP_DMA32 | GFP_DMA))) {
gfp |= GFP_DMA32;
goto again;
}
if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
goto again;
}
}
return page;
}
/*
* Check if a potentially blocking operations needs to dip into the atomic
* pools for the given device/gfp.
*/
static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
{
return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
}
static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{
struct page *page;
u64 phys_mask;
void *ret;
if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
return NULL;
gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
&phys_mask);
page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
if (!page)
return NULL;
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return ret;
}
static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{
struct page *page;
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
if (!page)
return NULL;
/* remove any dirty cache lines on the kernel alias */
if (!PageHighMem(page))
arch_dma_prep_coherent(page, size);
/* return the page pointer as the opaque cookie */
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return page;
}
void *dma_direct_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
bool remap = false, set_uncached = false;
struct page *page;
void *ret;
size = PAGE_ALIGN(size);
if (attrs & DMA_ATTR_NO_WARN)
gfp |= __GFP_NOWARN;
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
if (!dev_is_dma_coherent(dev)) {
/*
* Fallback to the arch handler if it exists. This should
* eventually go away.
*/
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
!IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
!is_swiotlb_for_alloc(dev))
return arch_dma_alloc(dev, size, dma_handle, gfp,
attrs);
/*
* If there is a global pool, always allocate from it for
* non-coherent devices.
*/
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
return dma_alloc_from_global_coherent(dev, size,
dma_handle);
/*
* Otherwise remap if the architecture is asking for it. But
* given that remapping memory is a blocking operation we'll
* instead have to dip into the atomic pools.
*/
remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
if (remap) {
if (dma_direct_use_pool(dev, gfp))
return dma_direct_alloc_from_pool(dev, size,
dma_handle, gfp);
} else {
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
return NULL;
set_uncached = true;
}
}
/*
* Decrypting memory may block, so allocate the memory from the atomic
* pools if we can't block.
*/
if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
/* we always manually zero the memory once we are done */
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
if (!page)
return NULL;
/*
* dma_alloc_contiguous can return highmem pages depending on a
* combination the cma= arguments and per-arch setup. These need to be
* remapped to return a kernel virtual address.
*/
if (PageHighMem(page)) {
remap = true;
set_uncached = false;
}
if (remap) {
pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
if (force_dma_unencrypted(dev))
prot = pgprot_decrypted(prot);
/* remove any dirty cache lines on the kernel alias */
arch_dma_prep_coherent(page, size);
/* create a coherent mapping */
ret = dma_common_contiguous_remap(page, size, prot,
__builtin_return_address(0));
if (!ret)
goto out_free_pages;
} else {
ret = page_address(page);
if (dma_set_decrypted(dev, ret, size))
goto out_free_pages;
}
memset(ret, 0, size);
if (set_uncached) {
arch_dma_prep_coherent(page, size);
ret = arch_dma_set_uncached(ret, size);
if (IS_ERR(ret))
goto out_encrypt_pages;
}
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return ret;
out_encrypt_pages:
if (dma_set_encrypted(dev, page_address(page), size))
return NULL;
out_free_pages:
__dma_direct_free_pages(dev, page, size);
return NULL;
}
void dma_direct_free(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
{
unsigned int page_order = get_order(size);
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
/* cpu_addr is a struct page cookie, not a kernel address */
dma_free_contiguous(dev, cpu_addr, size);
return;
}
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
!IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
!dev_is_dma_coherent(dev) &&
!is_swiotlb_for_alloc(dev)) {
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
return;
}
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
!dev_is_dma_coherent(dev)) {
if (!dma_release_from_global_coherent(page_order, cpu_addr))
WARN_ON_ONCE(1);
return;
}
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
return;
if (is_vmalloc_addr(cpu_addr)) {
vunmap(cpu_addr);
} else {
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
arch_dma_clear_uncached(cpu_addr, size);
if (dma_set_encrypted(dev, cpu_addr, size))
return;
}
__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
}
struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
{
struct page *page;
void *ret;
if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
page = __dma_direct_alloc_pages(dev, size, gfp, false);
if (!page)
return NULL;
ret = page_address(page);
if (dma_set_decrypted(dev, ret, size))
goto out_free_pages;
memset(ret, 0, size);
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return page;
out_free_pages:
__dma_direct_free_pages(dev, page, size);
return NULL;
}
void dma_direct_free_pages(struct device *dev, size_t size,
struct page *page, dma_addr_t dma_addr,
enum dma_data_direction dir)
{
void *vaddr = page_address(page);
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
dma_free_from_pool(dev, vaddr, size))
return;
if (dma_set_encrypted(dev, vaddr, size))
return;
__dma_direct_free_pages(dev, page, size);
}
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
defined(CONFIG_SWIOTLB)
void dma_direct_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
if (unlikely(is_swiotlb_buffer(dev, paddr)))
swiotlb_sync_single_for_device(dev, paddr, sg->length,
dir);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(paddr, sg->length,
dir);
}
}
#endif
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
defined(CONFIG_SWIOTLB)
void dma_direct_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu(paddr, sg->length, dir);
if (unlikely(is_swiotlb_buffer(dev, paddr)))
swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
dir);
if (dir == DMA_FROM_DEVICE)
arch_dma_mark_clean(paddr, sg->length);
}
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu_all();
}
/*
* Unmaps segments, except for ones marked as pci_p2pdma which do not
* require any further action as they contain a bus address.
*/
void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
if (sg_is_dma_bus_address(sg))
sg_dma_unmark_bus_address(sg);
else
dma_direct_unmap_page(dev, sg->dma_address,
sg_dma_len(sg), dir, attrs);
}
}
#endif
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
struct pci_p2pdma_map_state p2pdma_state = {};
enum pci_p2pdma_map_type map;
struct scatterlist *sg;
int i, ret;
for_each_sg(sgl, sg, nents, i) {
if (is_pci_p2pdma_page(sg_page(sg))) {
map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
switch (map) {
case PCI_P2PDMA_MAP_BUS_ADDR:
continue;
case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
/*
* Any P2P mapping that traverses the PCI
* host bridge must be mapped with CPU physical
* address and not PCI bus addresses. This is
* done with dma_direct_map_page() below.
*/
break;
default:
ret = -EREMOTEIO;
goto out_unmap;
}
}
sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
sg->offset, sg->length, dir, attrs);
if (sg->dma_address == DMA_MAPPING_ERROR) {
ret = -EIO;
goto out_unmap;
}
sg_dma_len(sg) = sg->length;
}
return nents;
out_unmap:
dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
return ret;
}
dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t dma_addr = paddr;
if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
dev_err_once(dev,
"DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
WARN_ON_ONCE(1);
return DMA_MAPPING_ERROR;
}
return dma_addr;
}
int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
struct page *page = dma_direct_to_page(dev, dma_addr);
int ret;
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
if (!ret)
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
return ret;
}
bool dma_direct_can_mmap(struct device *dev)
{
return dev_is_dma_coherent(dev) ||
IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
}
int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
unsigned long user_count = vma_pages(vma);
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
int ret = -ENXIO;
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
if (force_dma_unencrypted(dev))
vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
return ret;
if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
return -ENXIO;
return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
user_count << PAGE_SHIFT, vma->vm_page_prot);
}
int dma_direct_supported(struct device *dev, u64 mask)
{
u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
/*
* Because 32-bit DMA masks are so common we expect every architecture
* to be able to satisfy them - either by not supporting more physical
* memory, or by providing a ZONE_DMA32. If neither is the case, the
* architecture needs to use an IOMMU instead of the direct mapping.
*/
if (mask >= DMA_BIT_MASK(32))
return 1;
/*
* This check needs to be against the actual bit mask value, so use
* phys_to_dma_unencrypted() here so that the SME encryption mask isn't
* part of the check.
*/
if (IS_ENABLED(CONFIG_ZONE_DMA))
min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
return mask >= phys_to_dma_unencrypted(dev, min_mask);
}
size_t dma_direct_max_mapping_size(struct device *dev)
{
/* If SWIOTLB is active, use its maximum mapping size */
if (is_swiotlb_active(dev) &&
(dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
return swiotlb_max_mapping_size(dev);
return SIZE_MAX;
}
bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
{
return !dev_is_dma_coherent(dev) ||
is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
}
/**
* dma_direct_set_offset - Assign scalar offset for a single DMA range.
* @dev: device pointer; needed to "own" the alloced memory.
* @cpu_start: beginning of memory region covered by this offset.
* @dma_start: beginning of DMA/PCI region covered by this offset.
* @size: size of the region.
*
* This is for the simple case of a uniform offset which cannot
* be discovered by "dma-ranges".
*
* It returns -ENOMEM if out of memory, -EINVAL if a map
* already exists, 0 otherwise.
*
* Note: any call to this from a driver is a bug. The mapping needs
* to be described by the device tree or other firmware interfaces.
*/
int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
dma_addr_t dma_start, u64 size)
{
struct bus_dma_region *map;
u64 offset = (u64)cpu_start - (u64)dma_start;
if (dev->dma_range_map) {
dev_err(dev, "attempt to add DMA range to existing map\n");
return -EINVAL;
}
if (!offset)
return 0;
map = kcalloc(2, sizeof(*map), GFP_KERNEL);
if (!map)
return -ENOMEM;
map[0].cpu_start = cpu_start;
map[0].dma_start = dma_start;
map[0].offset = offset;
map[0].size = size;
dev->dma_range_map = map;
return 0;
}