mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2024-12-29 17:22:07 +00:00
1445 lines
36 KiB
C
1445 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/fs/file.c
|
|
*
|
|
* Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
|
|
*
|
|
* Manage the dynamic fd arrays in the process files_struct.
|
|
*/
|
|
|
|
#include <linux/syscalls.h>
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fdtable.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/close_range.h>
|
|
#include <linux/file_ref.h>
|
|
#include <net/sock.h>
|
|
#include <linux/init_task.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/**
|
|
* __file_ref_put - Slowpath of file_ref_put()
|
|
* @ref: Pointer to the reference count
|
|
* @cnt: Current reference count
|
|
*
|
|
* Invoked when the reference count is outside of the valid zone.
|
|
*
|
|
* Return:
|
|
* True if this was the last reference with no future references
|
|
* possible. This signals the caller that it can safely schedule the
|
|
* object, which is protected by the reference counter, for
|
|
* deconstruction.
|
|
*
|
|
* False if there are still active references or the put() raced
|
|
* with a concurrent get()/put() pair. Caller is not allowed to
|
|
* deconstruct the protected object.
|
|
*/
|
|
bool __file_ref_put(file_ref_t *ref, unsigned long cnt)
|
|
{
|
|
/* Did this drop the last reference? */
|
|
if (likely(cnt == FILE_REF_NOREF)) {
|
|
/*
|
|
* Carefully try to set the reference count to FILE_REF_DEAD.
|
|
*
|
|
* This can fail if a concurrent get() operation has
|
|
* elevated it again or the corresponding put() even marked
|
|
* it dead already. Both are valid situations and do not
|
|
* require a retry. If this fails the caller is not
|
|
* allowed to deconstruct the object.
|
|
*/
|
|
if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD))
|
|
return false;
|
|
|
|
/*
|
|
* The caller can safely schedule the object for
|
|
* deconstruction. Provide acquire ordering.
|
|
*/
|
|
smp_acquire__after_ctrl_dep();
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If the reference count was already in the dead zone, then this
|
|
* put() operation is imbalanced. Warn, put the reference count back to
|
|
* DEAD and tell the caller to not deconstruct the object.
|
|
*/
|
|
if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) {
|
|
atomic_long_set(&ref->refcnt, FILE_REF_DEAD);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* This is a put() operation on a saturated refcount. Restore the
|
|
* mean saturation value and tell the caller to not deconstruct the
|
|
* object.
|
|
*/
|
|
if (cnt > FILE_REF_MAXREF)
|
|
atomic_long_set(&ref->refcnt, FILE_REF_SATURATED);
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__file_ref_put);
|
|
|
|
unsigned int sysctl_nr_open __read_mostly = 1024*1024;
|
|
unsigned int sysctl_nr_open_min = BITS_PER_LONG;
|
|
/* our min() is unusable in constant expressions ;-/ */
|
|
#define __const_min(x, y) ((x) < (y) ? (x) : (y))
|
|
unsigned int sysctl_nr_open_max =
|
|
__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
|
|
|
|
static void __free_fdtable(struct fdtable *fdt)
|
|
{
|
|
kvfree(fdt->fd);
|
|
kvfree(fdt->open_fds);
|
|
kfree(fdt);
|
|
}
|
|
|
|
static void free_fdtable_rcu(struct rcu_head *rcu)
|
|
{
|
|
__free_fdtable(container_of(rcu, struct fdtable, rcu));
|
|
}
|
|
|
|
#define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr))
|
|
#define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long))
|
|
|
|
#define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds
|
|
/*
|
|
* Copy 'count' fd bits from the old table to the new table and clear the extra
|
|
* space if any. This does not copy the file pointers. Called with the files
|
|
* spinlock held for write.
|
|
*/
|
|
static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
|
|
unsigned int copy_words)
|
|
{
|
|
unsigned int nwords = fdt_words(nfdt);
|
|
|
|
bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds,
|
|
copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
|
|
bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec,
|
|
copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
|
|
bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits,
|
|
copy_words, nwords);
|
|
}
|
|
|
|
/*
|
|
* Copy all file descriptors from the old table to the new, expanded table and
|
|
* clear the extra space. Called with the files spinlock held for write.
|
|
*/
|
|
static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
|
|
{
|
|
size_t cpy, set;
|
|
|
|
BUG_ON(nfdt->max_fds < ofdt->max_fds);
|
|
|
|
cpy = ofdt->max_fds * sizeof(struct file *);
|
|
set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
|
|
memcpy(nfdt->fd, ofdt->fd, cpy);
|
|
memset((char *)nfdt->fd + cpy, 0, set);
|
|
|
|
copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt));
|
|
}
|
|
|
|
/*
|
|
* Note how the fdtable bitmap allocations very much have to be a multiple of
|
|
* BITS_PER_LONG. This is not only because we walk those things in chunks of
|
|
* 'unsigned long' in some places, but simply because that is how the Linux
|
|
* kernel bitmaps are defined to work: they are not "bits in an array of bytes",
|
|
* they are very much "bits in an array of unsigned long".
|
|
*/
|
|
static struct fdtable *alloc_fdtable(unsigned int slots_wanted)
|
|
{
|
|
struct fdtable *fdt;
|
|
unsigned int nr;
|
|
void *data;
|
|
|
|
/*
|
|
* Figure out how many fds we actually want to support in this fdtable.
|
|
* Allocation steps are keyed to the size of the fdarray, since it
|
|
* grows far faster than any of the other dynamic data. We try to fit
|
|
* the fdarray into comfortable page-tuned chunks: starting at 1024B
|
|
* and growing in powers of two from there on. Since we called only
|
|
* with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab
|
|
* already gives BITS_PER_LONG slots), the above boils down to
|
|
* 1. use the smallest power of two large enough to give us that many
|
|
* slots.
|
|
* 2. on 32bit skip 64 and 128 - the minimal capacity we want there is
|
|
* 256 slots (i.e. 1Kb fd array).
|
|
* 3. on 64bit don't skip anything, 1Kb fd array means 128 slots there
|
|
* and we are never going to be asked for 64 or less.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256)
|
|
nr = 256;
|
|
else
|
|
nr = roundup_pow_of_two(slots_wanted);
|
|
/*
|
|
* Note that this can drive nr *below* what we had passed if sysctl_nr_open
|
|
* had been set lower between the check in expand_files() and here.
|
|
*
|
|
* We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
|
|
* bitmaps handling below becomes unpleasant, to put it mildly...
|
|
*/
|
|
if (unlikely(nr > sysctl_nr_open)) {
|
|
nr = round_down(sysctl_nr_open, BITS_PER_LONG);
|
|
if (nr < slots_wanted)
|
|
return ERR_PTR(-EMFILE);
|
|
}
|
|
|
|
fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
|
|
if (!fdt)
|
|
goto out;
|
|
fdt->max_fds = nr;
|
|
data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
|
|
if (!data)
|
|
goto out_fdt;
|
|
fdt->fd = data;
|
|
|
|
data = kvmalloc(max_t(size_t,
|
|
2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (!data)
|
|
goto out_arr;
|
|
fdt->open_fds = data;
|
|
data += nr / BITS_PER_BYTE;
|
|
fdt->close_on_exec = data;
|
|
data += nr / BITS_PER_BYTE;
|
|
fdt->full_fds_bits = data;
|
|
|
|
return fdt;
|
|
|
|
out_arr:
|
|
kvfree(fdt->fd);
|
|
out_fdt:
|
|
kfree(fdt);
|
|
out:
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Expand the file descriptor table.
|
|
* This function will allocate a new fdtable and both fd array and fdset, of
|
|
* the given size.
|
|
* Return <0 error code on error; 0 on successful completion.
|
|
* The files->file_lock should be held on entry, and will be held on exit.
|
|
*/
|
|
static int expand_fdtable(struct files_struct *files, unsigned int nr)
|
|
__releases(files->file_lock)
|
|
__acquires(files->file_lock)
|
|
{
|
|
struct fdtable *new_fdt, *cur_fdt;
|
|
|
|
spin_unlock(&files->file_lock);
|
|
new_fdt = alloc_fdtable(nr + 1);
|
|
|
|
/* make sure all fd_install() have seen resize_in_progress
|
|
* or have finished their rcu_read_lock_sched() section.
|
|
*/
|
|
if (atomic_read(&files->count) > 1)
|
|
synchronize_rcu();
|
|
|
|
spin_lock(&files->file_lock);
|
|
if (IS_ERR(new_fdt))
|
|
return PTR_ERR(new_fdt);
|
|
cur_fdt = files_fdtable(files);
|
|
BUG_ON(nr < cur_fdt->max_fds);
|
|
copy_fdtable(new_fdt, cur_fdt);
|
|
rcu_assign_pointer(files->fdt, new_fdt);
|
|
if (cur_fdt != &files->fdtab)
|
|
call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
|
|
/* coupled with smp_rmb() in fd_install() */
|
|
smp_wmb();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Expand files.
|
|
* This function will expand the file structures, if the requested size exceeds
|
|
* the current capacity and there is room for expansion.
|
|
* Return <0 error code on error; 0 on success.
|
|
* The files->file_lock should be held on entry, and will be held on exit.
|
|
*/
|
|
static int expand_files(struct files_struct *files, unsigned int nr)
|
|
__releases(files->file_lock)
|
|
__acquires(files->file_lock)
|
|
{
|
|
struct fdtable *fdt;
|
|
int error;
|
|
|
|
repeat:
|
|
fdt = files_fdtable(files);
|
|
|
|
/* Do we need to expand? */
|
|
if (nr < fdt->max_fds)
|
|
return 0;
|
|
|
|
if (unlikely(files->resize_in_progress)) {
|
|
spin_unlock(&files->file_lock);
|
|
wait_event(files->resize_wait, !files->resize_in_progress);
|
|
spin_lock(&files->file_lock);
|
|
goto repeat;
|
|
}
|
|
|
|
/* Can we expand? */
|
|
if (unlikely(nr >= sysctl_nr_open))
|
|
return -EMFILE;
|
|
|
|
/* All good, so we try */
|
|
files->resize_in_progress = true;
|
|
error = expand_fdtable(files, nr);
|
|
files->resize_in_progress = false;
|
|
|
|
wake_up_all(&files->resize_wait);
|
|
return error;
|
|
}
|
|
|
|
static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt,
|
|
bool set)
|
|
{
|
|
if (set) {
|
|
__set_bit(fd, fdt->close_on_exec);
|
|
} else {
|
|
if (test_bit(fd, fdt->close_on_exec))
|
|
__clear_bit(fd, fdt->close_on_exec);
|
|
}
|
|
}
|
|
|
|
static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set)
|
|
{
|
|
__set_bit(fd, fdt->open_fds);
|
|
__set_close_on_exec(fd, fdt, set);
|
|
fd /= BITS_PER_LONG;
|
|
if (!~fdt->open_fds[fd])
|
|
__set_bit(fd, fdt->full_fds_bits);
|
|
}
|
|
|
|
static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
|
|
{
|
|
__clear_bit(fd, fdt->open_fds);
|
|
fd /= BITS_PER_LONG;
|
|
if (test_bit(fd, fdt->full_fds_bits))
|
|
__clear_bit(fd, fdt->full_fds_bits);
|
|
}
|
|
|
|
static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
|
|
{
|
|
return test_bit(fd, fdt->open_fds);
|
|
}
|
|
|
|
/*
|
|
* Note that a sane fdtable size always has to be a multiple of
|
|
* BITS_PER_LONG, since we have bitmaps that are sized by this.
|
|
*
|
|
* punch_hole is optional - when close_range() is asked to unshare
|
|
* and close, we don't need to copy descriptors in that range, so
|
|
* a smaller cloned descriptor table might suffice if the last
|
|
* currently opened descriptor falls into that range.
|
|
*/
|
|
static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole)
|
|
{
|
|
unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds);
|
|
|
|
if (last == fdt->max_fds)
|
|
return NR_OPEN_DEFAULT;
|
|
if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) {
|
|
last = find_last_bit(fdt->open_fds, punch_hole->from);
|
|
if (last == punch_hole->from)
|
|
return NR_OPEN_DEFAULT;
|
|
}
|
|
return ALIGN(last + 1, BITS_PER_LONG);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new descriptor table and copy contents from the passed in
|
|
* instance. Returns a pointer to cloned table on success, ERR_PTR()
|
|
* on failure. For 'punch_hole' see sane_fdtable_size().
|
|
*/
|
|
struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole)
|
|
{
|
|
struct files_struct *newf;
|
|
struct file **old_fds, **new_fds;
|
|
unsigned int open_files, i;
|
|
struct fdtable *old_fdt, *new_fdt;
|
|
|
|
newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
|
|
if (!newf)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
atomic_set(&newf->count, 1);
|
|
|
|
spin_lock_init(&newf->file_lock);
|
|
newf->resize_in_progress = false;
|
|
init_waitqueue_head(&newf->resize_wait);
|
|
newf->next_fd = 0;
|
|
new_fdt = &newf->fdtab;
|
|
new_fdt->max_fds = NR_OPEN_DEFAULT;
|
|
new_fdt->close_on_exec = newf->close_on_exec_init;
|
|
new_fdt->open_fds = newf->open_fds_init;
|
|
new_fdt->full_fds_bits = newf->full_fds_bits_init;
|
|
new_fdt->fd = &newf->fd_array[0];
|
|
|
|
spin_lock(&oldf->file_lock);
|
|
old_fdt = files_fdtable(oldf);
|
|
open_files = sane_fdtable_size(old_fdt, punch_hole);
|
|
|
|
/*
|
|
* Check whether we need to allocate a larger fd array and fd set.
|
|
*/
|
|
while (unlikely(open_files > new_fdt->max_fds)) {
|
|
spin_unlock(&oldf->file_lock);
|
|
|
|
if (new_fdt != &newf->fdtab)
|
|
__free_fdtable(new_fdt);
|
|
|
|
new_fdt = alloc_fdtable(open_files);
|
|
if (IS_ERR(new_fdt)) {
|
|
kmem_cache_free(files_cachep, newf);
|
|
return ERR_CAST(new_fdt);
|
|
}
|
|
|
|
/*
|
|
* Reacquire the oldf lock and a pointer to its fd table
|
|
* who knows it may have a new bigger fd table. We need
|
|
* the latest pointer.
|
|
*/
|
|
spin_lock(&oldf->file_lock);
|
|
old_fdt = files_fdtable(oldf);
|
|
open_files = sane_fdtable_size(old_fdt, punch_hole);
|
|
}
|
|
|
|
copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG);
|
|
|
|
old_fds = old_fdt->fd;
|
|
new_fds = new_fdt->fd;
|
|
|
|
for (i = open_files; i != 0; i--) {
|
|
struct file *f = *old_fds++;
|
|
if (f) {
|
|
get_file(f);
|
|
} else {
|
|
/*
|
|
* The fd may be claimed in the fd bitmap but not yet
|
|
* instantiated in the files array if a sibling thread
|
|
* is partway through open(). So make sure that this
|
|
* fd is available to the new process.
|
|
*/
|
|
__clear_open_fd(open_files - i, new_fdt);
|
|
}
|
|
rcu_assign_pointer(*new_fds++, f);
|
|
}
|
|
spin_unlock(&oldf->file_lock);
|
|
|
|
/* clear the remainder */
|
|
memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
|
|
|
|
rcu_assign_pointer(newf->fdt, new_fdt);
|
|
|
|
return newf;
|
|
}
|
|
|
|
static struct fdtable *close_files(struct files_struct * files)
|
|
{
|
|
/*
|
|
* It is safe to dereference the fd table without RCU or
|
|
* ->file_lock because this is the last reference to the
|
|
* files structure.
|
|
*/
|
|
struct fdtable *fdt = rcu_dereference_raw(files->fdt);
|
|
unsigned int i, j = 0;
|
|
|
|
for (;;) {
|
|
unsigned long set;
|
|
i = j * BITS_PER_LONG;
|
|
if (i >= fdt->max_fds)
|
|
break;
|
|
set = fdt->open_fds[j++];
|
|
while (set) {
|
|
if (set & 1) {
|
|
struct file *file = fdt->fd[i];
|
|
if (file) {
|
|
filp_close(file, files);
|
|
cond_resched();
|
|
}
|
|
}
|
|
i++;
|
|
set >>= 1;
|
|
}
|
|
}
|
|
|
|
return fdt;
|
|
}
|
|
|
|
void put_files_struct(struct files_struct *files)
|
|
{
|
|
if (atomic_dec_and_test(&files->count)) {
|
|
struct fdtable *fdt = close_files(files);
|
|
|
|
/* free the arrays if they are not embedded */
|
|
if (fdt != &files->fdtab)
|
|
__free_fdtable(fdt);
|
|
kmem_cache_free(files_cachep, files);
|
|
}
|
|
}
|
|
|
|
void exit_files(struct task_struct *tsk)
|
|
{
|
|
struct files_struct * files = tsk->files;
|
|
|
|
if (files) {
|
|
task_lock(tsk);
|
|
tsk->files = NULL;
|
|
task_unlock(tsk);
|
|
put_files_struct(files);
|
|
}
|
|
}
|
|
|
|
struct files_struct init_files = {
|
|
.count = ATOMIC_INIT(1),
|
|
.fdt = &init_files.fdtab,
|
|
.fdtab = {
|
|
.max_fds = NR_OPEN_DEFAULT,
|
|
.fd = &init_files.fd_array[0],
|
|
.close_on_exec = init_files.close_on_exec_init,
|
|
.open_fds = init_files.open_fds_init,
|
|
.full_fds_bits = init_files.full_fds_bits_init,
|
|
},
|
|
.file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock),
|
|
.resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
|
|
};
|
|
|
|
static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
|
|
{
|
|
unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */
|
|
unsigned int maxbit = maxfd / BITS_PER_LONG;
|
|
unsigned int bitbit = start / BITS_PER_LONG;
|
|
unsigned int bit;
|
|
|
|
/*
|
|
* Try to avoid looking at the second level bitmap
|
|
*/
|
|
bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG,
|
|
start & (BITS_PER_LONG - 1));
|
|
if (bit < BITS_PER_LONG)
|
|
return bit + bitbit * BITS_PER_LONG;
|
|
|
|
bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
|
|
if (bitbit >= maxfd)
|
|
return maxfd;
|
|
if (bitbit > start)
|
|
start = bitbit;
|
|
return find_next_zero_bit(fdt->open_fds, maxfd, start);
|
|
}
|
|
|
|
/*
|
|
* allocate a file descriptor, mark it busy.
|
|
*/
|
|
static int alloc_fd(unsigned start, unsigned end, unsigned flags)
|
|
{
|
|
struct files_struct *files = current->files;
|
|
unsigned int fd;
|
|
int error;
|
|
struct fdtable *fdt;
|
|
|
|
spin_lock(&files->file_lock);
|
|
repeat:
|
|
fdt = files_fdtable(files);
|
|
fd = start;
|
|
if (fd < files->next_fd)
|
|
fd = files->next_fd;
|
|
|
|
if (likely(fd < fdt->max_fds))
|
|
fd = find_next_fd(fdt, fd);
|
|
|
|
/*
|
|
* N.B. For clone tasks sharing a files structure, this test
|
|
* will limit the total number of files that can be opened.
|
|
*/
|
|
error = -EMFILE;
|
|
if (unlikely(fd >= end))
|
|
goto out;
|
|
|
|
if (unlikely(fd >= fdt->max_fds)) {
|
|
error = expand_files(files, fd);
|
|
if (error < 0)
|
|
goto out;
|
|
|
|
goto repeat;
|
|
}
|
|
|
|
if (start <= files->next_fd)
|
|
files->next_fd = fd + 1;
|
|
|
|
__set_open_fd(fd, fdt, flags & O_CLOEXEC);
|
|
error = fd;
|
|
|
|
out:
|
|
spin_unlock(&files->file_lock);
|
|
return error;
|
|
}
|
|
|
|
int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
|
|
{
|
|
return alloc_fd(0, nofile, flags);
|
|
}
|
|
|
|
int get_unused_fd_flags(unsigned flags)
|
|
{
|
|
return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
|
|
}
|
|
EXPORT_SYMBOL(get_unused_fd_flags);
|
|
|
|
static void __put_unused_fd(struct files_struct *files, unsigned int fd)
|
|
{
|
|
struct fdtable *fdt = files_fdtable(files);
|
|
__clear_open_fd(fd, fdt);
|
|
if (fd < files->next_fd)
|
|
files->next_fd = fd;
|
|
}
|
|
|
|
void put_unused_fd(unsigned int fd)
|
|
{
|
|
struct files_struct *files = current->files;
|
|
spin_lock(&files->file_lock);
|
|
__put_unused_fd(files, fd);
|
|
spin_unlock(&files->file_lock);
|
|
}
|
|
|
|
EXPORT_SYMBOL(put_unused_fd);
|
|
|
|
/*
|
|
* Install a file pointer in the fd array.
|
|
*
|
|
* The VFS is full of places where we drop the files lock between
|
|
* setting the open_fds bitmap and installing the file in the file
|
|
* array. At any such point, we are vulnerable to a dup2() race
|
|
* installing a file in the array before us. We need to detect this and
|
|
* fput() the struct file we are about to overwrite in this case.
|
|
*
|
|
* It should never happen - if we allow dup2() do it, _really_ bad things
|
|
* will follow.
|
|
*
|
|
* This consumes the "file" refcount, so callers should treat it
|
|
* as if they had called fput(file).
|
|
*/
|
|
|
|
void fd_install(unsigned int fd, struct file *file)
|
|
{
|
|
struct files_struct *files = current->files;
|
|
struct fdtable *fdt;
|
|
|
|
if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING)))
|
|
return;
|
|
|
|
rcu_read_lock_sched();
|
|
|
|
if (unlikely(files->resize_in_progress)) {
|
|
rcu_read_unlock_sched();
|
|
spin_lock(&files->file_lock);
|
|
fdt = files_fdtable(files);
|
|
WARN_ON(fdt->fd[fd] != NULL);
|
|
rcu_assign_pointer(fdt->fd[fd], file);
|
|
spin_unlock(&files->file_lock);
|
|
return;
|
|
}
|
|
/* coupled with smp_wmb() in expand_fdtable() */
|
|
smp_rmb();
|
|
fdt = rcu_dereference_sched(files->fdt);
|
|
BUG_ON(fdt->fd[fd] != NULL);
|
|
rcu_assign_pointer(fdt->fd[fd], file);
|
|
rcu_read_unlock_sched();
|
|
}
|
|
|
|
EXPORT_SYMBOL(fd_install);
|
|
|
|
/**
|
|
* file_close_fd_locked - return file associated with fd
|
|
* @files: file struct to retrieve file from
|
|
* @fd: file descriptor to retrieve file for
|
|
*
|
|
* Doesn't take a separate reference count.
|
|
*
|
|
* Context: files_lock must be held.
|
|
*
|
|
* Returns: The file associated with @fd (NULL if @fd is not open)
|
|
*/
|
|
struct file *file_close_fd_locked(struct files_struct *files, unsigned fd)
|
|
{
|
|
struct fdtable *fdt = files_fdtable(files);
|
|
struct file *file;
|
|
|
|
lockdep_assert_held(&files->file_lock);
|
|
|
|
if (fd >= fdt->max_fds)
|
|
return NULL;
|
|
|
|
fd = array_index_nospec(fd, fdt->max_fds);
|
|
file = fdt->fd[fd];
|
|
if (file) {
|
|
rcu_assign_pointer(fdt->fd[fd], NULL);
|
|
__put_unused_fd(files, fd);
|
|
}
|
|
return file;
|
|
}
|
|
|
|
int close_fd(unsigned fd)
|
|
{
|
|
struct files_struct *files = current->files;
|
|
struct file *file;
|
|
|
|
spin_lock(&files->file_lock);
|
|
file = file_close_fd_locked(files, fd);
|
|
spin_unlock(&files->file_lock);
|
|
if (!file)
|
|
return -EBADF;
|
|
|
|
return filp_close(file, files);
|
|
}
|
|
EXPORT_SYMBOL(close_fd);
|
|
|
|
/**
|
|
* last_fd - return last valid index into fd table
|
|
* @fdt: File descriptor table.
|
|
*
|
|
* Context: Either rcu read lock or files_lock must be held.
|
|
*
|
|
* Returns: Last valid index into fdtable.
|
|
*/
|
|
static inline unsigned last_fd(struct fdtable *fdt)
|
|
{
|
|
return fdt->max_fds - 1;
|
|
}
|
|
|
|
static inline void __range_cloexec(struct files_struct *cur_fds,
|
|
unsigned int fd, unsigned int max_fd)
|
|
{
|
|
struct fdtable *fdt;
|
|
|
|
/* make sure we're using the correct maximum value */
|
|
spin_lock(&cur_fds->file_lock);
|
|
fdt = files_fdtable(cur_fds);
|
|
max_fd = min(last_fd(fdt), max_fd);
|
|
if (fd <= max_fd)
|
|
bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
|
|
spin_unlock(&cur_fds->file_lock);
|
|
}
|
|
|
|
static inline void __range_close(struct files_struct *files, unsigned int fd,
|
|
unsigned int max_fd)
|
|
{
|
|
struct file *file;
|
|
unsigned n;
|
|
|
|
spin_lock(&files->file_lock);
|
|
n = last_fd(files_fdtable(files));
|
|
max_fd = min(max_fd, n);
|
|
|
|
for (; fd <= max_fd; fd++) {
|
|
file = file_close_fd_locked(files, fd);
|
|
if (file) {
|
|
spin_unlock(&files->file_lock);
|
|
filp_close(file, files);
|
|
cond_resched();
|
|
spin_lock(&files->file_lock);
|
|
} else if (need_resched()) {
|
|
spin_unlock(&files->file_lock);
|
|
cond_resched();
|
|
spin_lock(&files->file_lock);
|
|
}
|
|
}
|
|
spin_unlock(&files->file_lock);
|
|
}
|
|
|
|
/**
|
|
* sys_close_range() - Close all file descriptors in a given range.
|
|
*
|
|
* @fd: starting file descriptor to close
|
|
* @max_fd: last file descriptor to close
|
|
* @flags: CLOSE_RANGE flags.
|
|
*
|
|
* This closes a range of file descriptors. All file descriptors
|
|
* from @fd up to and including @max_fd are closed.
|
|
* Currently, errors to close a given file descriptor are ignored.
|
|
*/
|
|
SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd,
|
|
unsigned int, flags)
|
|
{
|
|
struct task_struct *me = current;
|
|
struct files_struct *cur_fds = me->files, *fds = NULL;
|
|
|
|
if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
|
|
return -EINVAL;
|
|
|
|
if (fd > max_fd)
|
|
return -EINVAL;
|
|
|
|
if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) {
|
|
struct fd_range range = {fd, max_fd}, *punch_hole = ⦥
|
|
|
|
/*
|
|
* If the caller requested all fds to be made cloexec we always
|
|
* copy all of the file descriptors since they still want to
|
|
* use them.
|
|
*/
|
|
if (flags & CLOSE_RANGE_CLOEXEC)
|
|
punch_hole = NULL;
|
|
|
|
fds = dup_fd(cur_fds, punch_hole);
|
|
if (IS_ERR(fds))
|
|
return PTR_ERR(fds);
|
|
/*
|
|
* We used to share our file descriptor table, and have now
|
|
* created a private one, make sure we're using it below.
|
|
*/
|
|
swap(cur_fds, fds);
|
|
}
|
|
|
|
if (flags & CLOSE_RANGE_CLOEXEC)
|
|
__range_cloexec(cur_fds, fd, max_fd);
|
|
else
|
|
__range_close(cur_fds, fd, max_fd);
|
|
|
|
if (fds) {
|
|
/*
|
|
* We're done closing the files we were supposed to. Time to install
|
|
* the new file descriptor table and drop the old one.
|
|
*/
|
|
task_lock(me);
|
|
me->files = cur_fds;
|
|
task_unlock(me);
|
|
put_files_struct(fds);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* file_close_fd - return file associated with fd
|
|
* @fd: file descriptor to retrieve file for
|
|
*
|
|
* Doesn't take a separate reference count.
|
|
*
|
|
* Returns: The file associated with @fd (NULL if @fd is not open)
|
|
*/
|
|
struct file *file_close_fd(unsigned int fd)
|
|
{
|
|
struct files_struct *files = current->files;
|
|
struct file *file;
|
|
|
|
spin_lock(&files->file_lock);
|
|
file = file_close_fd_locked(files, fd);
|
|
spin_unlock(&files->file_lock);
|
|
|
|
return file;
|
|
}
|
|
|
|
void do_close_on_exec(struct files_struct *files)
|
|
{
|
|
unsigned i;
|
|
struct fdtable *fdt;
|
|
|
|
/* exec unshares first */
|
|
spin_lock(&files->file_lock);
|
|
for (i = 0; ; i++) {
|
|
unsigned long set;
|
|
unsigned fd = i * BITS_PER_LONG;
|
|
fdt = files_fdtable(files);
|
|
if (fd >= fdt->max_fds)
|
|
break;
|
|
set = fdt->close_on_exec[i];
|
|
if (!set)
|
|
continue;
|
|
fdt->close_on_exec[i] = 0;
|
|
for ( ; set ; fd++, set >>= 1) {
|
|
struct file *file;
|
|
if (!(set & 1))
|
|
continue;
|
|
file = fdt->fd[fd];
|
|
if (!file)
|
|
continue;
|
|
rcu_assign_pointer(fdt->fd[fd], NULL);
|
|
__put_unused_fd(files, fd);
|
|
spin_unlock(&files->file_lock);
|
|
filp_close(file, files);
|
|
cond_resched();
|
|
spin_lock(&files->file_lock);
|
|
}
|
|
|
|
}
|
|
spin_unlock(&files->file_lock);
|
|
}
|
|
|
|
static struct file *__get_file_rcu(struct file __rcu **f)
|
|
{
|
|
struct file __rcu *file;
|
|
struct file __rcu *file_reloaded;
|
|
struct file __rcu *file_reloaded_cmp;
|
|
|
|
file = rcu_dereference_raw(*f);
|
|
if (!file)
|
|
return NULL;
|
|
|
|
if (unlikely(!file_ref_get(&file->f_ref)))
|
|
return ERR_PTR(-EAGAIN);
|
|
|
|
file_reloaded = rcu_dereference_raw(*f);
|
|
|
|
/*
|
|
* Ensure that all accesses have a dependency on the load from
|
|
* rcu_dereference_raw() above so we get correct ordering
|
|
* between reuse/allocation and the pointer check below.
|
|
*/
|
|
file_reloaded_cmp = file_reloaded;
|
|
OPTIMIZER_HIDE_VAR(file_reloaded_cmp);
|
|
|
|
/*
|
|
* file_ref_get() above provided a full memory barrier when we
|
|
* acquired a reference.
|
|
*
|
|
* This is paired with the write barrier from assigning to the
|
|
* __rcu protected file pointer so that if that pointer still
|
|
* matches the current file, we know we have successfully
|
|
* acquired a reference to the right file.
|
|
*
|
|
* If the pointers don't match the file has been reallocated by
|
|
* SLAB_TYPESAFE_BY_RCU.
|
|
*/
|
|
if (file == file_reloaded_cmp)
|
|
return file_reloaded;
|
|
|
|
fput(file);
|
|
return ERR_PTR(-EAGAIN);
|
|
}
|
|
|
|
/**
|
|
* get_file_rcu - try go get a reference to a file under rcu
|
|
* @f: the file to get a reference on
|
|
*
|
|
* This function tries to get a reference on @f carefully verifying that
|
|
* @f hasn't been reused.
|
|
*
|
|
* This function should rarely have to be used and only by users who
|
|
* understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
|
|
*
|
|
* Return: Returns @f with the reference count increased or NULL.
|
|
*/
|
|
struct file *get_file_rcu(struct file __rcu **f)
|
|
{
|
|
for (;;) {
|
|
struct file __rcu *file;
|
|
|
|
file = __get_file_rcu(f);
|
|
if (!IS_ERR(file))
|
|
return file;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_file_rcu);
|
|
|
|
/**
|
|
* get_file_active - try go get a reference to a file
|
|
* @f: the file to get a reference on
|
|
*
|
|
* In contast to get_file_rcu() the pointer itself isn't part of the
|
|
* reference counting.
|
|
*
|
|
* This function should rarely have to be used and only by users who
|
|
* understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
|
|
*
|
|
* Return: Returns @f with the reference count increased or NULL.
|
|
*/
|
|
struct file *get_file_active(struct file **f)
|
|
{
|
|
struct file __rcu *file;
|
|
|
|
rcu_read_lock();
|
|
file = __get_file_rcu(f);
|
|
rcu_read_unlock();
|
|
if (IS_ERR(file))
|
|
file = NULL;
|
|
return file;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_file_active);
|
|
|
|
static inline struct file *__fget_files_rcu(struct files_struct *files,
|
|
unsigned int fd, fmode_t mask)
|
|
{
|
|
for (;;) {
|
|
struct file *file;
|
|
struct fdtable *fdt = rcu_dereference_raw(files->fdt);
|
|
struct file __rcu **fdentry;
|
|
unsigned long nospec_mask;
|
|
|
|
/* Mask is a 0 for invalid fd's, ~0 for valid ones */
|
|
nospec_mask = array_index_mask_nospec(fd, fdt->max_fds);
|
|
|
|
/*
|
|
* fdentry points to the 'fd' offset, or fdt->fd[0].
|
|
* Loading from fdt->fd[0] is always safe, because the
|
|
* array always exists.
|
|
*/
|
|
fdentry = fdt->fd + (fd & nospec_mask);
|
|
|
|
/* Do the load, then mask any invalid result */
|
|
file = rcu_dereference_raw(*fdentry);
|
|
file = (void *)(nospec_mask & (unsigned long)file);
|
|
if (unlikely(!file))
|
|
return NULL;
|
|
|
|
/*
|
|
* Ok, we have a file pointer that was valid at
|
|
* some point, but it might have become stale since.
|
|
*
|
|
* We need to confirm it by incrementing the refcount
|
|
* and then check the lookup again.
|
|
*
|
|
* file_ref_get() gives us a full memory barrier. We
|
|
* only really need an 'acquire' one to protect the
|
|
* loads below, but we don't have that.
|
|
*/
|
|
if (unlikely(!file_ref_get(&file->f_ref)))
|
|
continue;
|
|
|
|
/*
|
|
* Such a race can take two forms:
|
|
*
|
|
* (a) the file ref already went down to zero and the
|
|
* file hasn't been reused yet or the file count
|
|
* isn't zero but the file has already been reused.
|
|
*
|
|
* (b) the file table entry has changed under us.
|
|
* Note that we don't need to re-check the 'fdt->fd'
|
|
* pointer having changed, because it always goes
|
|
* hand-in-hand with 'fdt'.
|
|
*
|
|
* If so, we need to put our ref and try again.
|
|
*/
|
|
if (unlikely(file != rcu_dereference_raw(*fdentry)) ||
|
|
unlikely(rcu_dereference_raw(files->fdt) != fdt)) {
|
|
fput(file);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* This isn't the file we're looking for or we're not
|
|
* allowed to get a reference to it.
|
|
*/
|
|
if (unlikely(file->f_mode & mask)) {
|
|
fput(file);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Ok, we have a ref to the file, and checked that it
|
|
* still exists.
|
|
*/
|
|
return file;
|
|
}
|
|
}
|
|
|
|
static struct file *__fget_files(struct files_struct *files, unsigned int fd,
|
|
fmode_t mask)
|
|
{
|
|
struct file *file;
|
|
|
|
rcu_read_lock();
|
|
file = __fget_files_rcu(files, fd, mask);
|
|
rcu_read_unlock();
|
|
|
|
return file;
|
|
}
|
|
|
|
static inline struct file *__fget(unsigned int fd, fmode_t mask)
|
|
{
|
|
return __fget_files(current->files, fd, mask);
|
|
}
|
|
|
|
struct file *fget(unsigned int fd)
|
|
{
|
|
return __fget(fd, FMODE_PATH);
|
|
}
|
|
EXPORT_SYMBOL(fget);
|
|
|
|
struct file *fget_raw(unsigned int fd)
|
|
{
|
|
return __fget(fd, 0);
|
|
}
|
|
EXPORT_SYMBOL(fget_raw);
|
|
|
|
struct file *fget_task(struct task_struct *task, unsigned int fd)
|
|
{
|
|
struct file *file = NULL;
|
|
|
|
task_lock(task);
|
|
if (task->files)
|
|
file = __fget_files(task->files, fd, 0);
|
|
task_unlock(task);
|
|
|
|
return file;
|
|
}
|
|
|
|
struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd)
|
|
{
|
|
/* Must be called with rcu_read_lock held */
|
|
struct files_struct *files;
|
|
unsigned int fd = *ret_fd;
|
|
struct file *file = NULL;
|
|
|
|
task_lock(task);
|
|
files = task->files;
|
|
if (files) {
|
|
rcu_read_lock();
|
|
for (; fd < files_fdtable(files)->max_fds; fd++) {
|
|
file = __fget_files_rcu(files, fd, 0);
|
|
if (file)
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
task_unlock(task);
|
|
*ret_fd = fd;
|
|
return file;
|
|
}
|
|
EXPORT_SYMBOL(fget_task_next);
|
|
|
|
/*
|
|
* Lightweight file lookup - no refcnt increment if fd table isn't shared.
|
|
*
|
|
* You can use this instead of fget if you satisfy all of the following
|
|
* conditions:
|
|
* 1) You must call fput_light before exiting the syscall and returning control
|
|
* to userspace (i.e. you cannot remember the returned struct file * after
|
|
* returning to userspace).
|
|
* 2) You must not call filp_close on the returned struct file * in between
|
|
* calls to fget_light and fput_light.
|
|
* 3) You must not clone the current task in between the calls to fget_light
|
|
* and fput_light.
|
|
*
|
|
* The fput_needed flag returned by fget_light should be passed to the
|
|
* corresponding fput_light.
|
|
*
|
|
* (As an exception to rule 2, you can call filp_close between fget_light and
|
|
* fput_light provided that you capture a real refcount with get_file before
|
|
* the call to filp_close, and ensure that this real refcount is fput *after*
|
|
* the fput_light call.)
|
|
*
|
|
* See also the documentation in rust/kernel/file.rs.
|
|
*/
|
|
static inline struct fd __fget_light(unsigned int fd, fmode_t mask)
|
|
{
|
|
struct files_struct *files = current->files;
|
|
struct file *file;
|
|
|
|
/*
|
|
* If another thread is concurrently calling close_fd() followed
|
|
* by put_files_struct(), we must not observe the old table
|
|
* entry combined with the new refcount - otherwise we could
|
|
* return a file that is concurrently being freed.
|
|
*
|
|
* atomic_read_acquire() pairs with atomic_dec_and_test() in
|
|
* put_files_struct().
|
|
*/
|
|
if (likely(atomic_read_acquire(&files->count) == 1)) {
|
|
file = files_lookup_fd_raw(files, fd);
|
|
if (!file || unlikely(file->f_mode & mask))
|
|
return EMPTY_FD;
|
|
return BORROWED_FD(file);
|
|
} else {
|
|
file = __fget_files(files, fd, mask);
|
|
if (!file)
|
|
return EMPTY_FD;
|
|
return CLONED_FD(file);
|
|
}
|
|
}
|
|
struct fd fdget(unsigned int fd)
|
|
{
|
|
return __fget_light(fd, FMODE_PATH);
|
|
}
|
|
EXPORT_SYMBOL(fdget);
|
|
|
|
struct fd fdget_raw(unsigned int fd)
|
|
{
|
|
return __fget_light(fd, 0);
|
|
}
|
|
|
|
/*
|
|
* Try to avoid f_pos locking. We only need it if the
|
|
* file is marked for FMODE_ATOMIC_POS, and it can be
|
|
* accessed multiple ways.
|
|
*
|
|
* Always do it for directories, because pidfd_getfd()
|
|
* can make a file accessible even if it otherwise would
|
|
* not be, and for directories this is a correctness
|
|
* issue, not a "POSIX requirement".
|
|
*/
|
|
static inline bool file_needs_f_pos_lock(struct file *file)
|
|
{
|
|
return (file->f_mode & FMODE_ATOMIC_POS) &&
|
|
(file_count(file) > 1 || file->f_op->iterate_shared);
|
|
}
|
|
|
|
struct fd fdget_pos(unsigned int fd)
|
|
{
|
|
struct fd f = fdget(fd);
|
|
struct file *file = fd_file(f);
|
|
|
|
if (file && file_needs_f_pos_lock(file)) {
|
|
f.word |= FDPUT_POS_UNLOCK;
|
|
mutex_lock(&file->f_pos_lock);
|
|
}
|
|
return f;
|
|
}
|
|
|
|
void __f_unlock_pos(struct file *f)
|
|
{
|
|
mutex_unlock(&f->f_pos_lock);
|
|
}
|
|
|
|
/*
|
|
* We only lock f_pos if we have threads or if the file might be
|
|
* shared with another process. In both cases we'll have an elevated
|
|
* file count (done either by fdget() or by fork()).
|
|
*/
|
|
|
|
void set_close_on_exec(unsigned int fd, int flag)
|
|
{
|
|
struct files_struct *files = current->files;
|
|
spin_lock(&files->file_lock);
|
|
__set_close_on_exec(fd, files_fdtable(files), flag);
|
|
spin_unlock(&files->file_lock);
|
|
}
|
|
|
|
bool get_close_on_exec(unsigned int fd)
|
|
{
|
|
bool res;
|
|
rcu_read_lock();
|
|
res = close_on_exec(fd, current->files);
|
|
rcu_read_unlock();
|
|
return res;
|
|
}
|
|
|
|
static int do_dup2(struct files_struct *files,
|
|
struct file *file, unsigned fd, unsigned flags)
|
|
__releases(&files->file_lock)
|
|
{
|
|
struct file *tofree;
|
|
struct fdtable *fdt;
|
|
|
|
/*
|
|
* We need to detect attempts to do dup2() over allocated but still
|
|
* not finished descriptor.
|
|
*
|
|
* POSIX is silent on the issue, we return -EBUSY.
|
|
*/
|
|
fdt = files_fdtable(files);
|
|
fd = array_index_nospec(fd, fdt->max_fds);
|
|
tofree = fdt->fd[fd];
|
|
if (!tofree && fd_is_open(fd, fdt))
|
|
goto Ebusy;
|
|
get_file(file);
|
|
rcu_assign_pointer(fdt->fd[fd], file);
|
|
__set_open_fd(fd, fdt, flags & O_CLOEXEC);
|
|
spin_unlock(&files->file_lock);
|
|
|
|
if (tofree)
|
|
filp_close(tofree, files);
|
|
|
|
return fd;
|
|
|
|
Ebusy:
|
|
spin_unlock(&files->file_lock);
|
|
return -EBUSY;
|
|
}
|
|
|
|
int replace_fd(unsigned fd, struct file *file, unsigned flags)
|
|
{
|
|
int err;
|
|
struct files_struct *files = current->files;
|
|
|
|
if (!file)
|
|
return close_fd(fd);
|
|
|
|
if (fd >= rlimit(RLIMIT_NOFILE))
|
|
return -EBADF;
|
|
|
|
spin_lock(&files->file_lock);
|
|
err = expand_files(files, fd);
|
|
if (unlikely(err < 0))
|
|
goto out_unlock;
|
|
return do_dup2(files, file, fd, flags);
|
|
|
|
out_unlock:
|
|
spin_unlock(&files->file_lock);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* receive_fd() - Install received file into file descriptor table
|
|
* @file: struct file that was received from another process
|
|
* @ufd: __user pointer to write new fd number to
|
|
* @o_flags: the O_* flags to apply to the new fd entry
|
|
*
|
|
* Installs a received file into the file descriptor table, with appropriate
|
|
* checks and count updates. Optionally writes the fd number to userspace, if
|
|
* @ufd is non-NULL.
|
|
*
|
|
* This helper handles its own reference counting of the incoming
|
|
* struct file.
|
|
*
|
|
* Returns newly install fd or -ve on error.
|
|
*/
|
|
int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
|
|
{
|
|
int new_fd;
|
|
int error;
|
|
|
|
error = security_file_receive(file);
|
|
if (error)
|
|
return error;
|
|
|
|
new_fd = get_unused_fd_flags(o_flags);
|
|
if (new_fd < 0)
|
|
return new_fd;
|
|
|
|
if (ufd) {
|
|
error = put_user(new_fd, ufd);
|
|
if (error) {
|
|
put_unused_fd(new_fd);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
fd_install(new_fd, get_file(file));
|
|
__receive_sock(file);
|
|
return new_fd;
|
|
}
|
|
EXPORT_SYMBOL_GPL(receive_fd);
|
|
|
|
int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
|
|
{
|
|
int error;
|
|
|
|
error = security_file_receive(file);
|
|
if (error)
|
|
return error;
|
|
error = replace_fd(new_fd, file, o_flags);
|
|
if (error)
|
|
return error;
|
|
__receive_sock(file);
|
|
return new_fd;
|
|
}
|
|
|
|
static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
|
|
{
|
|
int err = -EBADF;
|
|
struct file *file;
|
|
struct files_struct *files = current->files;
|
|
|
|
if ((flags & ~O_CLOEXEC) != 0)
|
|
return -EINVAL;
|
|
|
|
if (unlikely(oldfd == newfd))
|
|
return -EINVAL;
|
|
|
|
if (newfd >= rlimit(RLIMIT_NOFILE))
|
|
return -EBADF;
|
|
|
|
spin_lock(&files->file_lock);
|
|
err = expand_files(files, newfd);
|
|
file = files_lookup_fd_locked(files, oldfd);
|
|
if (unlikely(!file))
|
|
goto Ebadf;
|
|
if (unlikely(err < 0)) {
|
|
if (err == -EMFILE)
|
|
goto Ebadf;
|
|
goto out_unlock;
|
|
}
|
|
return do_dup2(files, file, newfd, flags);
|
|
|
|
Ebadf:
|
|
err = -EBADF;
|
|
out_unlock:
|
|
spin_unlock(&files->file_lock);
|
|
return err;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
|
|
{
|
|
return ksys_dup3(oldfd, newfd, flags);
|
|
}
|
|
|
|
SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
|
|
{
|
|
if (unlikely(newfd == oldfd)) { /* corner case */
|
|
struct files_struct *files = current->files;
|
|
struct file *f;
|
|
int retval = oldfd;
|
|
|
|
rcu_read_lock();
|
|
f = __fget_files_rcu(files, oldfd, 0);
|
|
if (!f)
|
|
retval = -EBADF;
|
|
rcu_read_unlock();
|
|
if (f)
|
|
fput(f);
|
|
return retval;
|
|
}
|
|
return ksys_dup3(oldfd, newfd, 0);
|
|
}
|
|
|
|
SYSCALL_DEFINE1(dup, unsigned int, fildes)
|
|
{
|
|
int ret = -EBADF;
|
|
struct file *file = fget_raw(fildes);
|
|
|
|
if (file) {
|
|
ret = get_unused_fd_flags(0);
|
|
if (ret >= 0)
|
|
fd_install(ret, file);
|
|
else
|
|
fput(file);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int f_dupfd(unsigned int from, struct file *file, unsigned flags)
|
|
{
|
|
unsigned long nofile = rlimit(RLIMIT_NOFILE);
|
|
int err;
|
|
if (from >= nofile)
|
|
return -EINVAL;
|
|
err = alloc_fd(from, nofile, flags);
|
|
if (err >= 0) {
|
|
get_file(file);
|
|
fd_install(err, file);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int iterate_fd(struct files_struct *files, unsigned n,
|
|
int (*f)(const void *, struct file *, unsigned),
|
|
const void *p)
|
|
{
|
|
struct fdtable *fdt;
|
|
int res = 0;
|
|
if (!files)
|
|
return 0;
|
|
spin_lock(&files->file_lock);
|
|
for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
|
|
struct file *file;
|
|
file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
|
|
if (!file)
|
|
continue;
|
|
res = f(p, file, n);
|
|
if (res)
|
|
break;
|
|
}
|
|
spin_unlock(&files->file_lock);
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(iterate_fd);
|