mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-07 14:32:23 +00:00
38d7aacca0
Improper use of userspace_irqchip_in_use led to syzbot hitting the following WARN_ON() in kvm_timer_update_irq(): WARNING: CPU: 0 PID: 3281 at arch/arm64/kvm/arch_timer.c:459 kvm_timer_update_irq+0x21c/0x394 Call trace: kvm_timer_update_irq+0x21c/0x394 arch/arm64/kvm/arch_timer.c:459 kvm_timer_vcpu_reset+0x158/0x684 arch/arm64/kvm/arch_timer.c:968 kvm_reset_vcpu+0x3b4/0x560 arch/arm64/kvm/reset.c:264 kvm_vcpu_set_target arch/arm64/kvm/arm.c:1553 [inline] kvm_arch_vcpu_ioctl_vcpu_init arch/arm64/kvm/arm.c:1573 [inline] kvm_arch_vcpu_ioctl+0x112c/0x1b3c arch/arm64/kvm/arm.c:1695 kvm_vcpu_ioctl+0x4ec/0xf74 virt/kvm/kvm_main.c:4658 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl fs/ioctl.c:893 [inline] __arm64_sys_ioctl+0x108/0x184 fs/ioctl.c:893 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x78/0x1b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0xe8/0x1b0 arch/arm64/kernel/syscall.c:132 do_el0_svc+0x40/0x50 arch/arm64/kernel/syscall.c:151 el0_svc+0x54/0x14c arch/arm64/kernel/entry-common.c:712 el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598 The following sequence led to the scenario: - Userspace creates a VM and a vCPU. - The vCPU is initialized with KVM_ARM_VCPU_PMU_V3 during KVM_ARM_VCPU_INIT. - Without any other setup, such as vGIC or vPMU, userspace issues KVM_RUN on the vCPU. Since the vPMU is requested, but not setup, kvm_arm_pmu_v3_enable() fails in kvm_arch_vcpu_run_pid_change(). As a result, KVM_RUN returns after enabling the timer, but before incrementing 'userspace_irqchip_in_use': kvm_arch_vcpu_run_pid_change() ret = kvm_arm_pmu_v3_enable() if (!vcpu->arch.pmu.created) return -EINVAL; if (ret) return ret; [...] if (!irqchip_in_kernel(kvm)) static_branch_inc(&userspace_irqchip_in_use); - Userspace ignores the error and issues KVM_ARM_VCPU_INIT again. Since the timer is already enabled, control moves through the following flow, ultimately hitting the WARN_ON(): kvm_timer_vcpu_reset() if (timer->enabled) kvm_timer_update_irq() if (!userspace_irqchip()) ret = kvm_vgic_inject_irq() ret = vgic_lazy_init() if (unlikely(!vgic_initialized(kvm))) if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) return -EBUSY; WARN_ON(ret); Theoretically, since userspace_irqchip_in_use's functionality can be simply replaced by '!irqchip_in_kernel()', get rid of the static key to avoid the mismanagement, which also helps with the syzbot issue. Cc: <stable@vger.kernel.org> Reported-by: syzbot <syzkaller@googlegroups.com> Suggested-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Raghavendra Rao Ananta <rananta@google.com> Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
1681 lines
41 KiB
C
1681 lines
41 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <clocksource/arm_arch_timer.h>
|
|
#include <asm/arch_timer.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_hyp.h>
|
|
#include <asm/kvm_nested.h>
|
|
|
|
#include <kvm/arm_vgic.h>
|
|
#include <kvm/arm_arch_timer.h>
|
|
|
|
#include "trace.h"
|
|
|
|
static struct timecounter *timecounter;
|
|
static unsigned int host_vtimer_irq;
|
|
static unsigned int host_ptimer_irq;
|
|
static u32 host_vtimer_irq_flags;
|
|
static u32 host_ptimer_irq_flags;
|
|
|
|
static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
|
|
|
|
static const u8 default_ppi[] = {
|
|
[TIMER_PTIMER] = 30,
|
|
[TIMER_VTIMER] = 27,
|
|
[TIMER_HPTIMER] = 26,
|
|
[TIMER_HVTIMER] = 28,
|
|
};
|
|
|
|
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
|
|
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
|
|
struct arch_timer_context *timer_ctx);
|
|
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
|
|
static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
|
|
struct arch_timer_context *timer,
|
|
enum kvm_arch_timer_regs treg,
|
|
u64 val);
|
|
static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
|
|
struct arch_timer_context *timer,
|
|
enum kvm_arch_timer_regs treg);
|
|
static bool kvm_arch_timer_get_input_level(int vintid);
|
|
|
|
static struct irq_ops arch_timer_irq_ops = {
|
|
.get_input_level = kvm_arch_timer_get_input_level,
|
|
};
|
|
|
|
static int nr_timers(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu_has_nv(vcpu))
|
|
return NR_KVM_EL0_TIMERS;
|
|
|
|
return NR_KVM_TIMERS;
|
|
}
|
|
|
|
u32 timer_get_ctl(struct arch_timer_context *ctxt)
|
|
{
|
|
struct kvm_vcpu *vcpu = ctxt->vcpu;
|
|
|
|
switch(arch_timer_ctx_index(ctxt)) {
|
|
case TIMER_VTIMER:
|
|
return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
|
|
case TIMER_PTIMER:
|
|
return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
|
|
case TIMER_HVTIMER:
|
|
return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
|
|
case TIMER_HPTIMER:
|
|
return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
|
|
default:
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
u64 timer_get_cval(struct arch_timer_context *ctxt)
|
|
{
|
|
struct kvm_vcpu *vcpu = ctxt->vcpu;
|
|
|
|
switch(arch_timer_ctx_index(ctxt)) {
|
|
case TIMER_VTIMER:
|
|
return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
|
|
case TIMER_PTIMER:
|
|
return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
|
|
case TIMER_HVTIMER:
|
|
return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
|
|
case TIMER_HPTIMER:
|
|
return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
|
|
default:
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u64 timer_get_offset(struct arch_timer_context *ctxt)
|
|
{
|
|
u64 offset = 0;
|
|
|
|
if (!ctxt)
|
|
return 0;
|
|
|
|
if (ctxt->offset.vm_offset)
|
|
offset += *ctxt->offset.vm_offset;
|
|
if (ctxt->offset.vcpu_offset)
|
|
offset += *ctxt->offset.vcpu_offset;
|
|
|
|
return offset;
|
|
}
|
|
|
|
static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
|
|
{
|
|
struct kvm_vcpu *vcpu = ctxt->vcpu;
|
|
|
|
switch(arch_timer_ctx_index(ctxt)) {
|
|
case TIMER_VTIMER:
|
|
__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
|
|
break;
|
|
case TIMER_PTIMER:
|
|
__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
|
|
break;
|
|
case TIMER_HVTIMER:
|
|
__vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
|
|
break;
|
|
case TIMER_HPTIMER:
|
|
__vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
}
|
|
|
|
static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
|
|
{
|
|
struct kvm_vcpu *vcpu = ctxt->vcpu;
|
|
|
|
switch(arch_timer_ctx_index(ctxt)) {
|
|
case TIMER_VTIMER:
|
|
__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
|
|
break;
|
|
case TIMER_PTIMER:
|
|
__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
|
|
break;
|
|
case TIMER_HVTIMER:
|
|
__vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
|
|
break;
|
|
case TIMER_HPTIMER:
|
|
__vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
}
|
|
|
|
static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
|
|
{
|
|
if (!ctxt->offset.vm_offset) {
|
|
WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
|
|
return;
|
|
}
|
|
|
|
WRITE_ONCE(*ctxt->offset.vm_offset, offset);
|
|
}
|
|
|
|
u64 kvm_phys_timer_read(void)
|
|
{
|
|
return timecounter->cc->read(timecounter->cc);
|
|
}
|
|
|
|
void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
|
|
{
|
|
if (vcpu_has_nv(vcpu)) {
|
|
if (is_hyp_ctxt(vcpu)) {
|
|
map->direct_vtimer = vcpu_hvtimer(vcpu);
|
|
map->direct_ptimer = vcpu_hptimer(vcpu);
|
|
map->emul_vtimer = vcpu_vtimer(vcpu);
|
|
map->emul_ptimer = vcpu_ptimer(vcpu);
|
|
} else {
|
|
map->direct_vtimer = vcpu_vtimer(vcpu);
|
|
map->direct_ptimer = vcpu_ptimer(vcpu);
|
|
map->emul_vtimer = vcpu_hvtimer(vcpu);
|
|
map->emul_ptimer = vcpu_hptimer(vcpu);
|
|
}
|
|
} else if (has_vhe()) {
|
|
map->direct_vtimer = vcpu_vtimer(vcpu);
|
|
map->direct_ptimer = vcpu_ptimer(vcpu);
|
|
map->emul_vtimer = NULL;
|
|
map->emul_ptimer = NULL;
|
|
} else {
|
|
map->direct_vtimer = vcpu_vtimer(vcpu);
|
|
map->direct_ptimer = NULL;
|
|
map->emul_vtimer = NULL;
|
|
map->emul_ptimer = vcpu_ptimer(vcpu);
|
|
}
|
|
|
|
trace_kvm_get_timer_map(vcpu->vcpu_id, map);
|
|
}
|
|
|
|
static inline bool userspace_irqchip(struct kvm *kvm)
|
|
{
|
|
return unlikely(!irqchip_in_kernel(kvm));
|
|
}
|
|
|
|
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
|
|
{
|
|
hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
|
|
HRTIMER_MODE_ABS_HARD);
|
|
}
|
|
|
|
static void soft_timer_cancel(struct hrtimer *hrt)
|
|
{
|
|
hrtimer_cancel(hrt);
|
|
}
|
|
|
|
static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
|
|
{
|
|
struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
|
|
struct arch_timer_context *ctx;
|
|
struct timer_map map;
|
|
|
|
/*
|
|
* We may see a timer interrupt after vcpu_put() has been called which
|
|
* sets the CPU's vcpu pointer to NULL, because even though the timer
|
|
* has been disabled in timer_save_state(), the hardware interrupt
|
|
* signal may not have been retired from the interrupt controller yet.
|
|
*/
|
|
if (!vcpu)
|
|
return IRQ_HANDLED;
|
|
|
|
get_timer_map(vcpu, &map);
|
|
|
|
if (irq == host_vtimer_irq)
|
|
ctx = map.direct_vtimer;
|
|
else
|
|
ctx = map.direct_ptimer;
|
|
|
|
if (kvm_timer_should_fire(ctx))
|
|
kvm_timer_update_irq(vcpu, true, ctx);
|
|
|
|
if (userspace_irqchip(vcpu->kvm) &&
|
|
!static_branch_unlikely(&has_gic_active_state))
|
|
disable_percpu_irq(host_vtimer_irq);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
|
|
u64 val)
|
|
{
|
|
u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
|
|
|
|
if (now < val) {
|
|
u64 ns;
|
|
|
|
ns = cyclecounter_cyc2ns(timecounter->cc,
|
|
val - now,
|
|
timecounter->mask,
|
|
&timer_ctx->ns_frac);
|
|
return ns;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
|
|
{
|
|
return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
|
|
}
|
|
|
|
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
|
|
{
|
|
WARN_ON(timer_ctx && timer_ctx->loaded);
|
|
return timer_ctx &&
|
|
((timer_get_ctl(timer_ctx) &
|
|
(ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
|
|
}
|
|
|
|
static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
|
|
{
|
|
return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
|
|
vcpu_get_flag(vcpu, IN_WFIT));
|
|
}
|
|
|
|
static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
|
|
struct arch_timer_context *ctx;
|
|
|
|
ctx = is_hyp_ctxt(vcpu) ? vcpu_hvtimer(vcpu) : vcpu_vtimer(vcpu);
|
|
|
|
return kvm_counter_compute_delta(ctx, val);
|
|
}
|
|
|
|
/*
|
|
* Returns the earliest expiration time in ns among guest timers.
|
|
* Note that it will return 0 if none of timers can fire.
|
|
*/
|
|
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 min_delta = ULLONG_MAX;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_timers(vcpu); i++) {
|
|
struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
|
|
|
|
WARN(ctx->loaded, "timer %d loaded\n", i);
|
|
if (kvm_timer_irq_can_fire(ctx))
|
|
min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
|
|
}
|
|
|
|
if (vcpu_has_wfit_active(vcpu))
|
|
min_delta = min(min_delta, wfit_delay_ns(vcpu));
|
|
|
|
/* If none of timers can fire, then return 0 */
|
|
if (min_delta == ULLONG_MAX)
|
|
return 0;
|
|
|
|
return min_delta;
|
|
}
|
|
|
|
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
|
|
{
|
|
struct arch_timer_cpu *timer;
|
|
struct kvm_vcpu *vcpu;
|
|
u64 ns;
|
|
|
|
timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
|
|
vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
|
|
|
|
/*
|
|
* Check that the timer has really expired from the guest's
|
|
* PoV (NTP on the host may have forced it to expire
|
|
* early). If we should have slept longer, restart it.
|
|
*/
|
|
ns = kvm_timer_earliest_exp(vcpu);
|
|
if (unlikely(ns)) {
|
|
hrtimer_forward_now(hrt, ns_to_ktime(ns));
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
kvm_vcpu_wake_up(vcpu);
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
|
|
{
|
|
struct arch_timer_context *ctx;
|
|
struct kvm_vcpu *vcpu;
|
|
u64 ns;
|
|
|
|
ctx = container_of(hrt, struct arch_timer_context, hrtimer);
|
|
vcpu = ctx->vcpu;
|
|
|
|
trace_kvm_timer_hrtimer_expire(ctx);
|
|
|
|
/*
|
|
* Check that the timer has really expired from the guest's
|
|
* PoV (NTP on the host may have forced it to expire
|
|
* early). If not ready, schedule for a later time.
|
|
*/
|
|
ns = kvm_timer_compute_delta(ctx);
|
|
if (unlikely(ns)) {
|
|
hrtimer_forward_now(hrt, ns_to_ktime(ns));
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
kvm_timer_update_irq(vcpu, true, ctx);
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
|
|
{
|
|
enum kvm_arch_timers index;
|
|
u64 cval, now;
|
|
|
|
if (!timer_ctx)
|
|
return false;
|
|
|
|
index = arch_timer_ctx_index(timer_ctx);
|
|
|
|
if (timer_ctx->loaded) {
|
|
u32 cnt_ctl = 0;
|
|
|
|
switch (index) {
|
|
case TIMER_VTIMER:
|
|
case TIMER_HVTIMER:
|
|
cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
|
|
break;
|
|
case TIMER_PTIMER:
|
|
case TIMER_HPTIMER:
|
|
cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
|
|
break;
|
|
case NR_KVM_TIMERS:
|
|
/* GCC is braindead */
|
|
cnt_ctl = 0;
|
|
break;
|
|
}
|
|
|
|
return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
|
|
(cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
|
|
!(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
|
|
}
|
|
|
|
if (!kvm_timer_irq_can_fire(timer_ctx))
|
|
return false;
|
|
|
|
cval = timer_get_cval(timer_ctx);
|
|
now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
|
|
|
|
return cval <= now;
|
|
}
|
|
|
|
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
|
|
}
|
|
|
|
/*
|
|
* Reflect the timer output level into the kvm_run structure
|
|
*/
|
|
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
|
|
|
|
/* Populate the device bitmap with the timer states */
|
|
regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
|
|
KVM_ARM_DEV_EL1_PTIMER);
|
|
if (kvm_timer_should_fire(vtimer))
|
|
regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
|
|
if (kvm_timer_should_fire(ptimer))
|
|
regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
|
|
}
|
|
|
|
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
|
|
struct arch_timer_context *timer_ctx)
|
|
{
|
|
int ret;
|
|
|
|
timer_ctx->irq.level = new_level;
|
|
trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
|
|
timer_ctx->irq.level);
|
|
|
|
if (!userspace_irqchip(vcpu->kvm)) {
|
|
ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
|
|
timer_irq(timer_ctx),
|
|
timer_ctx->irq.level,
|
|
timer_ctx);
|
|
WARN_ON(ret);
|
|
}
|
|
}
|
|
|
|
/* Only called for a fully emulated timer */
|
|
static void timer_emulate(struct arch_timer_context *ctx)
|
|
{
|
|
bool should_fire = kvm_timer_should_fire(ctx);
|
|
|
|
trace_kvm_timer_emulate(ctx, should_fire);
|
|
|
|
if (should_fire != ctx->irq.level) {
|
|
kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the timer can fire now, we don't need to have a soft timer
|
|
* scheduled for the future. If the timer cannot fire at all,
|
|
* then we also don't need a soft timer.
|
|
*/
|
|
if (should_fire || !kvm_timer_irq_can_fire(ctx))
|
|
return;
|
|
|
|
soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
|
|
}
|
|
|
|
static void set_cntvoff(u64 cntvoff)
|
|
{
|
|
kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
|
|
}
|
|
|
|
static void set_cntpoff(u64 cntpoff)
|
|
{
|
|
if (has_cntpoff())
|
|
write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
|
|
}
|
|
|
|
static void timer_save_state(struct arch_timer_context *ctx)
|
|
{
|
|
struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
|
|
enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
|
|
unsigned long flags;
|
|
|
|
if (!timer->enabled)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
if (!ctx->loaded)
|
|
goto out;
|
|
|
|
switch (index) {
|
|
u64 cval;
|
|
|
|
case TIMER_VTIMER:
|
|
case TIMER_HVTIMER:
|
|
timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
|
|
timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
|
|
|
|
/* Disable the timer */
|
|
write_sysreg_el0(0, SYS_CNTV_CTL);
|
|
isb();
|
|
|
|
/*
|
|
* The kernel may decide to run userspace after
|
|
* calling vcpu_put, so we reset cntvoff to 0 to
|
|
* ensure a consistent read between user accesses to
|
|
* the virtual counter and kernel access to the
|
|
* physical counter of non-VHE case.
|
|
*
|
|
* For VHE, the virtual counter uses a fixed virtual
|
|
* offset of zero, so no need to zero CNTVOFF_EL2
|
|
* register, but this is actually useful when switching
|
|
* between EL1/vEL2 with NV.
|
|
*
|
|
* Do it unconditionally, as this is either unavoidable
|
|
* or dirt cheap.
|
|
*/
|
|
set_cntvoff(0);
|
|
break;
|
|
case TIMER_PTIMER:
|
|
case TIMER_HPTIMER:
|
|
timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
|
|
cval = read_sysreg_el0(SYS_CNTP_CVAL);
|
|
|
|
cval -= timer_get_offset(ctx);
|
|
|
|
timer_set_cval(ctx, cval);
|
|
|
|
/* Disable the timer */
|
|
write_sysreg_el0(0, SYS_CNTP_CTL);
|
|
isb();
|
|
|
|
set_cntpoff(0);
|
|
break;
|
|
case NR_KVM_TIMERS:
|
|
BUG();
|
|
}
|
|
|
|
trace_kvm_timer_save_state(ctx);
|
|
|
|
ctx->loaded = false;
|
|
out:
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Schedule the background timer before calling kvm_vcpu_halt, so that this
|
|
* thread is removed from its waitqueue and made runnable when there's a timer
|
|
* interrupt to handle.
|
|
*/
|
|
static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
|
|
struct timer_map map;
|
|
|
|
get_timer_map(vcpu, &map);
|
|
|
|
/*
|
|
* If no timers are capable of raising interrupts (disabled or
|
|
* masked), then there's no more work for us to do.
|
|
*/
|
|
if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
|
|
!kvm_timer_irq_can_fire(map.direct_ptimer) &&
|
|
!kvm_timer_irq_can_fire(map.emul_vtimer) &&
|
|
!kvm_timer_irq_can_fire(map.emul_ptimer) &&
|
|
!vcpu_has_wfit_active(vcpu))
|
|
return;
|
|
|
|
/*
|
|
* At least one guest time will expire. Schedule a background timer.
|
|
* Set the earliest expiration time among the guest timers.
|
|
*/
|
|
soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
|
|
}
|
|
|
|
static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
|
|
|
|
soft_timer_cancel(&timer->bg_timer);
|
|
}
|
|
|
|
static void timer_restore_state(struct arch_timer_context *ctx)
|
|
{
|
|
struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
|
|
enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
|
|
unsigned long flags;
|
|
|
|
if (!timer->enabled)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
if (ctx->loaded)
|
|
goto out;
|
|
|
|
switch (index) {
|
|
u64 cval, offset;
|
|
|
|
case TIMER_VTIMER:
|
|
case TIMER_HVTIMER:
|
|
set_cntvoff(timer_get_offset(ctx));
|
|
write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
|
|
isb();
|
|
write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
|
|
break;
|
|
case TIMER_PTIMER:
|
|
case TIMER_HPTIMER:
|
|
cval = timer_get_cval(ctx);
|
|
offset = timer_get_offset(ctx);
|
|
set_cntpoff(offset);
|
|
cval += offset;
|
|
write_sysreg_el0(cval, SYS_CNTP_CVAL);
|
|
isb();
|
|
write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
|
|
break;
|
|
case NR_KVM_TIMERS:
|
|
BUG();
|
|
}
|
|
|
|
trace_kvm_timer_restore_state(ctx);
|
|
|
|
ctx->loaded = true;
|
|
out:
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
|
|
{
|
|
int r;
|
|
r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
|
|
WARN_ON(r);
|
|
}
|
|
|
|
static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
|
|
{
|
|
struct kvm_vcpu *vcpu = ctx->vcpu;
|
|
bool phys_active = false;
|
|
|
|
/*
|
|
* Update the timer output so that it is likely to match the
|
|
* state we're about to restore. If the timer expires between
|
|
* this point and the register restoration, we'll take the
|
|
* interrupt anyway.
|
|
*/
|
|
kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
|
|
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
|
|
|
|
phys_active |= ctx->irq.level;
|
|
|
|
set_timer_irq_phys_active(ctx, phys_active);
|
|
}
|
|
|
|
static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
|
|
/*
|
|
* Update the timer output so that it is likely to match the
|
|
* state we're about to restore. If the timer expires between
|
|
* this point and the register restoration, we'll take the
|
|
* interrupt anyway.
|
|
*/
|
|
kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
|
|
|
|
/*
|
|
* When using a userspace irqchip with the architected timers and a
|
|
* host interrupt controller that doesn't support an active state, we
|
|
* must still prevent continuously exiting from the guest, and
|
|
* therefore mask the physical interrupt by disabling it on the host
|
|
* interrupt controller when the virtual level is high, such that the
|
|
* guest can make forward progress. Once we detect the output level
|
|
* being de-asserted, we unmask the interrupt again so that we exit
|
|
* from the guest when the timer fires.
|
|
*/
|
|
if (vtimer->irq.level)
|
|
disable_percpu_irq(host_vtimer_irq);
|
|
else
|
|
enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
|
|
}
|
|
|
|
/* If _pred is true, set bit in _set, otherwise set it in _clr */
|
|
#define assign_clear_set_bit(_pred, _bit, _clr, _set) \
|
|
do { \
|
|
if (_pred) \
|
|
(_set) |= (_bit); \
|
|
else \
|
|
(_clr) |= (_bit); \
|
|
} while (0)
|
|
|
|
static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
|
|
struct timer_map *map)
|
|
{
|
|
int hw, ret;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return;
|
|
|
|
/*
|
|
* We only ever unmap the vtimer irq on a VHE system that runs nested
|
|
* virtualization, in which case we have both a valid emul_vtimer,
|
|
* emul_ptimer, direct_vtimer, and direct_ptimer.
|
|
*
|
|
* Since this is called from kvm_timer_vcpu_load(), a change between
|
|
* vEL2 and vEL1/0 will have just happened, and the timer_map will
|
|
* represent this, and therefore we switch the emul/direct mappings
|
|
* below.
|
|
*/
|
|
hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
|
|
if (hw < 0) {
|
|
kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
|
|
kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
|
|
|
|
ret = kvm_vgic_map_phys_irq(vcpu,
|
|
map->direct_vtimer->host_timer_irq,
|
|
timer_irq(map->direct_vtimer),
|
|
&arch_timer_irq_ops);
|
|
WARN_ON_ONCE(ret);
|
|
ret = kvm_vgic_map_phys_irq(vcpu,
|
|
map->direct_ptimer->host_timer_irq,
|
|
timer_irq(map->direct_ptimer),
|
|
&arch_timer_irq_ops);
|
|
WARN_ON_ONCE(ret);
|
|
|
|
/*
|
|
* The virtual offset behaviour is "interesting", as it
|
|
* always applies when HCR_EL2.E2H==0, but only when
|
|
* accessed from EL1 when HCR_EL2.E2H==1. So make sure we
|
|
* track E2H when putting the HV timer in "direct" mode.
|
|
*/
|
|
if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
|
|
struct arch_timer_offset *offs = &map->direct_vtimer->offset;
|
|
|
|
if (vcpu_el2_e2h_is_set(vcpu))
|
|
offs->vcpu_offset = NULL;
|
|
else
|
|
offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
|
|
{
|
|
bool tpt, tpc;
|
|
u64 clr, set;
|
|
|
|
/*
|
|
* No trapping gets configured here with nVHE. See
|
|
* __timer_enable_traps(), which is where the stuff happens.
|
|
*/
|
|
if (!has_vhe())
|
|
return;
|
|
|
|
/*
|
|
* Our default policy is not to trap anything. As we progress
|
|
* within this function, reality kicks in and we start adding
|
|
* traps based on emulation requirements.
|
|
*/
|
|
tpt = tpc = false;
|
|
|
|
/*
|
|
* We have two possibility to deal with a physical offset:
|
|
*
|
|
* - Either we have CNTPOFF (yay!) or the offset is 0:
|
|
* we let the guest freely access the HW
|
|
*
|
|
* - or neither of these condition apply:
|
|
* we trap accesses to the HW, but still use it
|
|
* after correcting the physical offset
|
|
*/
|
|
if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
|
|
tpt = tpc = true;
|
|
|
|
/*
|
|
* Apply the enable bits that the guest hypervisor has requested for
|
|
* its own guest. We can only add traps that wouldn't have been set
|
|
* above.
|
|
*/
|
|
if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
|
|
u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
|
|
|
|
/* Use the VHE format for mental sanity */
|
|
if (!vcpu_el2_e2h_is_set(vcpu))
|
|
val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
|
|
|
|
tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
|
|
tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
|
|
}
|
|
|
|
/*
|
|
* Now that we have collected our requirements, compute the
|
|
* trap and enable bits.
|
|
*/
|
|
set = 0;
|
|
clr = 0;
|
|
|
|
assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
|
|
assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
|
|
|
|
/* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
|
|
sysreg_clear_set(cnthctl_el2, clr, set);
|
|
}
|
|
|
|
void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
|
|
struct timer_map map;
|
|
|
|
if (unlikely(!timer->enabled))
|
|
return;
|
|
|
|
get_timer_map(vcpu, &map);
|
|
|
|
if (static_branch_likely(&has_gic_active_state)) {
|
|
if (vcpu_has_nv(vcpu))
|
|
kvm_timer_vcpu_load_nested_switch(vcpu, &map);
|
|
|
|
kvm_timer_vcpu_load_gic(map.direct_vtimer);
|
|
if (map.direct_ptimer)
|
|
kvm_timer_vcpu_load_gic(map.direct_ptimer);
|
|
} else {
|
|
kvm_timer_vcpu_load_nogic(vcpu);
|
|
}
|
|
|
|
kvm_timer_unblocking(vcpu);
|
|
|
|
timer_restore_state(map.direct_vtimer);
|
|
if (map.direct_ptimer)
|
|
timer_restore_state(map.direct_ptimer);
|
|
if (map.emul_vtimer)
|
|
timer_emulate(map.emul_vtimer);
|
|
if (map.emul_ptimer)
|
|
timer_emulate(map.emul_ptimer);
|
|
|
|
timer_set_traps(vcpu, &map);
|
|
}
|
|
|
|
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
|
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
|
|
bool vlevel, plevel;
|
|
|
|
if (likely(irqchip_in_kernel(vcpu->kvm)))
|
|
return false;
|
|
|
|
vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
|
|
plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
|
|
|
|
return kvm_timer_should_fire(vtimer) != vlevel ||
|
|
kvm_timer_should_fire(ptimer) != plevel;
|
|
}
|
|
|
|
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
|
|
struct timer_map map;
|
|
|
|
if (unlikely(!timer->enabled))
|
|
return;
|
|
|
|
get_timer_map(vcpu, &map);
|
|
|
|
timer_save_state(map.direct_vtimer);
|
|
if (map.direct_ptimer)
|
|
timer_save_state(map.direct_ptimer);
|
|
|
|
/*
|
|
* Cancel soft timer emulation, because the only case where we
|
|
* need it after a vcpu_put is in the context of a sleeping VCPU, and
|
|
* in that case we already factor in the deadline for the physical
|
|
* timer when scheduling the bg_timer.
|
|
*
|
|
* In any case, we re-schedule the hrtimer for the physical timer when
|
|
* coming back to the VCPU thread in kvm_timer_vcpu_load().
|
|
*/
|
|
if (map.emul_vtimer)
|
|
soft_timer_cancel(&map.emul_vtimer->hrtimer);
|
|
if (map.emul_ptimer)
|
|
soft_timer_cancel(&map.emul_ptimer->hrtimer);
|
|
|
|
if (kvm_vcpu_is_blocking(vcpu))
|
|
kvm_timer_blocking(vcpu);
|
|
}
|
|
|
|
/*
|
|
* With a userspace irqchip we have to check if the guest de-asserted the
|
|
* timer and if so, unmask the timer irq signal on the host interrupt
|
|
* controller to ensure that we see future timer signals.
|
|
*/
|
|
static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
|
|
|
if (!kvm_timer_should_fire(vtimer)) {
|
|
kvm_timer_update_irq(vcpu, false, vtimer);
|
|
if (static_branch_likely(&has_gic_active_state))
|
|
set_timer_irq_phys_active(vtimer, false);
|
|
else
|
|
enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
|
|
}
|
|
}
|
|
|
|
void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
|
|
|
|
if (unlikely(!timer->enabled))
|
|
return;
|
|
|
|
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
|
|
unmask_vtimer_irq_user(vcpu);
|
|
}
|
|
|
|
void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
|
|
struct timer_map map;
|
|
|
|
get_timer_map(vcpu, &map);
|
|
|
|
/*
|
|
* The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
|
|
* and to 0 for ARMv7. We provide an implementation that always
|
|
* resets the timer to be disabled and unmasked and is compliant with
|
|
* the ARMv7 architecture.
|
|
*/
|
|
for (int i = 0; i < nr_timers(vcpu); i++)
|
|
timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
|
|
|
|
/*
|
|
* A vcpu running at EL2 is in charge of the offset applied to
|
|
* the virtual timer, so use the physical VM offset, and point
|
|
* the vcpu offset to CNTVOFF_EL2.
|
|
*/
|
|
if (vcpu_has_nv(vcpu)) {
|
|
struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
|
|
|
|
offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
|
|
offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
|
|
}
|
|
|
|
if (timer->enabled) {
|
|
for (int i = 0; i < nr_timers(vcpu); i++)
|
|
kvm_timer_update_irq(vcpu, false,
|
|
vcpu_get_timer(vcpu, i));
|
|
|
|
if (irqchip_in_kernel(vcpu->kvm)) {
|
|
kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
|
|
if (map.direct_ptimer)
|
|
kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
|
|
}
|
|
}
|
|
|
|
if (map.emul_vtimer)
|
|
soft_timer_cancel(&map.emul_vtimer->hrtimer);
|
|
if (map.emul_ptimer)
|
|
soft_timer_cancel(&map.emul_ptimer->hrtimer);
|
|
}
|
|
|
|
static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
|
|
{
|
|
struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
ctxt->vcpu = vcpu;
|
|
|
|
if (timerid == TIMER_VTIMER)
|
|
ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
|
|
else
|
|
ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
|
|
|
|
hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
|
|
ctxt->hrtimer.function = kvm_hrtimer_expire;
|
|
|
|
switch (timerid) {
|
|
case TIMER_PTIMER:
|
|
case TIMER_HPTIMER:
|
|
ctxt->host_timer_irq = host_ptimer_irq;
|
|
break;
|
|
case TIMER_VTIMER:
|
|
case TIMER_HVTIMER:
|
|
ctxt->host_timer_irq = host_vtimer_irq;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
|
|
|
|
for (int i = 0; i < NR_KVM_TIMERS; i++)
|
|
timer_context_init(vcpu, i);
|
|
|
|
/* Synchronize offsets across timers of a VM if not already provided */
|
|
if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
|
|
timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
|
|
timer_set_offset(vcpu_ptimer(vcpu), 0);
|
|
}
|
|
|
|
hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
|
|
timer->bg_timer.function = kvm_bg_timer_expire;
|
|
}
|
|
|
|
void kvm_timer_init_vm(struct kvm *kvm)
|
|
{
|
|
for (int i = 0; i < NR_KVM_TIMERS; i++)
|
|
kvm->arch.timer_data.ppi[i] = default_ppi[i];
|
|
}
|
|
|
|
void kvm_timer_cpu_up(void)
|
|
{
|
|
enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
|
|
if (host_ptimer_irq)
|
|
enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
|
|
}
|
|
|
|
void kvm_timer_cpu_down(void)
|
|
{
|
|
disable_percpu_irq(host_vtimer_irq);
|
|
if (host_ptimer_irq)
|
|
disable_percpu_irq(host_ptimer_irq);
|
|
}
|
|
|
|
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
|
|
{
|
|
struct arch_timer_context *timer;
|
|
|
|
switch (regid) {
|
|
case KVM_REG_ARM_TIMER_CTL:
|
|
timer = vcpu_vtimer(vcpu);
|
|
kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
|
|
break;
|
|
case KVM_REG_ARM_TIMER_CNT:
|
|
if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
|
|
&vcpu->kvm->arch.flags)) {
|
|
timer = vcpu_vtimer(vcpu);
|
|
timer_set_offset(timer, kvm_phys_timer_read() - value);
|
|
}
|
|
break;
|
|
case KVM_REG_ARM_TIMER_CVAL:
|
|
timer = vcpu_vtimer(vcpu);
|
|
kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
|
|
break;
|
|
case KVM_REG_ARM_PTIMER_CTL:
|
|
timer = vcpu_ptimer(vcpu);
|
|
kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
|
|
break;
|
|
case KVM_REG_ARM_PTIMER_CNT:
|
|
if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
|
|
&vcpu->kvm->arch.flags)) {
|
|
timer = vcpu_ptimer(vcpu);
|
|
timer_set_offset(timer, kvm_phys_timer_read() - value);
|
|
}
|
|
break;
|
|
case KVM_REG_ARM_PTIMER_CVAL:
|
|
timer = vcpu_ptimer(vcpu);
|
|
kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
|
|
break;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 read_timer_ctl(struct arch_timer_context *timer)
|
|
{
|
|
/*
|
|
* Set ISTATUS bit if it's expired.
|
|
* Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
|
|
* UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
|
|
* regardless of ENABLE bit for our implementation convenience.
|
|
*/
|
|
u32 ctl = timer_get_ctl(timer);
|
|
|
|
if (!kvm_timer_compute_delta(timer))
|
|
ctl |= ARCH_TIMER_CTRL_IT_STAT;
|
|
|
|
return ctl;
|
|
}
|
|
|
|
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
|
|
{
|
|
switch (regid) {
|
|
case KVM_REG_ARM_TIMER_CTL:
|
|
return kvm_arm_timer_read(vcpu,
|
|
vcpu_vtimer(vcpu), TIMER_REG_CTL);
|
|
case KVM_REG_ARM_TIMER_CNT:
|
|
return kvm_arm_timer_read(vcpu,
|
|
vcpu_vtimer(vcpu), TIMER_REG_CNT);
|
|
case KVM_REG_ARM_TIMER_CVAL:
|
|
return kvm_arm_timer_read(vcpu,
|
|
vcpu_vtimer(vcpu), TIMER_REG_CVAL);
|
|
case KVM_REG_ARM_PTIMER_CTL:
|
|
return kvm_arm_timer_read(vcpu,
|
|
vcpu_ptimer(vcpu), TIMER_REG_CTL);
|
|
case KVM_REG_ARM_PTIMER_CNT:
|
|
return kvm_arm_timer_read(vcpu,
|
|
vcpu_ptimer(vcpu), TIMER_REG_CNT);
|
|
case KVM_REG_ARM_PTIMER_CVAL:
|
|
return kvm_arm_timer_read(vcpu,
|
|
vcpu_ptimer(vcpu), TIMER_REG_CVAL);
|
|
}
|
|
return (u64)-1;
|
|
}
|
|
|
|
static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
|
|
struct arch_timer_context *timer,
|
|
enum kvm_arch_timer_regs treg)
|
|
{
|
|
u64 val;
|
|
|
|
switch (treg) {
|
|
case TIMER_REG_TVAL:
|
|
val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
|
|
val = lower_32_bits(val);
|
|
break;
|
|
|
|
case TIMER_REG_CTL:
|
|
val = read_timer_ctl(timer);
|
|
break;
|
|
|
|
case TIMER_REG_CVAL:
|
|
val = timer_get_cval(timer);
|
|
break;
|
|
|
|
case TIMER_REG_CNT:
|
|
val = kvm_phys_timer_read() - timer_get_offset(timer);
|
|
break;
|
|
|
|
case TIMER_REG_VOFF:
|
|
val = *timer->offset.vcpu_offset;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
|
|
enum kvm_arch_timers tmr,
|
|
enum kvm_arch_timer_regs treg)
|
|
{
|
|
struct arch_timer_context *timer;
|
|
struct timer_map map;
|
|
u64 val;
|
|
|
|
get_timer_map(vcpu, &map);
|
|
timer = vcpu_get_timer(vcpu, tmr);
|
|
|
|
if (timer == map.emul_vtimer || timer == map.emul_ptimer)
|
|
return kvm_arm_timer_read(vcpu, timer, treg);
|
|
|
|
preempt_disable();
|
|
timer_save_state(timer);
|
|
|
|
val = kvm_arm_timer_read(vcpu, timer, treg);
|
|
|
|
timer_restore_state(timer);
|
|
preempt_enable();
|
|
|
|
return val;
|
|
}
|
|
|
|
static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
|
|
struct arch_timer_context *timer,
|
|
enum kvm_arch_timer_regs treg,
|
|
u64 val)
|
|
{
|
|
switch (treg) {
|
|
case TIMER_REG_TVAL:
|
|
timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
|
|
break;
|
|
|
|
case TIMER_REG_CTL:
|
|
timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
|
|
break;
|
|
|
|
case TIMER_REG_CVAL:
|
|
timer_set_cval(timer, val);
|
|
break;
|
|
|
|
case TIMER_REG_VOFF:
|
|
*timer->offset.vcpu_offset = val;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
|
|
enum kvm_arch_timers tmr,
|
|
enum kvm_arch_timer_regs treg,
|
|
u64 val)
|
|
{
|
|
struct arch_timer_context *timer;
|
|
struct timer_map map;
|
|
|
|
get_timer_map(vcpu, &map);
|
|
timer = vcpu_get_timer(vcpu, tmr);
|
|
if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
|
|
soft_timer_cancel(&timer->hrtimer);
|
|
kvm_arm_timer_write(vcpu, timer, treg, val);
|
|
timer_emulate(timer);
|
|
} else {
|
|
preempt_disable();
|
|
timer_save_state(timer);
|
|
kvm_arm_timer_write(vcpu, timer, treg, val);
|
|
timer_restore_state(timer);
|
|
preempt_enable();
|
|
}
|
|
}
|
|
|
|
static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
|
|
{
|
|
if (vcpu)
|
|
irqd_set_forwarded_to_vcpu(d);
|
|
else
|
|
irqd_clr_forwarded_to_vcpu(d);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int timer_irq_set_irqchip_state(struct irq_data *d,
|
|
enum irqchip_irq_state which, bool val)
|
|
{
|
|
if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
|
|
return irq_chip_set_parent_state(d, which, val);
|
|
|
|
if (val)
|
|
irq_chip_mask_parent(d);
|
|
else
|
|
irq_chip_unmask_parent(d);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void timer_irq_eoi(struct irq_data *d)
|
|
{
|
|
if (!irqd_is_forwarded_to_vcpu(d))
|
|
irq_chip_eoi_parent(d);
|
|
}
|
|
|
|
static void timer_irq_ack(struct irq_data *d)
|
|
{
|
|
d = d->parent_data;
|
|
if (d->chip->irq_ack)
|
|
d->chip->irq_ack(d);
|
|
}
|
|
|
|
static struct irq_chip timer_chip = {
|
|
.name = "KVM",
|
|
.irq_ack = timer_irq_ack,
|
|
.irq_mask = irq_chip_mask_parent,
|
|
.irq_unmask = irq_chip_unmask_parent,
|
|
.irq_eoi = timer_irq_eoi,
|
|
.irq_set_type = irq_chip_set_type_parent,
|
|
.irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity,
|
|
.irq_set_irqchip_state = timer_irq_set_irqchip_state,
|
|
};
|
|
|
|
static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs, void *arg)
|
|
{
|
|
irq_hw_number_t hwirq = (uintptr_t)arg;
|
|
|
|
return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
|
|
&timer_chip, NULL);
|
|
}
|
|
|
|
static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs)
|
|
{
|
|
}
|
|
|
|
static const struct irq_domain_ops timer_domain_ops = {
|
|
.alloc = timer_irq_domain_alloc,
|
|
.free = timer_irq_domain_free,
|
|
};
|
|
|
|
static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
|
|
{
|
|
*flags = irq_get_trigger_type(virq);
|
|
if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
|
|
kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
|
|
virq);
|
|
*flags = IRQF_TRIGGER_LOW;
|
|
}
|
|
}
|
|
|
|
static int kvm_irq_init(struct arch_timer_kvm_info *info)
|
|
{
|
|
struct irq_domain *domain = NULL;
|
|
|
|
if (info->virtual_irq <= 0) {
|
|
kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
|
|
info->virtual_irq);
|
|
return -ENODEV;
|
|
}
|
|
|
|
host_vtimer_irq = info->virtual_irq;
|
|
kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
|
|
|
|
if (kvm_vgic_global_state.no_hw_deactivation) {
|
|
struct fwnode_handle *fwnode;
|
|
struct irq_data *data;
|
|
|
|
fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
|
|
if (!fwnode)
|
|
return -ENOMEM;
|
|
|
|
/* Assume both vtimer and ptimer in the same parent */
|
|
data = irq_get_irq_data(host_vtimer_irq);
|
|
domain = irq_domain_create_hierarchy(data->domain, 0,
|
|
NR_KVM_TIMERS, fwnode,
|
|
&timer_domain_ops, NULL);
|
|
if (!domain) {
|
|
irq_domain_free_fwnode(fwnode);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
|
|
WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
|
|
(void *)TIMER_VTIMER));
|
|
}
|
|
|
|
if (info->physical_irq > 0) {
|
|
host_ptimer_irq = info->physical_irq;
|
|
kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
|
|
|
|
if (domain)
|
|
WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
|
|
(void *)TIMER_PTIMER));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init kvm_timer_hyp_init(bool has_gic)
|
|
{
|
|
struct arch_timer_kvm_info *info;
|
|
int err;
|
|
|
|
info = arch_timer_get_kvm_info();
|
|
timecounter = &info->timecounter;
|
|
|
|
if (!timecounter->cc) {
|
|
kvm_err("kvm_arch_timer: uninitialized timecounter\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
err = kvm_irq_init(info);
|
|
if (err)
|
|
return err;
|
|
|
|
/* First, do the virtual EL1 timer irq */
|
|
|
|
err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
|
|
"kvm guest vtimer", kvm_get_running_vcpus());
|
|
if (err) {
|
|
kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
|
|
host_vtimer_irq, err);
|
|
return err;
|
|
}
|
|
|
|
if (has_gic) {
|
|
err = irq_set_vcpu_affinity(host_vtimer_irq,
|
|
kvm_get_running_vcpus());
|
|
if (err) {
|
|
kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
|
|
goto out_free_vtimer_irq;
|
|
}
|
|
|
|
static_branch_enable(&has_gic_active_state);
|
|
}
|
|
|
|
kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
|
|
|
|
/* Now let's do the physical EL1 timer irq */
|
|
|
|
if (info->physical_irq > 0) {
|
|
err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
|
|
"kvm guest ptimer", kvm_get_running_vcpus());
|
|
if (err) {
|
|
kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
|
|
host_ptimer_irq, err);
|
|
goto out_free_vtimer_irq;
|
|
}
|
|
|
|
if (has_gic) {
|
|
err = irq_set_vcpu_affinity(host_ptimer_irq,
|
|
kvm_get_running_vcpus());
|
|
if (err) {
|
|
kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
|
|
goto out_free_ptimer_irq;
|
|
}
|
|
}
|
|
|
|
kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
|
|
} else if (has_vhe()) {
|
|
kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
|
|
info->physical_irq);
|
|
err = -ENODEV;
|
|
goto out_free_vtimer_irq;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_free_ptimer_irq:
|
|
if (info->physical_irq > 0)
|
|
free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
|
|
out_free_vtimer_irq:
|
|
free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
|
|
return err;
|
|
}
|
|
|
|
void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
|
|
|
|
soft_timer_cancel(&timer->bg_timer);
|
|
}
|
|
|
|
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 ppis = 0;
|
|
bool valid;
|
|
|
|
mutex_lock(&vcpu->kvm->arch.config_lock);
|
|
|
|
for (int i = 0; i < nr_timers(vcpu); i++) {
|
|
struct arch_timer_context *ctx;
|
|
int irq;
|
|
|
|
ctx = vcpu_get_timer(vcpu, i);
|
|
irq = timer_irq(ctx);
|
|
if (kvm_vgic_set_owner(vcpu, irq, ctx))
|
|
break;
|
|
|
|
/*
|
|
* We know by construction that we only have PPIs, so
|
|
* all values are less than 32.
|
|
*/
|
|
ppis |= BIT(irq);
|
|
}
|
|
|
|
valid = hweight32(ppis) == nr_timers(vcpu);
|
|
|
|
if (valid)
|
|
set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
|
|
|
|
mutex_unlock(&vcpu->kvm->arch.config_lock);
|
|
|
|
return valid;
|
|
}
|
|
|
|
static bool kvm_arch_timer_get_input_level(int vintid)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
|
|
|
|
if (WARN(!vcpu, "No vcpu context!\n"))
|
|
return false;
|
|
|
|
for (int i = 0; i < nr_timers(vcpu); i++) {
|
|
struct arch_timer_context *ctx;
|
|
|
|
ctx = vcpu_get_timer(vcpu, i);
|
|
if (timer_irq(ctx) == vintid)
|
|
return kvm_timer_should_fire(ctx);
|
|
}
|
|
|
|
/* A timer IRQ has fired, but no matching timer was found? */
|
|
WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
|
|
|
|
return false;
|
|
}
|
|
|
|
int kvm_timer_enable(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
|
|
struct timer_map map;
|
|
int ret;
|
|
|
|
if (timer->enabled)
|
|
return 0;
|
|
|
|
/* Without a VGIC we do not map virtual IRQs to physical IRQs */
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
goto no_vgic;
|
|
|
|
/*
|
|
* At this stage, we have the guarantee that the vgic is both
|
|
* available and initialized.
|
|
*/
|
|
if (!timer_irqs_are_valid(vcpu)) {
|
|
kvm_debug("incorrectly configured timer irqs\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
get_timer_map(vcpu, &map);
|
|
|
|
ret = kvm_vgic_map_phys_irq(vcpu,
|
|
map.direct_vtimer->host_timer_irq,
|
|
timer_irq(map.direct_vtimer),
|
|
&arch_timer_irq_ops);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (map.direct_ptimer) {
|
|
ret = kvm_vgic_map_phys_irq(vcpu,
|
|
map.direct_ptimer->host_timer_irq,
|
|
timer_irq(map.direct_ptimer),
|
|
&arch_timer_irq_ops);
|
|
}
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
no_vgic:
|
|
timer->enabled = 1;
|
|
return 0;
|
|
}
|
|
|
|
/* If we have CNTPOFF, permanently set ECV to enable it */
|
|
void kvm_timer_init_vhe(void)
|
|
{
|
|
if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
|
|
sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
|
|
}
|
|
|
|
int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
int __user *uaddr = (int __user *)(long)attr->addr;
|
|
int irq, idx, ret = 0;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return -EINVAL;
|
|
|
|
if (get_user(irq, uaddr))
|
|
return -EFAULT;
|
|
|
|
if (!(irq_is_ppi(irq)))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&vcpu->kvm->arch.config_lock);
|
|
|
|
if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
|
|
&vcpu->kvm->arch.flags)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
|
|
idx = TIMER_VTIMER;
|
|
break;
|
|
case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
|
|
idx = TIMER_PTIMER;
|
|
break;
|
|
case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
|
|
idx = TIMER_HVTIMER;
|
|
break;
|
|
case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
|
|
idx = TIMER_HPTIMER;
|
|
break;
|
|
default:
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We cannot validate the IRQ unicity before we run, so take it at
|
|
* face value. The verdict will be given on first vcpu run, for each
|
|
* vcpu. Yes this is late. Blame it on the stupid API.
|
|
*/
|
|
vcpu->kvm->arch.timer_data.ppi[idx] = irq;
|
|
|
|
out:
|
|
mutex_unlock(&vcpu->kvm->arch.config_lock);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
int __user *uaddr = (int __user *)(long)attr->addr;
|
|
struct arch_timer_context *timer;
|
|
int irq;
|
|
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
|
|
timer = vcpu_vtimer(vcpu);
|
|
break;
|
|
case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
|
|
timer = vcpu_ptimer(vcpu);
|
|
break;
|
|
case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
|
|
timer = vcpu_hvtimer(vcpu);
|
|
break;
|
|
case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
|
|
timer = vcpu_hptimer(vcpu);
|
|
break;
|
|
default:
|
|
return -ENXIO;
|
|
}
|
|
|
|
irq = timer_irq(timer);
|
|
return put_user(irq, uaddr);
|
|
}
|
|
|
|
int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
|
|
case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
|
|
case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
|
|
case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
|
|
return 0;
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
|
|
struct kvm_arm_counter_offset *offset)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (offset->reserved)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
if (lock_all_vcpus(kvm)) {
|
|
set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
|
|
|
|
/*
|
|
* If userspace decides to set the offset using this
|
|
* API rather than merely restoring the counter
|
|
* values, the offset applies to both the virtual and
|
|
* physical views.
|
|
*/
|
|
kvm->arch.timer_data.voffset = offset->counter_offset;
|
|
kvm->arch.timer_data.poffset = offset->counter_offset;
|
|
|
|
unlock_all_vcpus(kvm);
|
|
} else {
|
|
ret = -EBUSY;
|
|
}
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
return ret;
|
|
}
|