linux-next/drivers/usb/gadget/pxa2xx_udc.c
David Brownell 6bea476cf6 USB: gadget driver unbind() is optional; section fixes; misc
Allow gadget drivers to omit the unbind() method.  When they're
statically linked, that's an appropriate memory saving tweak.

Similarly, provide consistent/simpler handling for a should-not-happen
error case:  removing a peripheral controller driver when a gadget
driver is still loaded.  Such code dates back to early versions of the
first implementation of the gadget API, and has never been triggered.

Includes relevant section annotation fixs for gmidi.c, file_storage.c,
and serial.c; we don't yet have an "init or exit" annotation.  Also
some whitespace fixes in gmidi.c (space at EOL, before tabs, etc).

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-12-20 10:14:26 -08:00

2735 lines
67 KiB
C

/*
* linux/drivers/usb/gadget/pxa2xx_udc.c
* Intel PXA25x and IXP4xx on-chip full speed USB device controllers
*
* Copyright (C) 2002 Intrinsyc, Inc. (Frank Becker)
* Copyright (C) 2003 Robert Schwebel, Pengutronix
* Copyright (C) 2003 Benedikt Spranger, Pengutronix
* Copyright (C) 2003 David Brownell
* Copyright (C) 2003 Joshua Wise
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#undef DEBUG
// #define VERBOSE DBG_VERBOSE
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/ioport.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/proc_fs.h>
#include <linux/mm.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/irq.h>
#include <asm/byteorder.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/mach-types.h>
#include <asm/unaligned.h>
#include <asm/hardware.h>
#ifdef CONFIG_ARCH_PXA
#include <asm/arch/pxa-regs.h>
#endif
#include <linux/usb_ch9.h>
#include <linux/usb_gadget.h>
#include <asm/arch/udc.h>
/*
* This driver handles the USB Device Controller (UDC) in Intel's PXA 25x
* series processors. The UDC for the IXP 4xx series is very similar.
* There are fifteen endpoints, in addition to ep0.
*
* Such controller drivers work with a gadget driver. The gadget driver
* returns descriptors, implements configuration and data protocols used
* by the host to interact with this device, and allocates endpoints to
* the different protocol interfaces. The controller driver virtualizes
* usb hardware so that the gadget drivers will be more portable.
*
* This UDC hardware wants to implement a bit too much USB protocol, so
* it constrains the sorts of USB configuration change events that work.
* The errata for these chips are misleading; some "fixed" bugs from
* pxa250 a0/a1 b0/b1/b2 sure act like they're still there.
*/
#define DRIVER_VERSION "4-May-2005"
#define DRIVER_DESC "PXA 25x USB Device Controller driver"
static const char driver_name [] = "pxa2xx_udc";
static const char ep0name [] = "ep0";
// #define USE_DMA
// #define USE_OUT_DMA
// #define DISABLE_TEST_MODE
#ifdef CONFIG_ARCH_IXP4XX
#undef USE_DMA
/* cpu-specific register addresses are compiled in to this code */
#ifdef CONFIG_ARCH_PXA
#error "Can't configure both IXP and PXA"
#endif
#endif
#include "pxa2xx_udc.h"
#ifdef USE_DMA
static int use_dma = 1;
module_param(use_dma, bool, 0);
MODULE_PARM_DESC (use_dma, "true to use dma");
static void dma_nodesc_handler (int dmach, void *_ep);
static void kick_dma(struct pxa2xx_ep *ep, struct pxa2xx_request *req);
#ifdef USE_OUT_DMA
#define DMASTR " (dma support)"
#else
#define DMASTR " (dma in)"
#endif
#else /* !USE_DMA */
#define DMASTR " (pio only)"
#undef USE_OUT_DMA
#endif
#ifdef CONFIG_USB_PXA2XX_SMALL
#define SIZE_STR " (small)"
#else
#define SIZE_STR ""
#endif
#ifdef DISABLE_TEST_MODE
/* (mode == 0) == no undocumented chip tweaks
* (mode & 1) == double buffer bulk IN
* (mode & 2) == double buffer bulk OUT
* ... so mode = 3 (or 7, 15, etc) does it for both
*/
static ushort fifo_mode = 0;
module_param(fifo_mode, ushort, 0);
MODULE_PARM_DESC (fifo_mode, "pxa2xx udc fifo mode");
#endif
/* ---------------------------------------------------------------------------
* endpoint related parts of the api to the usb controller hardware,
* used by gadget driver; and the inner talker-to-hardware core.
* ---------------------------------------------------------------------------
*/
static void pxa2xx_ep_fifo_flush (struct usb_ep *ep);
static void nuke (struct pxa2xx_ep *, int status);
/* one GPIO should be used to detect VBUS from the host */
static int is_vbus_present(void)
{
struct pxa2xx_udc_mach_info *mach = the_controller->mach;
if (mach->gpio_vbus)
return pxa_gpio_get(mach->gpio_vbus);
if (mach->udc_is_connected)
return mach->udc_is_connected();
return 1;
}
/* one GPIO should control a D+ pullup, so host sees this device (or not) */
static void pullup_off(void)
{
struct pxa2xx_udc_mach_info *mach = the_controller->mach;
if (mach->gpio_pullup)
pxa_gpio_set(mach->gpio_pullup, 0);
else if (mach->udc_command)
mach->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
}
static void pullup_on(void)
{
struct pxa2xx_udc_mach_info *mach = the_controller->mach;
if (mach->gpio_pullup)
pxa_gpio_set(mach->gpio_pullup, 1);
else if (mach->udc_command)
mach->udc_command(PXA2XX_UDC_CMD_CONNECT);
}
static void pio_irq_enable(int bEndpointAddress)
{
bEndpointAddress &= 0xf;
if (bEndpointAddress < 8)
UICR0 &= ~(1 << bEndpointAddress);
else {
bEndpointAddress -= 8;
UICR1 &= ~(1 << bEndpointAddress);
}
}
static void pio_irq_disable(int bEndpointAddress)
{
bEndpointAddress &= 0xf;
if (bEndpointAddress < 8)
UICR0 |= 1 << bEndpointAddress;
else {
bEndpointAddress -= 8;
UICR1 |= 1 << bEndpointAddress;
}
}
/* The UDCCR reg contains mask and interrupt status bits,
* so using '|=' isn't safe as it may ack an interrupt.
*/
#define UDCCR_MASK_BITS (UDCCR_REM | UDCCR_SRM | UDCCR_UDE)
static inline void udc_set_mask_UDCCR(int mask)
{
UDCCR = (UDCCR & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS);
}
static inline void udc_clear_mask_UDCCR(int mask)
{
UDCCR = (UDCCR & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS);
}
static inline void udc_ack_int_UDCCR(int mask)
{
/* udccr contains the bits we dont want to change */
__u32 udccr = UDCCR & UDCCR_MASK_BITS;
UDCCR = udccr | (mask & ~UDCCR_MASK_BITS);
}
/*
* endpoint enable/disable
*
* we need to verify the descriptors used to enable endpoints. since pxa2xx
* endpoint configurations are fixed, and are pretty much always enabled,
* there's not a lot to manage here.
*
* because pxa2xx can't selectively initialize bulk (or interrupt) endpoints,
* (resetting endpoint halt and toggle), SET_INTERFACE is unusable except
* for a single interface (with only the default altsetting) and for gadget
* drivers that don't halt endpoints (not reset by set_interface). that also
* means that if you use ISO, you must violate the USB spec rule that all
* iso endpoints must be in non-default altsettings.
*/
static int pxa2xx_ep_enable (struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct pxa2xx_ep *ep;
struct pxa2xx_udc *dev;
ep = container_of (_ep, struct pxa2xx_ep, ep);
if (!_ep || !desc || ep->desc || _ep->name == ep0name
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| ep->bEndpointAddress != desc->bEndpointAddress
|| ep->fifo_size < le16_to_cpu
(desc->wMaxPacketSize)) {
DMSG("%s, bad ep or descriptor\n", __FUNCTION__);
return -EINVAL;
}
/* xfer types must match, except that interrupt ~= bulk */
if (ep->bmAttributes != desc->bmAttributes
&& ep->bmAttributes != USB_ENDPOINT_XFER_BULK
&& desc->bmAttributes != USB_ENDPOINT_XFER_INT) {
DMSG("%s, %s type mismatch\n", __FUNCTION__, _ep->name);
return -EINVAL;
}
/* hardware _could_ do smaller, but driver doesn't */
if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
&& le16_to_cpu (desc->wMaxPacketSize)
!= BULK_FIFO_SIZE)
|| !desc->wMaxPacketSize) {
DMSG("%s, bad %s maxpacket\n", __FUNCTION__, _ep->name);
return -ERANGE;
}
dev = ep->dev;
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) {
DMSG("%s, bogus device state\n", __FUNCTION__);
return -ESHUTDOWN;
}
ep->desc = desc;
ep->dma = -1;
ep->stopped = 0;
ep->pio_irqs = ep->dma_irqs = 0;
ep->ep.maxpacket = le16_to_cpu (desc->wMaxPacketSize);
/* flush fifo (mostly for OUT buffers) */
pxa2xx_ep_fifo_flush (_ep);
/* ... reset halt state too, if we could ... */
#ifdef USE_DMA
/* for (some) bulk and ISO endpoints, try to get a DMA channel and
* bind it to the endpoint. otherwise use PIO.
*/
switch (ep->bmAttributes) {
case USB_ENDPOINT_XFER_ISOC:
if (le16_to_cpu(desc->wMaxPacketSize) % 32)
break;
// fall through
case USB_ENDPOINT_XFER_BULK:
if (!use_dma || !ep->reg_drcmr)
break;
ep->dma = pxa_request_dma ((char *)_ep->name,
(le16_to_cpu (desc->wMaxPacketSize) > 64)
? DMA_PRIO_MEDIUM /* some iso */
: DMA_PRIO_LOW,
dma_nodesc_handler, ep);
if (ep->dma >= 0) {
*ep->reg_drcmr = DRCMR_MAPVLD | ep->dma;
DMSG("%s using dma%d\n", _ep->name, ep->dma);
}
}
#endif
DBG(DBG_VERBOSE, "enabled %s\n", _ep->name);
return 0;
}
static int pxa2xx_ep_disable (struct usb_ep *_ep)
{
struct pxa2xx_ep *ep;
unsigned long flags;
ep = container_of (_ep, struct pxa2xx_ep, ep);
if (!_ep || !ep->desc) {
DMSG("%s, %s not enabled\n", __FUNCTION__,
_ep ? ep->ep.name : NULL);
return -EINVAL;
}
local_irq_save(flags);
nuke (ep, -ESHUTDOWN);
#ifdef USE_DMA
if (ep->dma >= 0) {
*ep->reg_drcmr = 0;
pxa_free_dma (ep->dma);
ep->dma = -1;
}
#endif
/* flush fifo (mostly for IN buffers) */
pxa2xx_ep_fifo_flush (_ep);
ep->desc = NULL;
ep->stopped = 1;
local_irq_restore(flags);
DBG(DBG_VERBOSE, "%s disabled\n", _ep->name);
return 0;
}
/*-------------------------------------------------------------------------*/
/* for the pxa2xx, these can just wrap kmalloc/kfree. gadget drivers
* must still pass correctly initialized endpoints, since other controller
* drivers may care about how it's currently set up (dma issues etc).
*/
/*
* pxa2xx_ep_alloc_request - allocate a request data structure
*/
static struct usb_request *
pxa2xx_ep_alloc_request (struct usb_ep *_ep, gfp_t gfp_flags)
{
struct pxa2xx_request *req;
req = kzalloc(sizeof(*req), gfp_flags);
if (!req)
return NULL;
INIT_LIST_HEAD (&req->queue);
return &req->req;
}
/*
* pxa2xx_ep_free_request - deallocate a request data structure
*/
static void
pxa2xx_ep_free_request (struct usb_ep *_ep, struct usb_request *_req)
{
struct pxa2xx_request *req;
req = container_of (_req, struct pxa2xx_request, req);
WARN_ON (!list_empty (&req->queue));
kfree(req);
}
/* PXA cache needs flushing with DMA I/O (it's dma-incoherent), but there's
* no device-affinity and the heap works perfectly well for i/o buffers.
* It wastes much less memory than dma_alloc_coherent() would, and even
* prevents cacheline (32 bytes wide) sharing problems.
*/
static void *
pxa2xx_ep_alloc_buffer(struct usb_ep *_ep, unsigned bytes,
dma_addr_t *dma, gfp_t gfp_flags)
{
char *retval;
retval = kmalloc (bytes, gfp_flags & ~(__GFP_DMA|__GFP_HIGHMEM));
if (retval)
#ifdef USE_DMA
*dma = virt_to_bus (retval);
#else
*dma = (dma_addr_t)~0;
#endif
return retval;
}
static void
pxa2xx_ep_free_buffer(struct usb_ep *_ep, void *buf, dma_addr_t dma,
unsigned bytes)
{
kfree (buf);
}
/*-------------------------------------------------------------------------*/
/*
* done - retire a request; caller blocked irqs
*/
static void done(struct pxa2xx_ep *ep, struct pxa2xx_request *req, int status)
{
unsigned stopped = ep->stopped;
list_del_init(&req->queue);
if (likely (req->req.status == -EINPROGRESS))
req->req.status = status;
else
status = req->req.status;
if (status && status != -ESHUTDOWN)
DBG(DBG_VERBOSE, "complete %s req %p stat %d len %u/%u\n",
ep->ep.name, &req->req, status,
req->req.actual, req->req.length);
/* don't modify queue heads during completion callback */
ep->stopped = 1;
req->req.complete(&ep->ep, &req->req);
ep->stopped = stopped;
}
static inline void ep0_idle (struct pxa2xx_udc *dev)
{
dev->ep0state = EP0_IDLE;
}
static int
write_packet(volatile u32 *uddr, struct pxa2xx_request *req, unsigned max)
{
u8 *buf;
unsigned length, count;
buf = req->req.buf + req->req.actual;
prefetch(buf);
/* how big will this packet be? */
length = min(req->req.length - req->req.actual, max);
req->req.actual += length;
count = length;
while (likely(count--))
*uddr = *buf++;
return length;
}
/*
* write to an IN endpoint fifo, as many packets as possible.
* irqs will use this to write the rest later.
* caller guarantees at least one packet buffer is ready (or a zlp).
*/
static int
write_fifo (struct pxa2xx_ep *ep, struct pxa2xx_request *req)
{
unsigned max;
max = le16_to_cpu(ep->desc->wMaxPacketSize);
do {
unsigned count;
int is_last, is_short;
count = write_packet(ep->reg_uddr, req, max);
/* last packet is usually short (or a zlp) */
if (unlikely (count != max))
is_last = is_short = 1;
else {
if (likely(req->req.length != req->req.actual)
|| req->req.zero)
is_last = 0;
else
is_last = 1;
/* interrupt/iso maxpacket may not fill the fifo */
is_short = unlikely (max < ep->fifo_size);
}
DBG(DBG_VERY_NOISY, "wrote %s %d bytes%s%s %d left %p\n",
ep->ep.name, count,
is_last ? "/L" : "", is_short ? "/S" : "",
req->req.length - req->req.actual, req);
/* let loose that packet. maybe try writing another one,
* double buffering might work. TSP, TPC, and TFS
* bit values are the same for all normal IN endpoints.
*/
*ep->reg_udccs = UDCCS_BI_TPC;
if (is_short)
*ep->reg_udccs = UDCCS_BI_TSP;
/* requests complete when all IN data is in the FIFO */
if (is_last) {
done (ep, req, 0);
if (list_empty(&ep->queue) || unlikely(ep->dma >= 0)) {
pio_irq_disable (ep->bEndpointAddress);
#ifdef USE_DMA
/* unaligned data and zlps couldn't use dma */
if (unlikely(!list_empty(&ep->queue))) {
req = list_entry(ep->queue.next,
struct pxa2xx_request, queue);
kick_dma(ep,req);
return 0;
}
#endif
}
return 1;
}
// TODO experiment: how robust can fifo mode tweaking be?
// double buffering is off in the default fifo mode, which
// prevents TFS from being set here.
} while (*ep->reg_udccs & UDCCS_BI_TFS);
return 0;
}
/* caller asserts req->pending (ep0 irq status nyet cleared); starts
* ep0 data stage. these chips want very simple state transitions.
*/
static inline
void ep0start(struct pxa2xx_udc *dev, u32 flags, const char *tag)
{
UDCCS0 = flags|UDCCS0_SA|UDCCS0_OPR;
USIR0 = USIR0_IR0;
dev->req_pending = 0;
DBG(DBG_VERY_NOISY, "%s %s, %02x/%02x\n",
__FUNCTION__, tag, UDCCS0, flags);
}
static int
write_ep0_fifo (struct pxa2xx_ep *ep, struct pxa2xx_request *req)
{
unsigned count;
int is_short;
count = write_packet(&UDDR0, req, EP0_FIFO_SIZE);
ep->dev->stats.write.bytes += count;
/* last packet "must be" short (or a zlp) */
is_short = (count != EP0_FIFO_SIZE);
DBG(DBG_VERY_NOISY, "ep0in %d bytes %d left %p\n", count,
req->req.length - req->req.actual, req);
if (unlikely (is_short)) {
if (ep->dev->req_pending)
ep0start(ep->dev, UDCCS0_IPR, "short IN");
else
UDCCS0 = UDCCS0_IPR;
count = req->req.length;
done (ep, req, 0);
ep0_idle(ep->dev);
#ifndef CONFIG_ARCH_IXP4XX
#if 1
/* This seems to get rid of lost status irqs in some cases:
* host responds quickly, or next request involves config
* change automagic, or should have been hidden, or ...
*
* FIXME get rid of all udelays possible...
*/
if (count >= EP0_FIFO_SIZE) {
count = 100;
do {
if ((UDCCS0 & UDCCS0_OPR) != 0) {
/* clear OPR, generate ack */
UDCCS0 = UDCCS0_OPR;
break;
}
count--;
udelay(1);
} while (count);
}
#endif
#endif
} else if (ep->dev->req_pending)
ep0start(ep->dev, 0, "IN");
return is_short;
}
/*
* read_fifo - unload packet(s) from the fifo we use for usb OUT
* transfers and put them into the request. caller should have made
* sure there's at least one packet ready.
*
* returns true if the request completed because of short packet or the
* request buffer having filled (and maybe overran till end-of-packet).
*/
static int
read_fifo (struct pxa2xx_ep *ep, struct pxa2xx_request *req)
{
for (;;) {
u32 udccs;
u8 *buf;
unsigned bufferspace, count, is_short;
/* make sure there's a packet in the FIFO.
* UDCCS_{BO,IO}_RPC are all the same bit value.
* UDCCS_{BO,IO}_RNE are all the same bit value.
*/
udccs = *ep->reg_udccs;
if (unlikely ((udccs & UDCCS_BO_RPC) == 0))
break;
buf = req->req.buf + req->req.actual;
prefetchw(buf);
bufferspace = req->req.length - req->req.actual;
/* read all bytes from this packet */
if (likely (udccs & UDCCS_BO_RNE)) {
count = 1 + (0x0ff & *ep->reg_ubcr);
req->req.actual += min (count, bufferspace);
} else /* zlp */
count = 0;
is_short = (count < ep->ep.maxpacket);
DBG(DBG_VERY_NOISY, "read %s %02x, %d bytes%s req %p %d/%d\n",
ep->ep.name, udccs, count,
is_short ? "/S" : "",
req, req->req.actual, req->req.length);
while (likely (count-- != 0)) {
u8 byte = (u8) *ep->reg_uddr;
if (unlikely (bufferspace == 0)) {
/* this happens when the driver's buffer
* is smaller than what the host sent.
* discard the extra data.
*/
if (req->req.status != -EOVERFLOW)
DMSG("%s overflow %d\n",
ep->ep.name, count);
req->req.status = -EOVERFLOW;
} else {
*buf++ = byte;
bufferspace--;
}
}
*ep->reg_udccs = UDCCS_BO_RPC;
/* RPC/RSP/RNE could now reflect the other packet buffer */
/* iso is one request per packet */
if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
if (udccs & UDCCS_IO_ROF)
req->req.status = -EHOSTUNREACH;
/* more like "is_done" */
is_short = 1;
}
/* completion */
if (is_short || req->req.actual == req->req.length) {
done (ep, req, 0);
if (list_empty(&ep->queue))
pio_irq_disable (ep->bEndpointAddress);
return 1;
}
/* finished that packet. the next one may be waiting... */
}
return 0;
}
/*
* special ep0 version of the above. no UBCR0 or double buffering; status
* handshaking is magic. most device protocols don't need control-OUT.
* CDC vendor commands (and RNDIS), mass storage CB/CBI, and some other
* protocols do use them.
*/
static int
read_ep0_fifo (struct pxa2xx_ep *ep, struct pxa2xx_request *req)
{
u8 *buf, byte;
unsigned bufferspace;
buf = req->req.buf + req->req.actual;
bufferspace = req->req.length - req->req.actual;
while (UDCCS0 & UDCCS0_RNE) {
byte = (u8) UDDR0;
if (unlikely (bufferspace == 0)) {
/* this happens when the driver's buffer
* is smaller than what the host sent.
* discard the extra data.
*/
if (req->req.status != -EOVERFLOW)
DMSG("%s overflow\n", ep->ep.name);
req->req.status = -EOVERFLOW;
} else {
*buf++ = byte;
req->req.actual++;
bufferspace--;
}
}
UDCCS0 = UDCCS0_OPR | UDCCS0_IPR;
/* completion */
if (req->req.actual >= req->req.length)
return 1;
/* finished that packet. the next one may be waiting... */
return 0;
}
#ifdef USE_DMA
#define MAX_IN_DMA ((DCMD_LENGTH + 1) - BULK_FIFO_SIZE)
static void
start_dma_nodesc(struct pxa2xx_ep *ep, struct pxa2xx_request *req, int is_in)
{
u32 dcmd = req->req.length;
u32 buf = req->req.dma;
u32 fifo = io_v2p ((u32)ep->reg_uddr);
/* caller guarantees there's a packet or more remaining
* - IN may end with a short packet (TSP set separately),
* - OUT is always full length
*/
buf += req->req.actual;
dcmd -= req->req.actual;
ep->dma_fixup = 0;
/* no-descriptor mode can be simple for bulk-in, iso-in, iso-out */
DCSR(ep->dma) = DCSR_NODESC;
if (is_in) {
DSADR(ep->dma) = buf;
DTADR(ep->dma) = fifo;
if (dcmd > MAX_IN_DMA)
dcmd = MAX_IN_DMA;
else
ep->dma_fixup = (dcmd % ep->ep.maxpacket) != 0;
dcmd |= DCMD_BURST32 | DCMD_WIDTH1
| DCMD_FLOWTRG | DCMD_INCSRCADDR;
} else {
#ifdef USE_OUT_DMA
DSADR(ep->dma) = fifo;
DTADR(ep->dma) = buf;
if (ep->bmAttributes != USB_ENDPOINT_XFER_ISOC)
dcmd = ep->ep.maxpacket;
dcmd |= DCMD_BURST32 | DCMD_WIDTH1
| DCMD_FLOWSRC | DCMD_INCTRGADDR;
#endif
}
DCMD(ep->dma) = dcmd;
DCSR(ep->dma) = DCSR_RUN | DCSR_NODESC
| (unlikely(is_in)
? DCSR_STOPIRQEN /* use dma_nodesc_handler() */
: 0); /* use handle_ep() */
}
static void kick_dma(struct pxa2xx_ep *ep, struct pxa2xx_request *req)
{
int is_in = ep->bEndpointAddress & USB_DIR_IN;
if (is_in) {
/* unaligned tx buffers and zlps only work with PIO */
if ((req->req.dma & 0x0f) != 0
|| unlikely((req->req.length - req->req.actual)
== 0)) {
pio_irq_enable(ep->bEndpointAddress);
if ((*ep->reg_udccs & UDCCS_BI_TFS) != 0)
(void) write_fifo(ep, req);
} else {
start_dma_nodesc(ep, req, USB_DIR_IN);
}
} else {
if ((req->req.length - req->req.actual) < ep->ep.maxpacket) {
DMSG("%s short dma read...\n", ep->ep.name);
/* we're always set up for pio out */
read_fifo (ep, req);
} else {
*ep->reg_udccs = UDCCS_BO_DME
| (*ep->reg_udccs & UDCCS_BO_FST);
start_dma_nodesc(ep, req, USB_DIR_OUT);
}
}
}
static void cancel_dma(struct pxa2xx_ep *ep)
{
struct pxa2xx_request *req;
u32 tmp;
if (DCSR(ep->dma) == 0 || list_empty(&ep->queue))
return;
DCSR(ep->dma) = 0;
while ((DCSR(ep->dma) & DCSR_STOPSTATE) == 0)
cpu_relax();
req = list_entry(ep->queue.next, struct pxa2xx_request, queue);
tmp = DCMD(ep->dma) & DCMD_LENGTH;
req->req.actual = req->req.length - (tmp & DCMD_LENGTH);
/* the last tx packet may be incomplete, so flush the fifo.
* FIXME correct req.actual if we can
*/
if (ep->bEndpointAddress & USB_DIR_IN)
*ep->reg_udccs = UDCCS_BI_FTF;
}
/* dma channel stopped ... normal tx end (IN), or on error (IN/OUT) */
static void dma_nodesc_handler(int dmach, void *_ep)
{
struct pxa2xx_ep *ep = _ep;
struct pxa2xx_request *req;
u32 tmp, completed;
local_irq_disable();
req = list_entry(ep->queue.next, struct pxa2xx_request, queue);
ep->dma_irqs++;
ep->dev->stats.irqs++;
HEX_DISPLAY(ep->dev->stats.irqs);
/* ack/clear */
tmp = DCSR(ep->dma);
DCSR(ep->dma) = tmp;
if ((tmp & DCSR_STOPSTATE) == 0
|| (DDADR(ep->dma) & DDADR_STOP) != 0) {
DBG(DBG_VERBOSE, "%s, dcsr %08x ddadr %08x\n",
ep->ep.name, DCSR(ep->dma), DDADR(ep->dma));
goto done;
}
DCSR(ep->dma) = 0; /* clear DCSR_STOPSTATE */
/* update transfer status */
completed = tmp & DCSR_BUSERR;
if (ep->bEndpointAddress & USB_DIR_IN)
tmp = DSADR(ep->dma);
else
tmp = DTADR(ep->dma);
req->req.actual = tmp - req->req.dma;
/* FIXME seems we sometimes see partial transfers... */
if (unlikely(completed != 0))
req->req.status = -EIO;
else if (req->req.actual) {
/* these registers have zeroes in low bits; they miscount
* some (end-of-transfer) short packets: tx 14 as tx 12
*/
if (ep->dma_fixup)
req->req.actual = min(req->req.actual + 3,
req->req.length);
tmp = (req->req.length - req->req.actual);
completed = (tmp == 0);
if (completed && (ep->bEndpointAddress & USB_DIR_IN)) {
/* maybe validate final short packet ... */
if ((req->req.actual % ep->ep.maxpacket) != 0)
*ep->reg_udccs = UDCCS_BI_TSP/*|UDCCS_BI_TPC*/;
/* ... or zlp, using pio fallback */
else if (ep->bmAttributes == USB_ENDPOINT_XFER_BULK
&& req->req.zero) {
DMSG("%s zlp terminate ...\n", ep->ep.name);
completed = 0;
}
}
}
if (likely(completed)) {
done(ep, req, 0);
/* maybe re-activate after completion */
if (ep->stopped || list_empty(&ep->queue))
goto done;
req = list_entry(ep->queue.next, struct pxa2xx_request, queue);
}
kick_dma(ep, req);
done:
local_irq_enable();
}
#endif
/*-------------------------------------------------------------------------*/
static int
pxa2xx_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
{
struct pxa2xx_request *req;
struct pxa2xx_ep *ep;
struct pxa2xx_udc *dev;
unsigned long flags;
req = container_of(_req, struct pxa2xx_request, req);
if (unlikely (!_req || !_req->complete || !_req->buf
|| !list_empty(&req->queue))) {
DMSG("%s, bad params\n", __FUNCTION__);
return -EINVAL;
}
ep = container_of(_ep, struct pxa2xx_ep, ep);
if (unlikely (!_ep || (!ep->desc && ep->ep.name != ep0name))) {
DMSG("%s, bad ep\n", __FUNCTION__);
return -EINVAL;
}
dev = ep->dev;
if (unlikely (!dev->driver
|| dev->gadget.speed == USB_SPEED_UNKNOWN)) {
DMSG("%s, bogus device state\n", __FUNCTION__);
return -ESHUTDOWN;
}
/* iso is always one packet per request, that's the only way
* we can report per-packet status. that also helps with dma.
*/
if (unlikely (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC
&& req->req.length > le16_to_cpu
(ep->desc->wMaxPacketSize)))
return -EMSGSIZE;
#ifdef USE_DMA
// FIXME caller may already have done the dma mapping
if (ep->dma >= 0) {
_req->dma = dma_map_single(dev->dev,
_req->buf, _req->length,
((ep->bEndpointAddress & USB_DIR_IN) != 0)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
}
#endif
DBG(DBG_NOISY, "%s queue req %p, len %d buf %p\n",
_ep->name, _req, _req->length, _req->buf);
local_irq_save(flags);
_req->status = -EINPROGRESS;
_req->actual = 0;
/* kickstart this i/o queue? */
if (list_empty(&ep->queue) && !ep->stopped) {
if (ep->desc == 0 /* ep0 */) {
unsigned length = _req->length;
switch (dev->ep0state) {
case EP0_IN_DATA_PHASE:
dev->stats.write.ops++;
if (write_ep0_fifo(ep, req))
req = NULL;
break;
case EP0_OUT_DATA_PHASE:
dev->stats.read.ops++;
/* messy ... */
if (dev->req_config) {
DBG(DBG_VERBOSE, "ep0 config ack%s\n",
dev->has_cfr ? "" : " raced");
if (dev->has_cfr)
UDCCFR = UDCCFR_AREN|UDCCFR_ACM
|UDCCFR_MB1;
done(ep, req, 0);
dev->ep0state = EP0_END_XFER;
local_irq_restore (flags);
return 0;
}
if (dev->req_pending)
ep0start(dev, UDCCS0_IPR, "OUT");
if (length == 0 || ((UDCCS0 & UDCCS0_RNE) != 0
&& read_ep0_fifo(ep, req))) {
ep0_idle(dev);
done(ep, req, 0);
req = NULL;
}
break;
default:
DMSG("ep0 i/o, odd state %d\n", dev->ep0state);
local_irq_restore (flags);
return -EL2HLT;
}
#ifdef USE_DMA
/* either start dma or prime pio pump */
} else if (ep->dma >= 0) {
kick_dma(ep, req);
#endif
/* can the FIFO can satisfy the request immediately? */
} else if ((ep->bEndpointAddress & USB_DIR_IN) != 0) {
if ((*ep->reg_udccs & UDCCS_BI_TFS) != 0
&& write_fifo(ep, req))
req = NULL;
} else if ((*ep->reg_udccs & UDCCS_BO_RFS) != 0
&& read_fifo(ep, req)) {
req = NULL;
}
if (likely (req && ep->desc) && ep->dma < 0)
pio_irq_enable(ep->bEndpointAddress);
}
/* pio or dma irq handler advances the queue. */
if (likely (req != 0))
list_add_tail(&req->queue, &ep->queue);
local_irq_restore(flags);
return 0;
}
/*
* nuke - dequeue ALL requests
*/
static void nuke(struct pxa2xx_ep *ep, int status)
{
struct pxa2xx_request *req;
/* called with irqs blocked */
#ifdef USE_DMA
if (ep->dma >= 0 && !ep->stopped)
cancel_dma(ep);
#endif
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next,
struct pxa2xx_request,
queue);
done(ep, req, status);
}
if (ep->desc)
pio_irq_disable (ep->bEndpointAddress);
}
/* dequeue JUST ONE request */
static int pxa2xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct pxa2xx_ep *ep;
struct pxa2xx_request *req;
unsigned long flags;
ep = container_of(_ep, struct pxa2xx_ep, ep);
if (!_ep || ep->ep.name == ep0name)
return -EINVAL;
local_irq_save(flags);
/* make sure it's actually queued on this endpoint */
list_for_each_entry (req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
local_irq_restore(flags);
return -EINVAL;
}
#ifdef USE_DMA
if (ep->dma >= 0 && ep->queue.next == &req->queue && !ep->stopped) {
cancel_dma(ep);
done(ep, req, -ECONNRESET);
/* restart i/o */
if (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next,
struct pxa2xx_request, queue);
kick_dma(ep, req);
}
} else
#endif
done(ep, req, -ECONNRESET);
local_irq_restore(flags);
return 0;
}
/*-------------------------------------------------------------------------*/
static int pxa2xx_ep_set_halt(struct usb_ep *_ep, int value)
{
struct pxa2xx_ep *ep;
unsigned long flags;
ep = container_of(_ep, struct pxa2xx_ep, ep);
if (unlikely (!_ep
|| (!ep->desc && ep->ep.name != ep0name))
|| ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
DMSG("%s, bad ep\n", __FUNCTION__);
return -EINVAL;
}
if (value == 0) {
/* this path (reset toggle+halt) is needed to implement
* SET_INTERFACE on normal hardware. but it can't be
* done from software on the PXA UDC, and the hardware
* forgets to do it as part of SET_INTERFACE automagic.
*/
DMSG("only host can clear %s halt\n", _ep->name);
return -EROFS;
}
local_irq_save(flags);
if ((ep->bEndpointAddress & USB_DIR_IN) != 0
&& ((*ep->reg_udccs & UDCCS_BI_TFS) == 0
|| !list_empty(&ep->queue))) {
local_irq_restore(flags);
return -EAGAIN;
}
/* FST bit is the same for control, bulk in, bulk out, interrupt in */
*ep->reg_udccs = UDCCS_BI_FST|UDCCS_BI_FTF;
/* ep0 needs special care */
if (!ep->desc) {
start_watchdog(ep->dev);
ep->dev->req_pending = 0;
ep->dev->ep0state = EP0_STALL;
/* and bulk/intr endpoints like dropping stalls too */
} else {
unsigned i;
for (i = 0; i < 1000; i += 20) {
if (*ep->reg_udccs & UDCCS_BI_SST)
break;
udelay(20);
}
}
local_irq_restore(flags);
DBG(DBG_VERBOSE, "%s halt\n", _ep->name);
return 0;
}
static int pxa2xx_ep_fifo_status(struct usb_ep *_ep)
{
struct pxa2xx_ep *ep;
ep = container_of(_ep, struct pxa2xx_ep, ep);
if (!_ep) {
DMSG("%s, bad ep\n", __FUNCTION__);
return -ENODEV;
}
/* pxa can't report unclaimed bytes from IN fifos */
if ((ep->bEndpointAddress & USB_DIR_IN) != 0)
return -EOPNOTSUPP;
if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN
|| (*ep->reg_udccs & UDCCS_BO_RFS) == 0)
return 0;
else
return (*ep->reg_ubcr & 0xfff) + 1;
}
static void pxa2xx_ep_fifo_flush(struct usb_ep *_ep)
{
struct pxa2xx_ep *ep;
ep = container_of(_ep, struct pxa2xx_ep, ep);
if (!_ep || ep->ep.name == ep0name || !list_empty(&ep->queue)) {
DMSG("%s, bad ep\n", __FUNCTION__);
return;
}
/* toggle and halt bits stay unchanged */
/* for OUT, just read and discard the FIFO contents. */
if ((ep->bEndpointAddress & USB_DIR_IN) == 0) {
while (((*ep->reg_udccs) & UDCCS_BO_RNE) != 0)
(void) *ep->reg_uddr;
return;
}
/* most IN status is the same, but ISO can't stall */
*ep->reg_udccs = UDCCS_BI_TPC|UDCCS_BI_FTF|UDCCS_BI_TUR
| (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC)
? 0 : UDCCS_BI_SST;
}
static struct usb_ep_ops pxa2xx_ep_ops = {
.enable = pxa2xx_ep_enable,
.disable = pxa2xx_ep_disable,
.alloc_request = pxa2xx_ep_alloc_request,
.free_request = pxa2xx_ep_free_request,
.alloc_buffer = pxa2xx_ep_alloc_buffer,
.free_buffer = pxa2xx_ep_free_buffer,
.queue = pxa2xx_ep_queue,
.dequeue = pxa2xx_ep_dequeue,
.set_halt = pxa2xx_ep_set_halt,
.fifo_status = pxa2xx_ep_fifo_status,
.fifo_flush = pxa2xx_ep_fifo_flush,
};
/* ---------------------------------------------------------------------------
* device-scoped parts of the api to the usb controller hardware
* ---------------------------------------------------------------------------
*/
static int pxa2xx_udc_get_frame(struct usb_gadget *_gadget)
{
return ((UFNRH & 0x07) << 8) | (UFNRL & 0xff);
}
static int pxa2xx_udc_wakeup(struct usb_gadget *_gadget)
{
/* host may not have enabled remote wakeup */
if ((UDCCS0 & UDCCS0_DRWF) == 0)
return -EHOSTUNREACH;
udc_set_mask_UDCCR(UDCCR_RSM);
return 0;
}
static void stop_activity(struct pxa2xx_udc *, struct usb_gadget_driver *);
static void udc_enable (struct pxa2xx_udc *);
static void udc_disable(struct pxa2xx_udc *);
/* We disable the UDC -- and its 48 MHz clock -- whenever it's not
* in active use.
*/
static int pullup(struct pxa2xx_udc *udc, int is_active)
{
is_active = is_active && udc->vbus && udc->pullup;
DMSG("%s\n", is_active ? "active" : "inactive");
if (is_active)
udc_enable(udc);
else {
if (udc->gadget.speed != USB_SPEED_UNKNOWN) {
DMSG("disconnect %s\n", udc->driver
? udc->driver->driver.name
: "(no driver)");
stop_activity(udc, udc->driver);
}
udc_disable(udc);
}
return 0;
}
/* VBUS reporting logically comes from a transceiver */
static int pxa2xx_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
{
struct pxa2xx_udc *udc;
udc = container_of(_gadget, struct pxa2xx_udc, gadget);
udc->vbus = is_active = (is_active != 0);
DMSG("vbus %s\n", is_active ? "supplied" : "inactive");
pullup(udc, is_active);
return 0;
}
/* drivers may have software control over D+ pullup */
static int pxa2xx_udc_pullup(struct usb_gadget *_gadget, int is_active)
{
struct pxa2xx_udc *udc;
udc = container_of(_gadget, struct pxa2xx_udc, gadget);
/* not all boards support pullup control */
if (!udc->mach->udc_command)
return -EOPNOTSUPP;
is_active = (is_active != 0);
udc->pullup = is_active;
pullup(udc, is_active);
return 0;
}
static const struct usb_gadget_ops pxa2xx_udc_ops = {
.get_frame = pxa2xx_udc_get_frame,
.wakeup = pxa2xx_udc_wakeup,
.vbus_session = pxa2xx_udc_vbus_session,
.pullup = pxa2xx_udc_pullup,
// .vbus_draw ... boards may consume current from VBUS, up to
// 100-500mA based on config. the 500uA suspend ceiling means
// that exclusively vbus-powered PXA designs violate USB specs.
};
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
static const char proc_node_name [] = "driver/udc";
static int
udc_proc_read(char *page, char **start, off_t off, int count,
int *eof, void *_dev)
{
char *buf = page;
struct pxa2xx_udc *dev = _dev;
char *next = buf;
unsigned size = count;
unsigned long flags;
int i, t;
u32 tmp;
if (off != 0)
return 0;
local_irq_save(flags);
/* basic device status */
t = scnprintf(next, size, DRIVER_DESC "\n"
"%s version: %s\nGadget driver: %s\nHost %s\n\n",
driver_name, DRIVER_VERSION SIZE_STR DMASTR,
dev->driver ? dev->driver->driver.name : "(none)",
is_vbus_present() ? "full speed" : "disconnected");
size -= t;
next += t;
/* registers for device and ep0 */
t = scnprintf(next, size,
"uicr %02X.%02X, usir %02X.%02x, ufnr %02X.%02X\n",
UICR1, UICR0, USIR1, USIR0, UFNRH, UFNRL);
size -= t;
next += t;
tmp = UDCCR;
t = scnprintf(next, size,
"udccr %02X =%s%s%s%s%s%s%s%s\n", tmp,
(tmp & UDCCR_REM) ? " rem" : "",
(tmp & UDCCR_RSTIR) ? " rstir" : "",
(tmp & UDCCR_SRM) ? " srm" : "",
(tmp & UDCCR_SUSIR) ? " susir" : "",
(tmp & UDCCR_RESIR) ? " resir" : "",
(tmp & UDCCR_RSM) ? " rsm" : "",
(tmp & UDCCR_UDA) ? " uda" : "",
(tmp & UDCCR_UDE) ? " ude" : "");
size -= t;
next += t;
tmp = UDCCS0;
t = scnprintf(next, size,
"udccs0 %02X =%s%s%s%s%s%s%s%s\n", tmp,
(tmp & UDCCS0_SA) ? " sa" : "",
(tmp & UDCCS0_RNE) ? " rne" : "",
(tmp & UDCCS0_FST) ? " fst" : "",
(tmp & UDCCS0_SST) ? " sst" : "",
(tmp & UDCCS0_DRWF) ? " dwrf" : "",
(tmp & UDCCS0_FTF) ? " ftf" : "",
(tmp & UDCCS0_IPR) ? " ipr" : "",
(tmp & UDCCS0_OPR) ? " opr" : "");
size -= t;
next += t;
if (dev->has_cfr) {
tmp = UDCCFR;
t = scnprintf(next, size,
"udccfr %02X =%s%s\n", tmp,
(tmp & UDCCFR_AREN) ? " aren" : "",
(tmp & UDCCFR_ACM) ? " acm" : "");
size -= t;
next += t;
}
if (!is_vbus_present() || !dev->driver)
goto done;
t = scnprintf(next, size, "ep0 IN %lu/%lu, OUT %lu/%lu\nirqs %lu\n\n",
dev->stats.write.bytes, dev->stats.write.ops,
dev->stats.read.bytes, dev->stats.read.ops,
dev->stats.irqs);
size -= t;
next += t;
/* dump endpoint queues */
for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
struct pxa2xx_ep *ep = &dev->ep [i];
struct pxa2xx_request *req;
int t;
if (i != 0) {
const struct usb_endpoint_descriptor *d;
d = ep->desc;
if (!d)
continue;
tmp = *dev->ep [i].reg_udccs;
t = scnprintf(next, size,
"%s max %d %s udccs %02x irqs %lu/%lu\n",
ep->ep.name, le16_to_cpu (d->wMaxPacketSize),
(ep->dma >= 0) ? "dma" : "pio", tmp,
ep->pio_irqs, ep->dma_irqs);
/* TODO translate all five groups of udccs bits! */
} else /* ep0 should only have one transfer queued */
t = scnprintf(next, size, "ep0 max 16 pio irqs %lu\n",
ep->pio_irqs);
if (t <= 0 || t > size)
goto done;
size -= t;
next += t;
if (list_empty(&ep->queue)) {
t = scnprintf(next, size, "\t(nothing queued)\n");
if (t <= 0 || t > size)
goto done;
size -= t;
next += t;
continue;
}
list_for_each_entry(req, &ep->queue, queue) {
#ifdef USE_DMA
if (ep->dma >= 0 && req->queue.prev == &ep->queue)
t = scnprintf(next, size,
"\treq %p len %d/%d "
"buf %p (dma%d dcmd %08x)\n",
&req->req, req->req.actual,
req->req.length, req->req.buf,
ep->dma, DCMD(ep->dma)
// low 13 bits == bytes-to-go
);
else
#endif
t = scnprintf(next, size,
"\treq %p len %d/%d buf %p\n",
&req->req, req->req.actual,
req->req.length, req->req.buf);
if (t <= 0 || t > size)
goto done;
size -= t;
next += t;
}
}
done:
local_irq_restore(flags);
*eof = 1;
return count - size;
}
#define create_proc_files() \
create_proc_read_entry(proc_node_name, 0, NULL, udc_proc_read, dev)
#define remove_proc_files() \
remove_proc_entry(proc_node_name, NULL)
#else /* !CONFIG_USB_GADGET_DEBUG_FILES */
#define create_proc_files() do {} while (0)
#define remove_proc_files() do {} while (0)
#endif /* CONFIG_USB_GADGET_DEBUG_FILES */
/* "function" sysfs attribute */
static ssize_t
show_function (struct device *_dev, struct device_attribute *attr, char *buf)
{
struct pxa2xx_udc *dev = dev_get_drvdata (_dev);
if (!dev->driver
|| !dev->driver->function
|| strlen (dev->driver->function) > PAGE_SIZE)
return 0;
return scnprintf (buf, PAGE_SIZE, "%s\n", dev->driver->function);
}
static DEVICE_ATTR (function, S_IRUGO, show_function, NULL);
/*-------------------------------------------------------------------------*/
/*
* udc_disable - disable USB device controller
*/
static void udc_disable(struct pxa2xx_udc *dev)
{
/* block all irqs */
udc_set_mask_UDCCR(UDCCR_SRM|UDCCR_REM);
UICR0 = UICR1 = 0xff;
UFNRH = UFNRH_SIM;
/* if hardware supports it, disconnect from usb */
pullup_off();
udc_clear_mask_UDCCR(UDCCR_UDE);
#ifdef CONFIG_ARCH_PXA
/* Disable clock for USB device */
pxa_set_cken(CKEN11_USB, 0);
#endif
ep0_idle (dev);
dev->gadget.speed = USB_SPEED_UNKNOWN;
LED_CONNECTED_OFF;
}
/*
* udc_reinit - initialize software state
*/
static void udc_reinit(struct pxa2xx_udc *dev)
{
u32 i;
/* device/ep0 records init */
INIT_LIST_HEAD (&dev->gadget.ep_list);
INIT_LIST_HEAD (&dev->gadget.ep0->ep_list);
dev->ep0state = EP0_IDLE;
/* basic endpoint records init */
for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
struct pxa2xx_ep *ep = &dev->ep[i];
if (i != 0)
list_add_tail (&ep->ep.ep_list, &dev->gadget.ep_list);
ep->desc = NULL;
ep->stopped = 0;
INIT_LIST_HEAD (&ep->queue);
ep->pio_irqs = ep->dma_irqs = 0;
}
/* the rest was statically initialized, and is read-only */
}
/* until it's enabled, this UDC should be completely invisible
* to any USB host.
*/
static void udc_enable (struct pxa2xx_udc *dev)
{
udc_clear_mask_UDCCR(UDCCR_UDE);
#ifdef CONFIG_ARCH_PXA
/* Enable clock for USB device */
pxa_set_cken(CKEN11_USB, 1);
udelay(5);
#endif
/* try to clear these bits before we enable the udc */
udc_ack_int_UDCCR(UDCCR_SUSIR|/*UDCCR_RSTIR|*/UDCCR_RESIR);
ep0_idle(dev);
dev->gadget.speed = USB_SPEED_UNKNOWN;
dev->stats.irqs = 0;
/*
* sequence taken from chapter 12.5.10, PXA250 AppProcDevManual:
* - enable UDC
* - if RESET is already in progress, ack interrupt
* - unmask reset interrupt
*/
udc_set_mask_UDCCR(UDCCR_UDE);
if (!(UDCCR & UDCCR_UDA))
udc_ack_int_UDCCR(UDCCR_RSTIR);
if (dev->has_cfr /* UDC_RES2 is defined */) {
/* pxa255 (a0+) can avoid a set_config race that could
* prevent gadget drivers from configuring correctly
*/
UDCCFR = UDCCFR_ACM | UDCCFR_MB1;
} else {
/* "USB test mode" for pxa250 errata 40-42 (stepping a0, a1)
* which could result in missing packets and interrupts.
* supposedly one bit per endpoint, controlling whether it
* double buffers or not; ACM/AREN bits fit into the holes.
* zero bits (like USIR0_IRx) disable double buffering.
*/
UDC_RES1 = 0x00;
UDC_RES2 = 0x00;
}
#ifdef DISABLE_TEST_MODE
/* "test mode" seems to have become the default in later chip
* revs, preventing double buffering (and invalidating docs).
* this EXPERIMENT enables it for bulk endpoints by tweaking
* undefined/reserved register bits (that other drivers clear).
* Belcarra code comments noted this usage.
*/
if (fifo_mode & 1) { /* IN endpoints */
UDC_RES1 |= USIR0_IR1|USIR0_IR6;
UDC_RES2 |= USIR1_IR11;
}
if (fifo_mode & 2) { /* OUT endpoints */
UDC_RES1 |= USIR0_IR2|USIR0_IR7;
UDC_RES2 |= USIR1_IR12;
}
#endif
/* enable suspend/resume and reset irqs */
udc_clear_mask_UDCCR(UDCCR_SRM | UDCCR_REM);
/* enable ep0 irqs */
UICR0 &= ~UICR0_IM0;
/* if hardware supports it, pullup D+ and wait for reset */
pullup_on();
}
/* when a driver is successfully registered, it will receive
* control requests including set_configuration(), which enables
* non-control requests. then usb traffic follows until a
* disconnect is reported. then a host may connect again, or
* the driver might get unbound.
*/
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
struct pxa2xx_udc *dev = the_controller;
int retval;
if (!driver
|| driver->speed < USB_SPEED_FULL
|| !driver->bind
|| !driver->disconnect
|| !driver->setup)
return -EINVAL;
if (!dev)
return -ENODEV;
if (dev->driver)
return -EBUSY;
/* first hook up the driver ... */
dev->driver = driver;
dev->gadget.dev.driver = &driver->driver;
dev->pullup = 1;
device_add (&dev->gadget.dev);
retval = driver->bind(&dev->gadget);
if (retval) {
DMSG("bind to driver %s --> error %d\n",
driver->driver.name, retval);
device_del (&dev->gadget.dev);
dev->driver = NULL;
dev->gadget.dev.driver = NULL;
return retval;
}
device_create_file(dev->dev, &dev_attr_function);
/* ... then enable host detection and ep0; and we're ready
* for set_configuration as well as eventual disconnect.
*/
DMSG("registered gadget driver '%s'\n", driver->driver.name);
pullup(dev, 1);
dump_state(dev);
return 0;
}
EXPORT_SYMBOL(usb_gadget_register_driver);
static void
stop_activity(struct pxa2xx_udc *dev, struct usb_gadget_driver *driver)
{
int i;
/* don't disconnect drivers more than once */
if (dev->gadget.speed == USB_SPEED_UNKNOWN)
driver = NULL;
dev->gadget.speed = USB_SPEED_UNKNOWN;
/* prevent new request submissions, kill any outstanding requests */
for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
struct pxa2xx_ep *ep = &dev->ep[i];
ep->stopped = 1;
nuke(ep, -ESHUTDOWN);
}
del_timer_sync(&dev->timer);
/* report disconnect; the driver is already quiesced */
LED_CONNECTED_OFF;
if (driver)
driver->disconnect(&dev->gadget);
/* re-init driver-visible data structures */
udc_reinit(dev);
}
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct pxa2xx_udc *dev = the_controller;
if (!dev)
return -ENODEV;
if (!driver || driver != dev->driver || !driver->unbind)
return -EINVAL;
local_irq_disable();
pullup(dev, 0);
stop_activity(dev, driver);
local_irq_enable();
driver->unbind(&dev->gadget);
dev->driver = NULL;
device_del (&dev->gadget.dev);
device_remove_file(dev->dev, &dev_attr_function);
DMSG("unregistered gadget driver '%s'\n", driver->driver.name);
dump_state(dev);
return 0;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_ARCH_LUBBOCK
/* Lubbock has separate connect and disconnect irqs. More typical designs
* use one GPIO as the VBUS IRQ, and another to control the D+ pullup.
*/
static irqreturn_t
lubbock_vbus_irq(int irq, void *_dev)
{
struct pxa2xx_udc *dev = _dev;
int vbus;
dev->stats.irqs++;
HEX_DISPLAY(dev->stats.irqs);
switch (irq) {
case LUBBOCK_USB_IRQ:
LED_CONNECTED_ON;
vbus = 1;
disable_irq(LUBBOCK_USB_IRQ);
enable_irq(LUBBOCK_USB_DISC_IRQ);
break;
case LUBBOCK_USB_DISC_IRQ:
LED_CONNECTED_OFF;
vbus = 0;
disable_irq(LUBBOCK_USB_DISC_IRQ);
enable_irq(LUBBOCK_USB_IRQ);
break;
default:
return IRQ_NONE;
}
pxa2xx_udc_vbus_session(&dev->gadget, vbus);
return IRQ_HANDLED;
}
#endif
static irqreturn_t udc_vbus_irq(int irq, void *_dev)
{
struct pxa2xx_udc *dev = _dev;
int vbus = pxa_gpio_get(dev->mach->gpio_vbus);
pxa2xx_udc_vbus_session(&dev->gadget, vbus);
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*/
static inline void clear_ep_state (struct pxa2xx_udc *dev)
{
unsigned i;
/* hardware SET_{CONFIGURATION,INTERFACE} automagic resets endpoint
* fifos, and pending transactions mustn't be continued in any case.
*/
for (i = 1; i < PXA_UDC_NUM_ENDPOINTS; i++)
nuke(&dev->ep[i], -ECONNABORTED);
}
static void udc_watchdog(unsigned long _dev)
{
struct pxa2xx_udc *dev = (void *)_dev;
local_irq_disable();
if (dev->ep0state == EP0_STALL
&& (UDCCS0 & UDCCS0_FST) == 0
&& (UDCCS0 & UDCCS0_SST) == 0) {
UDCCS0 = UDCCS0_FST|UDCCS0_FTF;
DBG(DBG_VERBOSE, "ep0 re-stall\n");
start_watchdog(dev);
}
local_irq_enable();
}
static void handle_ep0 (struct pxa2xx_udc *dev)
{
u32 udccs0 = UDCCS0;
struct pxa2xx_ep *ep = &dev->ep [0];
struct pxa2xx_request *req;
union {
struct usb_ctrlrequest r;
u8 raw [8];
u32 word [2];
} u;
if (list_empty(&ep->queue))
req = NULL;
else
req = list_entry(ep->queue.next, struct pxa2xx_request, queue);
/* clear stall status */
if (udccs0 & UDCCS0_SST) {
nuke(ep, -EPIPE);
UDCCS0 = UDCCS0_SST;
del_timer(&dev->timer);
ep0_idle(dev);
}
/* previous request unfinished? non-error iff back-to-back ... */
if ((udccs0 & UDCCS0_SA) != 0 && dev->ep0state != EP0_IDLE) {
nuke(ep, 0);
del_timer(&dev->timer);
ep0_idle(dev);
}
switch (dev->ep0state) {
case EP0_IDLE:
/* late-breaking status? */
udccs0 = UDCCS0;
/* start control request? */
if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE))
== (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE))) {
int i;
nuke (ep, -EPROTO);
/* read SETUP packet */
for (i = 0; i < 8; i++) {
if (unlikely(!(UDCCS0 & UDCCS0_RNE))) {
bad_setup:
DMSG("SETUP %d!\n", i);
goto stall;
}
u.raw [i] = (u8) UDDR0;
}
if (unlikely((UDCCS0 & UDCCS0_RNE) != 0))
goto bad_setup;
got_setup:
DBG(DBG_VERBOSE, "SETUP %02x.%02x v%04x i%04x l%04x\n",
u.r.bRequestType, u.r.bRequest,
le16_to_cpu(u.r.wValue),
le16_to_cpu(u.r.wIndex),
le16_to_cpu(u.r.wLength));
/* cope with automagic for some standard requests. */
dev->req_std = (u.r.bRequestType & USB_TYPE_MASK)
== USB_TYPE_STANDARD;
dev->req_config = 0;
dev->req_pending = 1;
switch (u.r.bRequest) {
/* hardware restricts gadget drivers here! */
case USB_REQ_SET_CONFIGURATION:
if (u.r.bRequestType == USB_RECIP_DEVICE) {
/* reflect hardware's automagic
* up to the gadget driver.
*/
config_change:
dev->req_config = 1;
clear_ep_state(dev);
/* if !has_cfr, there's no synch
* else use AREN (later) not SA|OPR
* USIR0_IR0 acts edge sensitive
*/
}
break;
/* ... and here, even more ... */
case USB_REQ_SET_INTERFACE:
if (u.r.bRequestType == USB_RECIP_INTERFACE) {
/* udc hardware is broken by design:
* - altsetting may only be zero;
* - hw resets all interfaces' eps;
* - ep reset doesn't include halt(?).
*/
DMSG("broken set_interface (%d/%d)\n",
le16_to_cpu(u.r.wIndex),
le16_to_cpu(u.r.wValue));
goto config_change;
}
break;
/* hardware was supposed to hide this */
case USB_REQ_SET_ADDRESS:
if (u.r.bRequestType == USB_RECIP_DEVICE) {
ep0start(dev, 0, "address");
return;
}
break;
}
if (u.r.bRequestType & USB_DIR_IN)
dev->ep0state = EP0_IN_DATA_PHASE;
else
dev->ep0state = EP0_OUT_DATA_PHASE;
i = dev->driver->setup(&dev->gadget, &u.r);
if (i < 0) {
/* hardware automagic preventing STALL... */
if (dev->req_config) {
/* hardware sometimes neglects to tell
* tell us about config change events,
* so later ones may fail...
*/
WARN("config change %02x fail %d?\n",
u.r.bRequest, i);
return;
/* TODO experiment: if has_cfr,
* hardware didn't ACK; maybe we
* could actually STALL!
*/
}
DBG(DBG_VERBOSE, "protocol STALL, "
"%02x err %d\n", UDCCS0, i);
stall:
/* the watchdog timer helps deal with cases
* where udc seems to clear FST wrongly, and
* then NAKs instead of STALLing.
*/
ep0start(dev, UDCCS0_FST|UDCCS0_FTF, "stall");
start_watchdog(dev);
dev->ep0state = EP0_STALL;
/* deferred i/o == no response yet */
} else if (dev->req_pending) {
if (likely(dev->ep0state == EP0_IN_DATA_PHASE
|| dev->req_std || u.r.wLength))
ep0start(dev, 0, "defer");
else
ep0start(dev, UDCCS0_IPR, "defer/IPR");
}
/* expect at least one data or status stage irq */
return;
} else if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA))
== (UDCCS0_OPR|UDCCS0_SA))) {
unsigned i;
/* pxa210/250 erratum 131 for B0/B1 says RNE lies.
* still observed on a pxa255 a0.
*/
DBG(DBG_VERBOSE, "e131\n");
nuke(ep, -EPROTO);
/* read SETUP data, but don't trust it too much */
for (i = 0; i < 8; i++)
u.raw [i] = (u8) UDDR0;
if ((u.r.bRequestType & USB_RECIP_MASK)
> USB_RECIP_OTHER)
goto stall;
if (u.word [0] == 0 && u.word [1] == 0)
goto stall;
goto got_setup;
} else {
/* some random early IRQ:
* - we acked FST
* - IPR cleared
* - OPR got set, without SA (likely status stage)
*/
UDCCS0 = udccs0 & (UDCCS0_SA|UDCCS0_OPR);
}
break;
case EP0_IN_DATA_PHASE: /* GET_DESCRIPTOR etc */
if (udccs0 & UDCCS0_OPR) {
UDCCS0 = UDCCS0_OPR|UDCCS0_FTF;
DBG(DBG_VERBOSE, "ep0in premature status\n");
if (req)
done(ep, req, 0);
ep0_idle(dev);
} else /* irq was IPR clearing */ {
if (req) {
/* this IN packet might finish the request */
(void) write_ep0_fifo(ep, req);
} /* else IN token before response was written */
}
break;
case EP0_OUT_DATA_PHASE: /* SET_DESCRIPTOR etc */
if (udccs0 & UDCCS0_OPR) {
if (req) {
/* this OUT packet might finish the request */
if (read_ep0_fifo(ep, req))
done(ep, req, 0);
/* else more OUT packets expected */
} /* else OUT token before read was issued */
} else /* irq was IPR clearing */ {
DBG(DBG_VERBOSE, "ep0out premature status\n");
if (req)
done(ep, req, 0);
ep0_idle(dev);
}
break;
case EP0_END_XFER:
if (req)
done(ep, req, 0);
/* ack control-IN status (maybe in-zlp was skipped)
* also appears after some config change events.
*/
if (udccs0 & UDCCS0_OPR)
UDCCS0 = UDCCS0_OPR;
ep0_idle(dev);
break;
case EP0_STALL:
UDCCS0 = UDCCS0_FST;
break;
}
USIR0 = USIR0_IR0;
}
static void handle_ep(struct pxa2xx_ep *ep)
{
struct pxa2xx_request *req;
int is_in = ep->bEndpointAddress & USB_DIR_IN;
int completed;
u32 udccs, tmp;
do {
completed = 0;
if (likely (!list_empty(&ep->queue)))
req = list_entry(ep->queue.next,
struct pxa2xx_request, queue);
else
req = NULL;
// TODO check FST handling
udccs = *ep->reg_udccs;
if (unlikely(is_in)) { /* irq from TPC, SST, or (ISO) TUR */
tmp = UDCCS_BI_TUR;
if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK))
tmp |= UDCCS_BI_SST;
tmp &= udccs;
if (likely (tmp))
*ep->reg_udccs = tmp;
if (req && likely ((udccs & UDCCS_BI_TFS) != 0))
completed = write_fifo(ep, req);
} else { /* irq from RPC (or for ISO, ROF) */
if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK))
tmp = UDCCS_BO_SST | UDCCS_BO_DME;
else
tmp = UDCCS_IO_ROF | UDCCS_IO_DME;
tmp &= udccs;
if (likely(tmp))
*ep->reg_udccs = tmp;
/* fifos can hold packets, ready for reading... */
if (likely(req)) {
#ifdef USE_OUT_DMA
// TODO didn't yet debug out-dma. this approach assumes
// the worst about short packets and RPC; it might be better.
if (likely(ep->dma >= 0)) {
if (!(udccs & UDCCS_BO_RSP)) {
*ep->reg_udccs = UDCCS_BO_RPC;
ep->dma_irqs++;
return;
}
}
#endif
completed = read_fifo(ep, req);
} else
pio_irq_disable (ep->bEndpointAddress);
}
ep->pio_irqs++;
} while (completed);
}
/*
* pxa2xx_udc_irq - interrupt handler
*
* avoid delays in ep0 processing. the control handshaking isn't always
* under software control (pxa250c0 and the pxa255 are better), and delays
* could cause usb protocol errors.
*/
static irqreturn_t
pxa2xx_udc_irq(int irq, void *_dev)
{
struct pxa2xx_udc *dev = _dev;
int handled;
dev->stats.irqs++;
HEX_DISPLAY(dev->stats.irqs);
do {
u32 udccr = UDCCR;
handled = 0;
/* SUSpend Interrupt Request */
if (unlikely(udccr & UDCCR_SUSIR)) {
udc_ack_int_UDCCR(UDCCR_SUSIR);
handled = 1;
DBG(DBG_VERBOSE, "USB suspend%s\n", is_vbus_present()
? "" : "+disconnect");
if (!is_vbus_present())
stop_activity(dev, dev->driver);
else if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver
&& dev->driver->suspend)
dev->driver->suspend(&dev->gadget);
ep0_idle (dev);
}
/* RESume Interrupt Request */
if (unlikely(udccr & UDCCR_RESIR)) {
udc_ack_int_UDCCR(UDCCR_RESIR);
handled = 1;
DBG(DBG_VERBOSE, "USB resume\n");
if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver
&& dev->driver->resume
&& is_vbus_present())
dev->driver->resume(&dev->gadget);
}
/* ReSeT Interrupt Request - USB reset */
if (unlikely(udccr & UDCCR_RSTIR)) {
udc_ack_int_UDCCR(UDCCR_RSTIR);
handled = 1;
if ((UDCCR & UDCCR_UDA) == 0) {
DBG(DBG_VERBOSE, "USB reset start\n");
/* reset driver and endpoints,
* in case that's not yet done
*/
stop_activity (dev, dev->driver);
} else {
DBG(DBG_VERBOSE, "USB reset end\n");
dev->gadget.speed = USB_SPEED_FULL;
LED_CONNECTED_ON;
memset(&dev->stats, 0, sizeof dev->stats);
/* driver and endpoints are still reset */
}
} else {
u32 usir0 = USIR0 & ~UICR0;
u32 usir1 = USIR1 & ~UICR1;
int i;
if (unlikely (!usir0 && !usir1))
continue;
DBG(DBG_VERY_NOISY, "irq %02x.%02x\n", usir1, usir0);
/* control traffic */
if (usir0 & USIR0_IR0) {
dev->ep[0].pio_irqs++;
handle_ep0(dev);
handled = 1;
}
/* endpoint data transfers */
for (i = 0; i < 8; i++) {
u32 tmp = 1 << i;
if (i && (usir0 & tmp)) {
handle_ep(&dev->ep[i]);
USIR0 |= tmp;
handled = 1;
}
if (usir1 & tmp) {
handle_ep(&dev->ep[i+8]);
USIR1 |= tmp;
handled = 1;
}
}
}
/* we could also ask for 1 msec SOF (SIR) interrupts */
} while (handled);
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*/
static void nop_release (struct device *dev)
{
DMSG("%s %s\n", __FUNCTION__, dev->bus_id);
}
/* this uses load-time allocation and initialization (instead of
* doing it at run-time) to save code, eliminate fault paths, and
* be more obviously correct.
*/
static struct pxa2xx_udc memory = {
.gadget = {
.ops = &pxa2xx_udc_ops,
.ep0 = &memory.ep[0].ep,
.name = driver_name,
.dev = {
.bus_id = "gadget",
.release = nop_release,
},
},
/* control endpoint */
.ep[0] = {
.ep = {
.name = ep0name,
.ops = &pxa2xx_ep_ops,
.maxpacket = EP0_FIFO_SIZE,
},
.dev = &memory,
.reg_udccs = &UDCCS0,
.reg_uddr = &UDDR0,
},
/* first group of endpoints */
.ep[1] = {
.ep = {
.name = "ep1in-bulk",
.ops = &pxa2xx_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 1,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDCCS1,
.reg_uddr = &UDDR1,
drcmr (25)
},
.ep[2] = {
.ep = {
.name = "ep2out-bulk",
.ops = &pxa2xx_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = 2,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDCCS2,
.reg_ubcr = &UBCR2,
.reg_uddr = &UDDR2,
drcmr (26)
},
#ifndef CONFIG_USB_PXA2XX_SMALL
.ep[3] = {
.ep = {
.name = "ep3in-iso",
.ops = &pxa2xx_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 3,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDCCS3,
.reg_uddr = &UDDR3,
drcmr (27)
},
.ep[4] = {
.ep = {
.name = "ep4out-iso",
.ops = &pxa2xx_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = 4,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDCCS4,
.reg_ubcr = &UBCR4,
.reg_uddr = &UDDR4,
drcmr (28)
},
.ep[5] = {
.ep = {
.name = "ep5in-int",
.ops = &pxa2xx_ep_ops,
.maxpacket = INT_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = INT_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 5,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.reg_udccs = &UDCCS5,
.reg_uddr = &UDDR5,
},
/* second group of endpoints */
.ep[6] = {
.ep = {
.name = "ep6in-bulk",
.ops = &pxa2xx_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 6,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDCCS6,
.reg_uddr = &UDDR6,
drcmr (30)
},
.ep[7] = {
.ep = {
.name = "ep7out-bulk",
.ops = &pxa2xx_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = 7,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDCCS7,
.reg_ubcr = &UBCR7,
.reg_uddr = &UDDR7,
drcmr (31)
},
.ep[8] = {
.ep = {
.name = "ep8in-iso",
.ops = &pxa2xx_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 8,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDCCS8,
.reg_uddr = &UDDR8,
drcmr (32)
},
.ep[9] = {
.ep = {
.name = "ep9out-iso",
.ops = &pxa2xx_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = 9,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDCCS9,
.reg_ubcr = &UBCR9,
.reg_uddr = &UDDR9,
drcmr (33)
},
.ep[10] = {
.ep = {
.name = "ep10in-int",
.ops = &pxa2xx_ep_ops,
.maxpacket = INT_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = INT_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 10,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.reg_udccs = &UDCCS10,
.reg_uddr = &UDDR10,
},
/* third group of endpoints */
.ep[11] = {
.ep = {
.name = "ep11in-bulk",
.ops = &pxa2xx_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 11,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDCCS11,
.reg_uddr = &UDDR11,
drcmr (35)
},
.ep[12] = {
.ep = {
.name = "ep12out-bulk",
.ops = &pxa2xx_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = 12,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDCCS12,
.reg_ubcr = &UBCR12,
.reg_uddr = &UDDR12,
drcmr (36)
},
.ep[13] = {
.ep = {
.name = "ep13in-iso",
.ops = &pxa2xx_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 13,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDCCS13,
.reg_uddr = &UDDR13,
drcmr (37)
},
.ep[14] = {
.ep = {
.name = "ep14out-iso",
.ops = &pxa2xx_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = 14,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDCCS14,
.reg_ubcr = &UBCR14,
.reg_uddr = &UDDR14,
drcmr (38)
},
.ep[15] = {
.ep = {
.name = "ep15in-int",
.ops = &pxa2xx_ep_ops,
.maxpacket = INT_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = INT_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 15,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.reg_udccs = &UDCCS15,
.reg_uddr = &UDDR15,
},
#endif /* !CONFIG_USB_PXA2XX_SMALL */
};
#define CP15R0_VENDOR_MASK 0xffffe000
#if defined(CONFIG_ARCH_PXA)
#define CP15R0_XSCALE_VALUE 0x69052000 /* intel/arm/xscale */
#elif defined(CONFIG_ARCH_IXP4XX)
#define CP15R0_XSCALE_VALUE 0x69054000 /* intel/arm/ixp4xx */
#endif
#define CP15R0_PROD_MASK 0x000003f0
#define PXA25x 0x00000100 /* and PXA26x */
#define PXA210 0x00000120
#define CP15R0_REV_MASK 0x0000000f
#define CP15R0_PRODREV_MASK (CP15R0_PROD_MASK | CP15R0_REV_MASK)
#define PXA255_A0 0x00000106 /* or PXA260_B1 */
#define PXA250_C0 0x00000105 /* or PXA26x_B0 */
#define PXA250_B2 0x00000104
#define PXA250_B1 0x00000103 /* or PXA260_A0 */
#define PXA250_B0 0x00000102
#define PXA250_A1 0x00000101
#define PXA250_A0 0x00000100
#define PXA210_C0 0x00000125
#define PXA210_B2 0x00000124
#define PXA210_B1 0x00000123
#define PXA210_B0 0x00000122
#define IXP425_A0 0x000001c1
#define IXP425_B0 0x000001f1
#define IXP465_AD 0x00000200
/*
* probe - binds to the platform device
*/
static int __init pxa2xx_udc_probe(struct platform_device *pdev)
{
struct pxa2xx_udc *dev = &memory;
int retval, out_dma = 1, vbus_irq;
u32 chiprev;
/* insist on Intel/ARM/XScale */
asm("mrc%? p15, 0, %0, c0, c0" : "=r" (chiprev));
if ((chiprev & CP15R0_VENDOR_MASK) != CP15R0_XSCALE_VALUE) {
printk(KERN_ERR "%s: not XScale!\n", driver_name);
return -ENODEV;
}
/* trigger chiprev-specific logic */
switch (chiprev & CP15R0_PRODREV_MASK) {
#if defined(CONFIG_ARCH_PXA)
case PXA255_A0:
dev->has_cfr = 1;
break;
case PXA250_A0:
case PXA250_A1:
/* A0/A1 "not released"; ep 13, 15 unusable */
/* fall through */
case PXA250_B2: case PXA210_B2:
case PXA250_B1: case PXA210_B1:
case PXA250_B0: case PXA210_B0:
out_dma = 0;
/* fall through */
case PXA250_C0: case PXA210_C0:
break;
#elif defined(CONFIG_ARCH_IXP4XX)
case IXP425_A0:
case IXP425_B0:
case IXP465_AD:
dev->has_cfr = 1;
out_dma = 0;
break;
#endif
default:
out_dma = 0;
printk(KERN_ERR "%s: unrecognized processor: %08x\n",
driver_name, chiprev);
/* iop3xx, ixp4xx, ... */
return -ENODEV;
}
pr_debug("%s: IRQ %d%s%s%s\n", driver_name, IRQ_USB,
dev->has_cfr ? "" : " (!cfr)",
out_dma ? "" : " (broken dma-out)",
SIZE_STR DMASTR
);
#ifdef USE_DMA
#ifndef USE_OUT_DMA
out_dma = 0;
#endif
/* pxa 250 erratum 130 prevents using OUT dma (fixed C0) */
if (!out_dma) {
DMSG("disabled OUT dma\n");
dev->ep[ 2].reg_drcmr = dev->ep[ 4].reg_drcmr = 0;
dev->ep[ 7].reg_drcmr = dev->ep[ 9].reg_drcmr = 0;
dev->ep[12].reg_drcmr = dev->ep[14].reg_drcmr = 0;
}
#endif
/* other non-static parts of init */
dev->dev = &pdev->dev;
dev->mach = pdev->dev.platform_data;
if (dev->mach->gpio_vbus) {
vbus_irq = IRQ_GPIO(dev->mach->gpio_vbus & GPIO_MD_MASK_NR);
pxa_gpio_mode((dev->mach->gpio_vbus & GPIO_MD_MASK_NR)
| GPIO_IN);
set_irq_type(vbus_irq, IRQT_BOTHEDGE);
} else
vbus_irq = 0;
if (dev->mach->gpio_pullup)
pxa_gpio_mode((dev->mach->gpio_pullup & GPIO_MD_MASK_NR)
| GPIO_OUT | GPIO_DFLT_LOW);
init_timer(&dev->timer);
dev->timer.function = udc_watchdog;
dev->timer.data = (unsigned long) dev;
device_initialize(&dev->gadget.dev);
dev->gadget.dev.parent = &pdev->dev;
dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
the_controller = dev;
platform_set_drvdata(pdev, dev);
udc_disable(dev);
udc_reinit(dev);
dev->vbus = is_vbus_present();
/* irq setup after old hardware state is cleaned up */
retval = request_irq(IRQ_USB, pxa2xx_udc_irq,
IRQF_DISABLED, driver_name, dev);
if (retval != 0) {
printk(KERN_ERR "%s: can't get irq %i, err %d\n",
driver_name, IRQ_USB, retval);
return -EBUSY;
}
dev->got_irq = 1;
#ifdef CONFIG_ARCH_LUBBOCK
if (machine_is_lubbock()) {
retval = request_irq(LUBBOCK_USB_DISC_IRQ,
lubbock_vbus_irq,
IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
driver_name, dev);
if (retval != 0) {
printk(KERN_ERR "%s: can't get irq %i, err %d\n",
driver_name, LUBBOCK_USB_DISC_IRQ, retval);
lubbock_fail0:
free_irq(IRQ_USB, dev);
return -EBUSY;
}
retval = request_irq(LUBBOCK_USB_IRQ,
lubbock_vbus_irq,
IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
driver_name, dev);
if (retval != 0) {
printk(KERN_ERR "%s: can't get irq %i, err %d\n",
driver_name, LUBBOCK_USB_IRQ, retval);
free_irq(LUBBOCK_USB_DISC_IRQ, dev);
goto lubbock_fail0;
}
#ifdef DEBUG
/* with U-Boot (but not BLOB), hex is off by default */
HEX_DISPLAY(dev->stats.irqs);
LUB_DISC_BLNK_LED &= 0xff;
#endif
} else
#endif
if (vbus_irq) {
retval = request_irq(vbus_irq, udc_vbus_irq,
SA_INTERRUPT | SA_SAMPLE_RANDOM,
driver_name, dev);
if (retval != 0) {
printk(KERN_ERR "%s: can't get irq %i, err %d\n",
driver_name, vbus_irq, retval);
free_irq(IRQ_USB, dev);
return -EBUSY;
}
}
create_proc_files();
return 0;
}
static void pxa2xx_udc_shutdown(struct platform_device *_dev)
{
pullup_off();
}
static int __exit pxa2xx_udc_remove(struct platform_device *pdev)
{
struct pxa2xx_udc *dev = platform_get_drvdata(pdev);
if (dev->driver)
return -EBUSY;
udc_disable(dev);
remove_proc_files();
if (dev->got_irq) {
free_irq(IRQ_USB, dev);
dev->got_irq = 0;
}
#ifdef CONFIG_ARCH_LUBBOCK
if (machine_is_lubbock()) {
free_irq(LUBBOCK_USB_DISC_IRQ, dev);
free_irq(LUBBOCK_USB_IRQ, dev);
}
#endif
if (dev->mach->gpio_vbus)
free_irq(IRQ_GPIO(dev->mach->gpio_vbus), dev);
platform_set_drvdata(pdev, NULL);
the_controller = NULL;
return 0;
}
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_PM
/* USB suspend (controlled by the host) and system suspend (controlled
* by the PXA) don't necessarily work well together. If USB is active,
* the 48 MHz clock is required; so the system can't enter 33 MHz idle
* mode, or any deeper PM saving state.
*
* For now, we punt and forcibly disconnect from the USB host when PXA
* enters any suspend state. While we're disconnected, we always disable
* the 48MHz USB clock ... allowing PXA sleep and/or 33 MHz idle states.
* Boards without software pullup control shouldn't use those states.
* VBUS IRQs should probably be ignored so that the PXA device just acts
* "dead" to USB hosts until system resume.
*/
static int pxa2xx_udc_suspend(struct platform_device *dev, pm_message_t state)
{
struct pxa2xx_udc *udc = platform_get_drvdata(dev);
if (!udc->mach->udc_command)
WARN("USB host won't detect disconnect!\n");
pullup(udc, 0);
return 0;
}
static int pxa2xx_udc_resume(struct platform_device *dev)
{
struct pxa2xx_udc *udc = platform_get_drvdata(dev);
pullup(udc, 1);
return 0;
}
#else
#define pxa2xx_udc_suspend NULL
#define pxa2xx_udc_resume NULL
#endif
/*-------------------------------------------------------------------------*/
static struct platform_driver udc_driver = {
.probe = pxa2xx_udc_probe,
.shutdown = pxa2xx_udc_shutdown,
.remove = __exit_p(pxa2xx_udc_remove),
.suspend = pxa2xx_udc_suspend,
.resume = pxa2xx_udc_resume,
.driver = {
.owner = THIS_MODULE,
.name = "pxa2xx-udc",
},
};
static int __init udc_init(void)
{
printk(KERN_INFO "%s: version %s\n", driver_name, DRIVER_VERSION);
return platform_driver_register(&udc_driver);
}
module_init(udc_init);
static void __exit udc_exit(void)
{
platform_driver_unregister(&udc_driver);
}
module_exit(udc_exit);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR("Frank Becker, Robert Schwebel, David Brownell");
MODULE_LICENSE("GPL");