mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-07 14:32:23 +00:00
13905f4547
The 'global enable control' (as it is termed in the architecture) for counters reserved by EL2 is MDCR_EL2.HPME. Use that instead of PMCR_EL0.E when evaluating the overflow state for hyp counters. Change the return value to a bool while at it, which better reflects the fact that the overflow state is a shared signal and not a per-counter property. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20241120005230.2335682-3-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
1275 lines
32 KiB
C
1275 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2015 Linaro Ltd.
|
|
* Author: Shannon Zhao <shannon.zhao@linaro.org>
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/list.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/perf/arm_pmu.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <kvm/arm_pmu.h>
|
|
#include <kvm/arm_vgic.h>
|
|
|
|
#define PERF_ATTR_CFG1_COUNTER_64BIT BIT(0)
|
|
|
|
DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
|
|
|
|
static LIST_HEAD(arm_pmus);
|
|
static DEFINE_MUTEX(arm_pmus_lock);
|
|
|
|
static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
|
|
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
|
|
|
|
static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
|
|
{
|
|
return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
|
|
}
|
|
|
|
static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
|
|
{
|
|
return &vcpu->arch.pmu.pmc[cnt_idx];
|
|
}
|
|
|
|
static u32 __kvm_pmu_event_mask(unsigned int pmuver)
|
|
{
|
|
switch (pmuver) {
|
|
case ID_AA64DFR0_EL1_PMUVer_IMP:
|
|
return GENMASK(9, 0);
|
|
case ID_AA64DFR0_EL1_PMUVer_V3P1:
|
|
case ID_AA64DFR0_EL1_PMUVer_V3P4:
|
|
case ID_AA64DFR0_EL1_PMUVer_V3P5:
|
|
case ID_AA64DFR0_EL1_PMUVer_V3P7:
|
|
return GENMASK(15, 0);
|
|
default: /* Shouldn't be here, just for sanity */
|
|
WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u32 kvm_pmu_event_mask(struct kvm *kvm)
|
|
{
|
|
u64 dfr0 = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
|
|
u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
|
|
|
|
return __kvm_pmu_event_mask(pmuver);
|
|
}
|
|
|
|
u64 kvm_pmu_evtyper_mask(struct kvm *kvm)
|
|
{
|
|
u64 mask = ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMU_EXCLUDE_EL0 |
|
|
kvm_pmu_event_mask(kvm);
|
|
|
|
if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL2, IMP))
|
|
mask |= ARMV8_PMU_INCLUDE_EL2;
|
|
|
|
if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP))
|
|
mask |= ARMV8_PMU_EXCLUDE_NS_EL0 |
|
|
ARMV8_PMU_EXCLUDE_NS_EL1 |
|
|
ARMV8_PMU_EXCLUDE_EL3;
|
|
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmc_is_64bit - determine if counter is 64bit
|
|
* @pmc: counter context
|
|
*/
|
|
static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
|
|
return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
|
|
kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5));
|
|
}
|
|
|
|
static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
u64 val = kvm_vcpu_read_pmcr(vcpu);
|
|
|
|
if (kvm_pmu_counter_is_hyp(vcpu, pmc->idx))
|
|
return __vcpu_sys_reg(vcpu, MDCR_EL2) & MDCR_EL2_HLP;
|
|
|
|
return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
|
|
(pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
|
|
}
|
|
|
|
static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
|
|
{
|
|
return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
|
|
!kvm_pmc_has_64bit_overflow(pmc));
|
|
}
|
|
|
|
static u32 counter_index_to_reg(u64 idx)
|
|
{
|
|
return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
|
|
}
|
|
|
|
static u32 counter_index_to_evtreg(u64 idx)
|
|
{
|
|
return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
|
|
}
|
|
|
|
static u64 kvm_pmc_read_evtreg(const struct kvm_pmc *pmc)
|
|
{
|
|
return __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), counter_index_to_evtreg(pmc->idx));
|
|
}
|
|
|
|
static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
u64 counter, reg, enabled, running;
|
|
|
|
reg = counter_index_to_reg(pmc->idx);
|
|
counter = __vcpu_sys_reg(vcpu, reg);
|
|
|
|
/*
|
|
* The real counter value is equal to the value of counter register plus
|
|
* the value perf event counts.
|
|
*/
|
|
if (pmc->perf_event)
|
|
counter += perf_event_read_value(pmc->perf_event, &enabled,
|
|
&running);
|
|
|
|
if (!kvm_pmc_is_64bit(pmc))
|
|
counter = lower_32_bits(counter);
|
|
|
|
return counter;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_get_counter_value - get PMU counter value
|
|
* @vcpu: The vcpu pointer
|
|
* @select_idx: The counter index
|
|
*/
|
|
u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
|
|
{
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return 0;
|
|
|
|
return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
|
|
}
|
|
|
|
static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
u64 reg;
|
|
|
|
kvm_pmu_release_perf_event(pmc);
|
|
|
|
reg = counter_index_to_reg(pmc->idx);
|
|
|
|
if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
|
|
!force) {
|
|
/*
|
|
* Even with PMUv3p5, AArch32 cannot write to the top
|
|
* 32bit of the counters. The only possible course of
|
|
* action is to use PMCR.P, which will reset them to
|
|
* 0 (the only use of the 'force' parameter).
|
|
*/
|
|
val = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
|
|
val |= lower_32_bits(val);
|
|
}
|
|
|
|
__vcpu_sys_reg(vcpu, reg) = val;
|
|
|
|
/* Recreate the perf event to reflect the updated sample_period */
|
|
kvm_pmu_create_perf_event(pmc);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_set_counter_value - set PMU counter value
|
|
* @vcpu: The vcpu pointer
|
|
* @select_idx: The counter index
|
|
* @val: The counter value
|
|
*/
|
|
void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
|
|
{
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return;
|
|
|
|
kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_release_perf_event - remove the perf event
|
|
* @pmc: The PMU counter pointer
|
|
*/
|
|
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
|
|
{
|
|
if (pmc->perf_event) {
|
|
perf_event_disable(pmc->perf_event);
|
|
perf_event_release_kernel(pmc->perf_event);
|
|
pmc->perf_event = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_stop_counter - stop PMU counter
|
|
* @pmc: The PMU counter pointer
|
|
*
|
|
* If this counter has been configured to monitor some event, release it here.
|
|
*/
|
|
static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
u64 reg, val;
|
|
|
|
if (!pmc->perf_event)
|
|
return;
|
|
|
|
val = kvm_pmu_get_pmc_value(pmc);
|
|
|
|
reg = counter_index_to_reg(pmc->idx);
|
|
|
|
__vcpu_sys_reg(vcpu, reg) = val;
|
|
|
|
kvm_pmu_release_perf_event(pmc);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_vcpu_init - assign pmu counter idx for cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
*/
|
|
void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
|
|
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
|
|
pmu->pmc[i].idx = i;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_vcpu_reset - reset pmu state for cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
*/
|
|
void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long mask = kvm_pmu_implemented_counter_mask(vcpu);
|
|
int i;
|
|
|
|
for_each_set_bit(i, &mask, 32)
|
|
kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
*/
|
|
void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
|
|
kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
|
|
irq_work_sync(&vcpu->arch.pmu.overflow_work);
|
|
}
|
|
|
|
static u64 kvm_pmu_hyp_counter_mask(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned int hpmn, n;
|
|
|
|
if (!vcpu_has_nv(vcpu))
|
|
return 0;
|
|
|
|
hpmn = SYS_FIELD_GET(MDCR_EL2, HPMN, __vcpu_sys_reg(vcpu, MDCR_EL2));
|
|
n = vcpu->kvm->arch.pmcr_n;
|
|
|
|
/*
|
|
* Programming HPMN to a value greater than PMCR_EL0.N is
|
|
* CONSTRAINED UNPREDICTABLE. Make the implementation choice that an
|
|
* UNKNOWN number of counters (in our case, zero) are reserved for EL2.
|
|
*/
|
|
if (hpmn >= n)
|
|
return 0;
|
|
|
|
/*
|
|
* Programming HPMN=0 is CONSTRAINED UNPREDICTABLE if FEAT_HPMN0 isn't
|
|
* implemented. Since KVM's ability to emulate HPMN=0 does not directly
|
|
* depend on hardware (all PMU registers are trapped), make the
|
|
* implementation choice that all counters are included in the second
|
|
* range reserved for EL2/EL3.
|
|
*/
|
|
return GENMASK(n - 1, hpmn);
|
|
}
|
|
|
|
bool kvm_pmu_counter_is_hyp(struct kvm_vcpu *vcpu, unsigned int idx)
|
|
{
|
|
return kvm_pmu_hyp_counter_mask(vcpu) & BIT(idx);
|
|
}
|
|
|
|
u64 kvm_pmu_accessible_counter_mask(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 mask = kvm_pmu_implemented_counter_mask(vcpu);
|
|
|
|
if (!vcpu_has_nv(vcpu) || vcpu_is_el2(vcpu))
|
|
return mask;
|
|
|
|
return mask & ~kvm_pmu_hyp_counter_mask(vcpu);
|
|
}
|
|
|
|
u64 kvm_pmu_implemented_counter_mask(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 val = FIELD_GET(ARMV8_PMU_PMCR_N, kvm_vcpu_read_pmcr(vcpu));
|
|
|
|
if (val == 0)
|
|
return BIT(ARMV8_PMU_CYCLE_IDX);
|
|
else
|
|
return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_enable_counter_mask - enable selected PMU counters
|
|
* @vcpu: The vcpu pointer
|
|
* @val: the value guest writes to PMCNTENSET register
|
|
*
|
|
* Call perf_event_enable to start counting the perf event
|
|
*/
|
|
void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
int i;
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return;
|
|
|
|
if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) || !val)
|
|
return;
|
|
|
|
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
|
|
struct kvm_pmc *pmc;
|
|
|
|
if (!(val & BIT(i)))
|
|
continue;
|
|
|
|
pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
|
|
|
|
if (!pmc->perf_event) {
|
|
kvm_pmu_create_perf_event(pmc);
|
|
} else {
|
|
perf_event_enable(pmc->perf_event);
|
|
if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
|
|
kvm_debug("fail to enable perf event\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_disable_counter_mask - disable selected PMU counters
|
|
* @vcpu: The vcpu pointer
|
|
* @val: the value guest writes to PMCNTENCLR register
|
|
*
|
|
* Call perf_event_disable to stop counting the perf event
|
|
*/
|
|
void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
int i;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu) || !val)
|
|
return;
|
|
|
|
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
|
|
struct kvm_pmc *pmc;
|
|
|
|
if (!(val & BIT(i)))
|
|
continue;
|
|
|
|
pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
|
|
|
|
if (pmc->perf_event)
|
|
perf_event_disable(pmc->perf_event);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the PMU overflow state, which is true if there exists an event
|
|
* counter where the values of the global enable control, PMOVSSET_EL0[n], and
|
|
* PMINTENSET_EL1[n] are all 1.
|
|
*/
|
|
static bool kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
|
|
|
|
reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
|
|
|
|
/*
|
|
* PMCR_EL0.E is the global enable control for event counters available
|
|
* to EL0 and EL1.
|
|
*/
|
|
if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
|
|
reg &= kvm_pmu_hyp_counter_mask(vcpu);
|
|
|
|
/*
|
|
* Otherwise, MDCR_EL2.HPME is the global enable control for event
|
|
* counters reserved for EL2.
|
|
*/
|
|
if (!(vcpu_read_sys_reg(vcpu, MDCR_EL2) & MDCR_EL2_HPME))
|
|
reg &= ~kvm_pmu_hyp_counter_mask(vcpu);
|
|
|
|
return reg;
|
|
}
|
|
|
|
static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
bool overflow;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return;
|
|
|
|
overflow = kvm_pmu_overflow_status(vcpu);
|
|
if (pmu->irq_level == overflow)
|
|
return;
|
|
|
|
pmu->irq_level = overflow;
|
|
|
|
if (likely(irqchip_in_kernel(vcpu->kvm))) {
|
|
int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
|
|
pmu->irq_num, overflow, pmu);
|
|
WARN_ON(ret);
|
|
}
|
|
}
|
|
|
|
bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
|
|
bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
|
|
|
|
if (likely(irqchip_in_kernel(vcpu->kvm)))
|
|
return false;
|
|
|
|
return pmu->irq_level != run_level;
|
|
}
|
|
|
|
/*
|
|
* Reflect the PMU overflow interrupt output level into the kvm_run structure
|
|
*/
|
|
void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
|
|
|
|
/* Populate the timer bitmap for user space */
|
|
regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
|
|
if (vcpu->arch.pmu.irq_level)
|
|
regs->device_irq_level |= KVM_ARM_DEV_PMU;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_flush_hwstate - flush pmu state to cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
* Check if the PMU has overflowed while we were running in the host, and inject
|
|
* an interrupt if that was the case.
|
|
*/
|
|
void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_pmu_update_state(vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_sync_hwstate - sync pmu state from cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
* Check if the PMU has overflowed while we were running in the guest, and
|
|
* inject an interrupt if that was the case.
|
|
*/
|
|
void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_pmu_update_state(vcpu);
|
|
}
|
|
|
|
/*
|
|
* When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
|
|
* to the event.
|
|
* This is why we need a callback to do it once outside of the NMI context.
|
|
*/
|
|
static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
|
|
/*
|
|
* Perform an increment on any of the counters described in @mask,
|
|
* generating the overflow if required, and propagate it as a chained
|
|
* event if possible.
|
|
*/
|
|
static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
|
|
unsigned long mask, u32 event)
|
|
{
|
|
int i;
|
|
|
|
if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
|
|
return;
|
|
|
|
/* Weed out disabled counters */
|
|
mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
|
|
|
|
for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
|
|
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
|
|
u64 type, reg;
|
|
|
|
/* Filter on event type */
|
|
type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
|
|
type &= kvm_pmu_event_mask(vcpu->kvm);
|
|
if (type != event)
|
|
continue;
|
|
|
|
/* Increment this counter */
|
|
reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
|
|
if (!kvm_pmc_is_64bit(pmc))
|
|
reg = lower_32_bits(reg);
|
|
__vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
|
|
|
|
/* No overflow? move on */
|
|
if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
|
|
continue;
|
|
|
|
/* Mark overflow */
|
|
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
|
|
|
|
if (kvm_pmu_counter_can_chain(pmc))
|
|
kvm_pmu_counter_increment(vcpu, BIT(i + 1),
|
|
ARMV8_PMUV3_PERFCTR_CHAIN);
|
|
}
|
|
}
|
|
|
|
/* Compute the sample period for a given counter value */
|
|
static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
|
|
{
|
|
u64 val;
|
|
|
|
if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
|
|
val = (-counter) & GENMASK(63, 0);
|
|
else
|
|
val = (-counter) & GENMASK(31, 0);
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* When the perf event overflows, set the overflow status and inform the vcpu.
|
|
*/
|
|
static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
|
|
struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
int idx = pmc->idx;
|
|
u64 period;
|
|
|
|
cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
|
|
|
|
/*
|
|
* Reset the sample period to the architectural limit,
|
|
* i.e. the point where the counter overflows.
|
|
*/
|
|
period = compute_period(pmc, local64_read(&perf_event->count));
|
|
|
|
local64_set(&perf_event->hw.period_left, 0);
|
|
perf_event->attr.sample_period = period;
|
|
perf_event->hw.sample_period = period;
|
|
|
|
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
|
|
|
|
if (kvm_pmu_counter_can_chain(pmc))
|
|
kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
|
|
ARMV8_PMUV3_PERFCTR_CHAIN);
|
|
|
|
if (kvm_pmu_overflow_status(vcpu)) {
|
|
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
|
|
|
|
if (!in_nmi())
|
|
kvm_vcpu_kick(vcpu);
|
|
else
|
|
irq_work_queue(&vcpu->arch.pmu.overflow_work);
|
|
}
|
|
|
|
cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_software_increment - do software increment
|
|
* @vcpu: The vcpu pointer
|
|
* @val: the value guest writes to PMSWINC register
|
|
*/
|
|
void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_handle_pmcr - handle PMCR register
|
|
* @vcpu: The vcpu pointer
|
|
* @val: the value guest writes to PMCR register
|
|
*/
|
|
void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
int i;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return;
|
|
|
|
/* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
|
|
if (!kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
|
|
val &= ~ARMV8_PMU_PMCR_LP;
|
|
|
|
/* The reset bits don't indicate any state, and shouldn't be saved. */
|
|
__vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
|
|
|
|
if (val & ARMV8_PMU_PMCR_E) {
|
|
kvm_pmu_enable_counter_mask(vcpu,
|
|
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
|
|
} else {
|
|
kvm_pmu_disable_counter_mask(vcpu,
|
|
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
|
|
}
|
|
|
|
if (val & ARMV8_PMU_PMCR_C)
|
|
kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
|
|
|
|
if (val & ARMV8_PMU_PMCR_P) {
|
|
unsigned long mask = kvm_pmu_accessible_counter_mask(vcpu);
|
|
mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
|
|
for_each_set_bit(i, &mask, 32)
|
|
kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
|
|
}
|
|
kvm_vcpu_pmu_restore_guest(vcpu);
|
|
}
|
|
|
|
static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
unsigned int mdcr = __vcpu_sys_reg(vcpu, MDCR_EL2);
|
|
|
|
if (!(__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx)))
|
|
return false;
|
|
|
|
if (kvm_pmu_counter_is_hyp(vcpu, pmc->idx))
|
|
return mdcr & MDCR_EL2_HPME;
|
|
|
|
return kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E;
|
|
}
|
|
|
|
static bool kvm_pmc_counts_at_el0(struct kvm_pmc *pmc)
|
|
{
|
|
u64 evtreg = kvm_pmc_read_evtreg(pmc);
|
|
bool nsu = evtreg & ARMV8_PMU_EXCLUDE_NS_EL0;
|
|
bool u = evtreg & ARMV8_PMU_EXCLUDE_EL0;
|
|
|
|
return u == nsu;
|
|
}
|
|
|
|
static bool kvm_pmc_counts_at_el1(struct kvm_pmc *pmc)
|
|
{
|
|
u64 evtreg = kvm_pmc_read_evtreg(pmc);
|
|
bool nsk = evtreg & ARMV8_PMU_EXCLUDE_NS_EL1;
|
|
bool p = evtreg & ARMV8_PMU_EXCLUDE_EL1;
|
|
|
|
return p == nsk;
|
|
}
|
|
|
|
static bool kvm_pmc_counts_at_el2(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
u64 mdcr = __vcpu_sys_reg(vcpu, MDCR_EL2);
|
|
|
|
if (!kvm_pmu_counter_is_hyp(vcpu, pmc->idx) && (mdcr & MDCR_EL2_HPMD))
|
|
return false;
|
|
|
|
return kvm_pmc_read_evtreg(pmc) & ARMV8_PMU_INCLUDE_EL2;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_create_perf_event - create a perf event for a counter
|
|
* @pmc: Counter context
|
|
*/
|
|
static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
|
|
struct perf_event *event;
|
|
struct perf_event_attr attr;
|
|
u64 eventsel, evtreg;
|
|
|
|
evtreg = kvm_pmc_read_evtreg(pmc);
|
|
|
|
kvm_pmu_stop_counter(pmc);
|
|
if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
|
|
eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
|
|
else
|
|
eventsel = evtreg & kvm_pmu_event_mask(vcpu->kvm);
|
|
|
|
/*
|
|
* Neither SW increment nor chained events need to be backed
|
|
* by a perf event.
|
|
*/
|
|
if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
|
|
eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
|
|
return;
|
|
|
|
/*
|
|
* If we have a filter in place and that the event isn't allowed, do
|
|
* not install a perf event either.
|
|
*/
|
|
if (vcpu->kvm->arch.pmu_filter &&
|
|
!test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
|
|
return;
|
|
|
|
memset(&attr, 0, sizeof(struct perf_event_attr));
|
|
attr.type = arm_pmu->pmu.type;
|
|
attr.size = sizeof(attr);
|
|
attr.pinned = 1;
|
|
attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
|
|
attr.exclude_user = !kvm_pmc_counts_at_el0(pmc);
|
|
attr.exclude_hv = 1; /* Don't count EL2 events */
|
|
attr.exclude_host = 1; /* Don't count host events */
|
|
attr.config = eventsel;
|
|
|
|
/*
|
|
* Filter events at EL1 (i.e. vEL2) when in a hyp context based on the
|
|
* guest's EL2 filter.
|
|
*/
|
|
if (unlikely(is_hyp_ctxt(vcpu)))
|
|
attr.exclude_kernel = !kvm_pmc_counts_at_el2(pmc);
|
|
else
|
|
attr.exclude_kernel = !kvm_pmc_counts_at_el1(pmc);
|
|
|
|
/*
|
|
* If counting with a 64bit counter, advertise it to the perf
|
|
* code, carefully dealing with the initial sample period
|
|
* which also depends on the overflow.
|
|
*/
|
|
if (kvm_pmc_is_64bit(pmc))
|
|
attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
|
|
|
|
attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
|
|
|
|
event = perf_event_create_kernel_counter(&attr, -1, current,
|
|
kvm_pmu_perf_overflow, pmc);
|
|
|
|
if (IS_ERR(event)) {
|
|
pr_err_once("kvm: pmu event creation failed %ld\n",
|
|
PTR_ERR(event));
|
|
return;
|
|
}
|
|
|
|
pmc->perf_event = event;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_set_counter_event_type - set selected counter to monitor some event
|
|
* @vcpu: The vcpu pointer
|
|
* @data: The data guest writes to PMXEVTYPER_EL0
|
|
* @select_idx: The number of selected counter
|
|
*
|
|
* When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
|
|
* event with given hardware event number. Here we call perf_event API to
|
|
* emulate this action and create a kernel perf event for it.
|
|
*/
|
|
void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
|
|
u64 select_idx)
|
|
{
|
|
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
|
|
u64 reg;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return;
|
|
|
|
reg = counter_index_to_evtreg(pmc->idx);
|
|
__vcpu_sys_reg(vcpu, reg) = data & kvm_pmu_evtyper_mask(vcpu->kvm);
|
|
|
|
kvm_pmu_create_perf_event(pmc);
|
|
}
|
|
|
|
void kvm_host_pmu_init(struct arm_pmu *pmu)
|
|
{
|
|
struct arm_pmu_entry *entry;
|
|
|
|
/*
|
|
* Check the sanitised PMU version for the system, as KVM does not
|
|
* support implementations where PMUv3 exists on a subset of CPUs.
|
|
*/
|
|
if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
|
|
return;
|
|
|
|
mutex_lock(&arm_pmus_lock);
|
|
|
|
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
|
|
if (!entry)
|
|
goto out_unlock;
|
|
|
|
entry->arm_pmu = pmu;
|
|
list_add_tail(&entry->entry, &arm_pmus);
|
|
|
|
if (list_is_singular(&arm_pmus))
|
|
static_branch_enable(&kvm_arm_pmu_available);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&arm_pmus_lock);
|
|
}
|
|
|
|
static struct arm_pmu *kvm_pmu_probe_armpmu(void)
|
|
{
|
|
struct arm_pmu *tmp, *pmu = NULL;
|
|
struct arm_pmu_entry *entry;
|
|
int cpu;
|
|
|
|
mutex_lock(&arm_pmus_lock);
|
|
|
|
/*
|
|
* It is safe to use a stale cpu to iterate the list of PMUs so long as
|
|
* the same value is used for the entirety of the loop. Given this, and
|
|
* the fact that no percpu data is used for the lookup there is no need
|
|
* to disable preemption.
|
|
*
|
|
* It is still necessary to get a valid cpu, though, to probe for the
|
|
* default PMU instance as userspace is not required to specify a PMU
|
|
* type. In order to uphold the preexisting behavior KVM selects the
|
|
* PMU instance for the core during vcpu init. A dependent use
|
|
* case would be a user with disdain of all things big.LITTLE that
|
|
* affines the VMM to a particular cluster of cores.
|
|
*
|
|
* In any case, userspace should just do the sane thing and use the UAPI
|
|
* to select a PMU type directly. But, be wary of the baggage being
|
|
* carried here.
|
|
*/
|
|
cpu = raw_smp_processor_id();
|
|
list_for_each_entry(entry, &arm_pmus, entry) {
|
|
tmp = entry->arm_pmu;
|
|
|
|
if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
|
|
pmu = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&arm_pmus_lock);
|
|
|
|
return pmu;
|
|
}
|
|
|
|
u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
|
|
{
|
|
unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
|
|
u64 val, mask = 0;
|
|
int base, i, nr_events;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return 0;
|
|
|
|
if (!pmceid1) {
|
|
val = read_sysreg(pmceid0_el0);
|
|
/* always support CHAIN */
|
|
val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
|
|
base = 0;
|
|
} else {
|
|
val = read_sysreg(pmceid1_el0);
|
|
/*
|
|
* Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
|
|
* as RAZ
|
|
*/
|
|
val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
|
|
BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
|
|
BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
|
|
base = 32;
|
|
}
|
|
|
|
if (!bmap)
|
|
return val;
|
|
|
|
nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
|
|
|
|
for (i = 0; i < 32; i += 8) {
|
|
u64 byte;
|
|
|
|
byte = bitmap_get_value8(bmap, base + i);
|
|
mask |= byte << i;
|
|
if (nr_events >= (0x4000 + base + 32)) {
|
|
byte = bitmap_get_value8(bmap, 0x4000 + base + i);
|
|
mask |= byte << (32 + i);
|
|
}
|
|
}
|
|
|
|
return val & mask;
|
|
}
|
|
|
|
void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 mask = kvm_pmu_implemented_counter_mask(vcpu);
|
|
|
|
kvm_pmu_handle_pmcr(vcpu, kvm_vcpu_read_pmcr(vcpu));
|
|
|
|
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= mask;
|
|
__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= mask;
|
|
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= mask;
|
|
}
|
|
|
|
int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return 0;
|
|
|
|
if (!vcpu->arch.pmu.created)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* A valid interrupt configuration for the PMU is either to have a
|
|
* properly configured interrupt number and using an in-kernel
|
|
* irqchip, or to not have an in-kernel GIC and not set an IRQ.
|
|
*/
|
|
if (irqchip_in_kernel(vcpu->kvm)) {
|
|
int irq = vcpu->arch.pmu.irq_num;
|
|
/*
|
|
* If we are using an in-kernel vgic, at this point we know
|
|
* the vgic will be initialized, so we can check the PMU irq
|
|
* number against the dimensions of the vgic and make sure
|
|
* it's valid.
|
|
*/
|
|
if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
|
|
return -EINVAL;
|
|
} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* One-off reload of the PMU on first run */
|
|
kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (irqchip_in_kernel(vcpu->kvm)) {
|
|
int ret;
|
|
|
|
/*
|
|
* If using the PMU with an in-kernel virtual GIC
|
|
* implementation, we require the GIC to be already
|
|
* initialized when initializing the PMU.
|
|
*/
|
|
if (!vgic_initialized(vcpu->kvm))
|
|
return -ENODEV;
|
|
|
|
if (!kvm_arm_pmu_irq_initialized(vcpu))
|
|
return -ENXIO;
|
|
|
|
ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
|
|
&vcpu->arch.pmu);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
init_irq_work(&vcpu->arch.pmu.overflow_work,
|
|
kvm_pmu_perf_overflow_notify_vcpu);
|
|
|
|
vcpu->arch.pmu.created = true;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For one VM the interrupt type must be same for each vcpu.
|
|
* As a PPI, the interrupt number is the same for all vcpus,
|
|
* while as an SPI it must be a separate number per vcpu.
|
|
*/
|
|
static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
|
|
{
|
|
unsigned long i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (!kvm_arm_pmu_irq_initialized(vcpu))
|
|
continue;
|
|
|
|
if (irq_is_ppi(irq)) {
|
|
if (vcpu->arch.pmu.irq_num != irq)
|
|
return false;
|
|
} else {
|
|
if (vcpu->arch.pmu.irq_num == irq)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* kvm_arm_pmu_get_max_counters - Return the max number of PMU counters.
|
|
* @kvm: The kvm pointer
|
|
*/
|
|
u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
|
|
{
|
|
struct arm_pmu *arm_pmu = kvm->arch.arm_pmu;
|
|
|
|
/*
|
|
* The arm_pmu->cntr_mask considers the fixed counter(s) as well.
|
|
* Ignore those and return only the general-purpose counters.
|
|
*/
|
|
return bitmap_weight(arm_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS);
|
|
}
|
|
|
|
static void kvm_arm_set_pmu(struct kvm *kvm, struct arm_pmu *arm_pmu)
|
|
{
|
|
lockdep_assert_held(&kvm->arch.config_lock);
|
|
|
|
kvm->arch.arm_pmu = arm_pmu;
|
|
kvm->arch.pmcr_n = kvm_arm_pmu_get_max_counters(kvm);
|
|
}
|
|
|
|
/**
|
|
* kvm_arm_set_default_pmu - No PMU set, get the default one.
|
|
* @kvm: The kvm pointer
|
|
*
|
|
* The observant among you will notice that the supported_cpus
|
|
* mask does not get updated for the default PMU even though it
|
|
* is quite possible the selected instance supports only a
|
|
* subset of cores in the system. This is intentional, and
|
|
* upholds the preexisting behavior on heterogeneous systems
|
|
* where vCPUs can be scheduled on any core but the guest
|
|
* counters could stop working.
|
|
*/
|
|
int kvm_arm_set_default_pmu(struct kvm *kvm)
|
|
{
|
|
struct arm_pmu *arm_pmu = kvm_pmu_probe_armpmu();
|
|
|
|
if (!arm_pmu)
|
|
return -ENODEV;
|
|
|
|
kvm_arm_set_pmu(kvm, arm_pmu);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct arm_pmu_entry *entry;
|
|
struct arm_pmu *arm_pmu;
|
|
int ret = -ENXIO;
|
|
|
|
lockdep_assert_held(&kvm->arch.config_lock);
|
|
mutex_lock(&arm_pmus_lock);
|
|
|
|
list_for_each_entry(entry, &arm_pmus, entry) {
|
|
arm_pmu = entry->arm_pmu;
|
|
if (arm_pmu->pmu.type == pmu_id) {
|
|
if (kvm_vm_has_ran_once(kvm) ||
|
|
(kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
|
|
kvm_arm_set_pmu(kvm, arm_pmu);
|
|
cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&arm_pmus_lock);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
lockdep_assert_held(&kvm->arch.config_lock);
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return -ENODEV;
|
|
|
|
if (vcpu->arch.pmu.created)
|
|
return -EBUSY;
|
|
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_PMU_V3_IRQ: {
|
|
int __user *uaddr = (int __user *)(long)attr->addr;
|
|
int irq;
|
|
|
|
if (!irqchip_in_kernel(kvm))
|
|
return -EINVAL;
|
|
|
|
if (get_user(irq, uaddr))
|
|
return -EFAULT;
|
|
|
|
/* The PMU overflow interrupt can be a PPI or a valid SPI. */
|
|
if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
|
|
return -EINVAL;
|
|
|
|
if (!pmu_irq_is_valid(kvm, irq))
|
|
return -EINVAL;
|
|
|
|
if (kvm_arm_pmu_irq_initialized(vcpu))
|
|
return -EBUSY;
|
|
|
|
kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
|
|
vcpu->arch.pmu.irq_num = irq;
|
|
return 0;
|
|
}
|
|
case KVM_ARM_VCPU_PMU_V3_FILTER: {
|
|
u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
|
|
struct kvm_pmu_event_filter __user *uaddr;
|
|
struct kvm_pmu_event_filter filter;
|
|
int nr_events;
|
|
|
|
/*
|
|
* Allow userspace to specify an event filter for the entire
|
|
* event range supported by PMUVer of the hardware, rather
|
|
* than the guest's PMUVer for KVM backward compatibility.
|
|
*/
|
|
nr_events = __kvm_pmu_event_mask(pmuver) + 1;
|
|
|
|
uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
|
|
|
|
if (copy_from_user(&filter, uaddr, sizeof(filter)))
|
|
return -EFAULT;
|
|
|
|
if (((u32)filter.base_event + filter.nevents) > nr_events ||
|
|
(filter.action != KVM_PMU_EVENT_ALLOW &&
|
|
filter.action != KVM_PMU_EVENT_DENY))
|
|
return -EINVAL;
|
|
|
|
if (kvm_vm_has_ran_once(kvm))
|
|
return -EBUSY;
|
|
|
|
if (!kvm->arch.pmu_filter) {
|
|
kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
|
|
if (!kvm->arch.pmu_filter)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* The default depends on the first applied filter.
|
|
* If it allows events, the default is to deny.
|
|
* Conversely, if the first filter denies a set of
|
|
* events, the default is to allow.
|
|
*/
|
|
if (filter.action == KVM_PMU_EVENT_ALLOW)
|
|
bitmap_zero(kvm->arch.pmu_filter, nr_events);
|
|
else
|
|
bitmap_fill(kvm->arch.pmu_filter, nr_events);
|
|
}
|
|
|
|
if (filter.action == KVM_PMU_EVENT_ALLOW)
|
|
bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
|
|
else
|
|
bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
|
|
|
|
return 0;
|
|
}
|
|
case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
|
|
int __user *uaddr = (int __user *)(long)attr->addr;
|
|
int pmu_id;
|
|
|
|
if (get_user(pmu_id, uaddr))
|
|
return -EFAULT;
|
|
|
|
return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
|
|
}
|
|
case KVM_ARM_VCPU_PMU_V3_INIT:
|
|
return kvm_arm_pmu_v3_init(vcpu);
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_PMU_V3_IRQ: {
|
|
int __user *uaddr = (int __user *)(long)attr->addr;
|
|
int irq;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return -EINVAL;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return -ENODEV;
|
|
|
|
if (!kvm_arm_pmu_irq_initialized(vcpu))
|
|
return -ENXIO;
|
|
|
|
irq = vcpu->arch.pmu.irq_num;
|
|
return put_user(irq, uaddr);
|
|
}
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_PMU_V3_IRQ:
|
|
case KVM_ARM_VCPU_PMU_V3_INIT:
|
|
case KVM_ARM_VCPU_PMU_V3_FILTER:
|
|
case KVM_ARM_VCPU_PMU_V3_SET_PMU:
|
|
if (kvm_vcpu_has_pmu(vcpu))
|
|
return 0;
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
u8 kvm_arm_pmu_get_pmuver_limit(void)
|
|
{
|
|
u64 tmp;
|
|
|
|
tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
|
|
tmp = cpuid_feature_cap_perfmon_field(tmp,
|
|
ID_AA64DFR0_EL1_PMUVer_SHIFT,
|
|
ID_AA64DFR0_EL1_PMUVer_V3P5);
|
|
return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
|
|
}
|
|
|
|
/**
|
|
* kvm_vcpu_read_pmcr - Read PMCR_EL0 register for the vCPU
|
|
* @vcpu: The vcpu pointer
|
|
*/
|
|
u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
|
|
|
|
return u64_replace_bits(pmcr, vcpu->kvm->arch.pmcr_n, ARMV8_PMU_PMCR_N);
|
|
}
|
|
|
|
void kvm_pmu_nested_transition(struct kvm_vcpu *vcpu)
|
|
{
|
|
bool reprogrammed = false;
|
|
unsigned long mask;
|
|
int i;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return;
|
|
|
|
mask = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
|
|
for_each_set_bit(i, &mask, 32) {
|
|
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
|
|
|
|
/*
|
|
* We only need to reconfigure events where the filter is
|
|
* different at EL1 vs. EL2, as we're multiplexing the true EL1
|
|
* event filter bit for nested.
|
|
*/
|
|
if (kvm_pmc_counts_at_el1(pmc) == kvm_pmc_counts_at_el2(pmc))
|
|
continue;
|
|
|
|
kvm_pmu_create_perf_event(pmc);
|
|
reprogrammed = true;
|
|
}
|
|
|
|
if (reprogrammed)
|
|
kvm_vcpu_pmu_restore_guest(vcpu);
|
|
}
|