mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-11 08:18:47 +00:00
07f522d203
Applications need the ability to associate an address-range with some key and latter revert to its initial default key. Pkey-0 comes close to providing this function but falls short, because the current implementation disallows applications to explicitly associate pkey-0 to the address range. Lets make pkey-0 less special and treat it almost like any other key. Thus it can be explicitly associated with any address range, and can be freed. This gives the application more flexibility and power. The ability to free pkey-0 must be used responsibily, since pkey-0 is associated with almost all address-range by default. Even with this change pkey-0 continues to be slightly more special from the following point of view. (a) it is implicitly allocated. (b) it is the default key assigned to any address-range. (c) its permissions cannot be modified by userspace. NOTE: (c) is specific to powerpc only. pkey-0 is associated by default with all pages including kernel pages, and pkeys are also active in kernel mode. If any permission is denied on pkey-0, the kernel running in the context of the application will be unable to operate. Tested on powerpc. Signed-off-by: Ram Pai <linuxram@us.ibm.com> [mpe: Drop #define PKEY_0 0 in favour of plain old 0] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
210 lines
5.8 KiB
C
210 lines
5.8 KiB
C
/* SPDX-License-Identifier: GPL-2.0+ */
|
|
/*
|
|
* PowerPC Memory Protection Keys management
|
|
*
|
|
* Copyright 2017, Ram Pai, IBM Corporation.
|
|
*/
|
|
|
|
#ifndef _ASM_POWERPC_KEYS_H
|
|
#define _ASM_POWERPC_KEYS_H
|
|
|
|
#include <linux/jump_label.h>
|
|
#include <asm/firmware.h>
|
|
|
|
DECLARE_STATIC_KEY_TRUE(pkey_disabled);
|
|
extern int pkeys_total; /* total pkeys as per device tree */
|
|
extern u32 initial_allocation_mask; /* bits set for the initially allocated keys */
|
|
extern u32 reserved_allocation_mask; /* bits set for reserved keys */
|
|
|
|
#define ARCH_VM_PKEY_FLAGS (VM_PKEY_BIT0 | VM_PKEY_BIT1 | VM_PKEY_BIT2 | \
|
|
VM_PKEY_BIT3 | VM_PKEY_BIT4)
|
|
|
|
/* Override any generic PKEY permission defines */
|
|
#define PKEY_DISABLE_EXECUTE 0x4
|
|
#define PKEY_ACCESS_MASK (PKEY_DISABLE_ACCESS | \
|
|
PKEY_DISABLE_WRITE | \
|
|
PKEY_DISABLE_EXECUTE)
|
|
|
|
static inline u64 pkey_to_vmflag_bits(u16 pkey)
|
|
{
|
|
return (((u64)pkey << VM_PKEY_SHIFT) & ARCH_VM_PKEY_FLAGS);
|
|
}
|
|
|
|
static inline u64 vmflag_to_pte_pkey_bits(u64 vm_flags)
|
|
{
|
|
if (static_branch_likely(&pkey_disabled))
|
|
return 0x0UL;
|
|
|
|
return (((vm_flags & VM_PKEY_BIT0) ? H_PTE_PKEY_BIT4 : 0x0UL) |
|
|
((vm_flags & VM_PKEY_BIT1) ? H_PTE_PKEY_BIT3 : 0x0UL) |
|
|
((vm_flags & VM_PKEY_BIT2) ? H_PTE_PKEY_BIT2 : 0x0UL) |
|
|
((vm_flags & VM_PKEY_BIT3) ? H_PTE_PKEY_BIT1 : 0x0UL) |
|
|
((vm_flags & VM_PKEY_BIT4) ? H_PTE_PKEY_BIT0 : 0x0UL));
|
|
}
|
|
|
|
static inline int vma_pkey(struct vm_area_struct *vma)
|
|
{
|
|
if (static_branch_likely(&pkey_disabled))
|
|
return 0;
|
|
return (vma->vm_flags & ARCH_VM_PKEY_FLAGS) >> VM_PKEY_SHIFT;
|
|
}
|
|
|
|
#define arch_max_pkey() pkeys_total
|
|
|
|
static inline u64 pte_to_hpte_pkey_bits(u64 pteflags)
|
|
{
|
|
return (((pteflags & H_PTE_PKEY_BIT0) ? HPTE_R_KEY_BIT0 : 0x0UL) |
|
|
((pteflags & H_PTE_PKEY_BIT1) ? HPTE_R_KEY_BIT1 : 0x0UL) |
|
|
((pteflags & H_PTE_PKEY_BIT2) ? HPTE_R_KEY_BIT2 : 0x0UL) |
|
|
((pteflags & H_PTE_PKEY_BIT3) ? HPTE_R_KEY_BIT3 : 0x0UL) |
|
|
((pteflags & H_PTE_PKEY_BIT4) ? HPTE_R_KEY_BIT4 : 0x0UL));
|
|
}
|
|
|
|
static inline u16 pte_to_pkey_bits(u64 pteflags)
|
|
{
|
|
return (((pteflags & H_PTE_PKEY_BIT0) ? 0x10 : 0x0UL) |
|
|
((pteflags & H_PTE_PKEY_BIT1) ? 0x8 : 0x0UL) |
|
|
((pteflags & H_PTE_PKEY_BIT2) ? 0x4 : 0x0UL) |
|
|
((pteflags & H_PTE_PKEY_BIT3) ? 0x2 : 0x0UL) |
|
|
((pteflags & H_PTE_PKEY_BIT4) ? 0x1 : 0x0UL));
|
|
}
|
|
|
|
#define pkey_alloc_mask(pkey) (0x1 << pkey)
|
|
|
|
#define mm_pkey_allocation_map(mm) (mm->context.pkey_allocation_map)
|
|
|
|
#define __mm_pkey_allocated(mm, pkey) { \
|
|
mm_pkey_allocation_map(mm) |= pkey_alloc_mask(pkey); \
|
|
}
|
|
|
|
#define __mm_pkey_free(mm, pkey) { \
|
|
mm_pkey_allocation_map(mm) &= ~pkey_alloc_mask(pkey); \
|
|
}
|
|
|
|
#define __mm_pkey_is_allocated(mm, pkey) \
|
|
(mm_pkey_allocation_map(mm) & pkey_alloc_mask(pkey))
|
|
|
|
#define __mm_pkey_is_reserved(pkey) (reserved_allocation_mask & \
|
|
pkey_alloc_mask(pkey))
|
|
|
|
static inline bool mm_pkey_is_allocated(struct mm_struct *mm, int pkey)
|
|
{
|
|
if (pkey < 0 || pkey >= arch_max_pkey())
|
|
return false;
|
|
|
|
/* Reserved keys are never allocated. */
|
|
if (__mm_pkey_is_reserved(pkey))
|
|
return false;
|
|
|
|
return __mm_pkey_is_allocated(mm, pkey);
|
|
}
|
|
|
|
/*
|
|
* Returns a positive, 5-bit key on success, or -1 on failure.
|
|
* Relies on the mmap_sem to protect against concurrency in mm_pkey_alloc() and
|
|
* mm_pkey_free().
|
|
*/
|
|
static inline int mm_pkey_alloc(struct mm_struct *mm)
|
|
{
|
|
/*
|
|
* Note: this is the one and only place we make sure that the pkey is
|
|
* valid as far as the hardware is concerned. The rest of the kernel
|
|
* trusts that only good, valid pkeys come out of here.
|
|
*/
|
|
u32 all_pkeys_mask = (u32)(~(0x0));
|
|
int ret;
|
|
|
|
if (static_branch_likely(&pkey_disabled))
|
|
return -1;
|
|
|
|
/*
|
|
* Are we out of pkeys? We must handle this specially because ffz()
|
|
* behavior is undefined if there are no zeros.
|
|
*/
|
|
if (mm_pkey_allocation_map(mm) == all_pkeys_mask)
|
|
return -1;
|
|
|
|
ret = ffz((u32)mm_pkey_allocation_map(mm));
|
|
__mm_pkey_allocated(mm, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int mm_pkey_free(struct mm_struct *mm, int pkey)
|
|
{
|
|
if (static_branch_likely(&pkey_disabled))
|
|
return -1;
|
|
|
|
if (!mm_pkey_is_allocated(mm, pkey))
|
|
return -EINVAL;
|
|
|
|
__mm_pkey_free(mm, pkey);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try to dedicate one of the protection keys to be used as an
|
|
* execute-only protection key.
|
|
*/
|
|
extern int __execute_only_pkey(struct mm_struct *mm);
|
|
static inline int execute_only_pkey(struct mm_struct *mm)
|
|
{
|
|
if (static_branch_likely(&pkey_disabled))
|
|
return -1;
|
|
|
|
return __execute_only_pkey(mm);
|
|
}
|
|
|
|
extern int __arch_override_mprotect_pkey(struct vm_area_struct *vma,
|
|
int prot, int pkey);
|
|
static inline int arch_override_mprotect_pkey(struct vm_area_struct *vma,
|
|
int prot, int pkey)
|
|
{
|
|
if (static_branch_likely(&pkey_disabled))
|
|
return 0;
|
|
|
|
/*
|
|
* Is this an mprotect_pkey() call? If so, never override the value that
|
|
* came from the user.
|
|
*/
|
|
if (pkey != -1)
|
|
return pkey;
|
|
|
|
return __arch_override_mprotect_pkey(vma, prot, pkey);
|
|
}
|
|
|
|
extern int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
|
|
unsigned long init_val);
|
|
static inline int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
|
|
unsigned long init_val)
|
|
{
|
|
if (static_branch_likely(&pkey_disabled))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* userspace should not change pkey-0 permissions.
|
|
* pkey-0 is associated with every page in the kernel.
|
|
* If userspace denies any permission on pkey-0, the
|
|
* kernel cannot operate.
|
|
*/
|
|
if (pkey == 0)
|
|
return init_val ? -EINVAL : 0;
|
|
|
|
return __arch_set_user_pkey_access(tsk, pkey, init_val);
|
|
}
|
|
|
|
static inline bool arch_pkeys_enabled(void)
|
|
{
|
|
return !static_branch_likely(&pkey_disabled);
|
|
}
|
|
|
|
extern void pkey_mm_init(struct mm_struct *mm);
|
|
extern bool arch_supports_pkeys(int cap);
|
|
extern unsigned int arch_usable_pkeys(void);
|
|
extern void thread_pkey_regs_save(struct thread_struct *thread);
|
|
extern void thread_pkey_regs_restore(struct thread_struct *new_thread,
|
|
struct thread_struct *old_thread);
|
|
extern void thread_pkey_regs_init(struct thread_struct *thread);
|
|
#endif /*_ASM_POWERPC_KEYS_H */
|