Jianxin Xiong e8f8b098a4 IB/rdmavt: Add mechanism to invalidate MR keys
In order to support extended memory management, add the mechanism to
invalidate MR keys. This includes a flag "lkey_invalid" in the MR data
structure that is to be checked when validating access to the MR via
the associated key, and two utility functions to perform fast memory
registration and memory key invalidate operations.

Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Jianxin Xiong <jianxin.xiong@intel.com>
Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-08-02 16:00:58 -04:00

953 lines
22 KiB
C

/*
* Copyright(c) 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <rdma/ib_umem.h>
#include <rdma/rdma_vt.h>
#include "vt.h"
#include "mr.h"
/**
* rvt_driver_mr_init - Init MR resources per driver
* @rdi: rvt dev struct
*
* Do any intilization needed when a driver registers with rdmavt.
*
* Return: 0 on success or errno on failure
*/
int rvt_driver_mr_init(struct rvt_dev_info *rdi)
{
unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
unsigned lk_tab_size;
int i;
/*
* The top hfi1_lkey_table_size bits are used to index the
* table. The lower 8 bits can be owned by the user (copied from
* the LKEY). The remaining bits act as a generation number or tag.
*/
if (!lkey_table_size)
return -EINVAL;
spin_lock_init(&rdi->lkey_table.lock);
/* ensure generation is at least 4 bits */
if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
lkey_table_size = rdi->dparms.lkey_table_size;
}
rdi->lkey_table.max = 1 << lkey_table_size;
lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
rdi->lkey_table.table = (struct rvt_mregion __rcu **)
vmalloc_node(lk_tab_size, rdi->dparms.node);
if (!rdi->lkey_table.table)
return -ENOMEM;
RCU_INIT_POINTER(rdi->dma_mr, NULL);
for (i = 0; i < rdi->lkey_table.max; i++)
RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
return 0;
}
/**
*rvt_mr_exit: clean up MR
*@rdi: rvt dev structure
*
* called when drivers have unregistered or perhaps failed to register with us
*/
void rvt_mr_exit(struct rvt_dev_info *rdi)
{
if (rdi->dma_mr)
rvt_pr_err(rdi, "DMA MR not null!\n");
vfree(rdi->lkey_table.table);
}
static void rvt_deinit_mregion(struct rvt_mregion *mr)
{
int i = mr->mapsz;
mr->mapsz = 0;
while (i)
kfree(mr->map[--i]);
}
static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
int count)
{
int m, i = 0;
struct rvt_dev_info *dev = ib_to_rvt(pd->device);
mr->mapsz = 0;
m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
for (; i < m; i++) {
mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
dev->dparms.node);
if (!mr->map[i]) {
rvt_deinit_mregion(mr);
return -ENOMEM;
}
mr->mapsz++;
}
init_completion(&mr->comp);
/* count returning the ptr to user */
atomic_set(&mr->refcount, 1);
atomic_set(&mr->lkey_invalid, 0);
mr->pd = pd;
mr->max_segs = count;
return 0;
}
/**
* rvt_alloc_lkey - allocate an lkey
* @mr: memory region that this lkey protects
* @dma_region: 0->normal key, 1->restricted DMA key
*
* Returns 0 if successful, otherwise returns -errno.
*
* Increments mr reference count as required.
*
* Sets the lkey field mr for non-dma regions.
*
*/
static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
{
unsigned long flags;
u32 r;
u32 n;
int ret = 0;
struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
struct rvt_lkey_table *rkt = &dev->lkey_table;
rvt_get_mr(mr);
spin_lock_irqsave(&rkt->lock, flags);
/* special case for dma_mr lkey == 0 */
if (dma_region) {
struct rvt_mregion *tmr;
tmr = rcu_access_pointer(dev->dma_mr);
if (!tmr) {
rcu_assign_pointer(dev->dma_mr, mr);
mr->lkey_published = 1;
} else {
rvt_put_mr(mr);
}
goto success;
}
/* Find the next available LKEY */
r = rkt->next;
n = r;
for (;;) {
if (!rcu_access_pointer(rkt->table[r]))
break;
r = (r + 1) & (rkt->max - 1);
if (r == n)
goto bail;
}
rkt->next = (r + 1) & (rkt->max - 1);
/*
* Make sure lkey is never zero which is reserved to indicate an
* unrestricted LKEY.
*/
rkt->gen++;
/*
* bits are capped to ensure enough bits for generation number
*/
mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
<< 8);
if (mr->lkey == 0) {
mr->lkey |= 1 << 8;
rkt->gen++;
}
rcu_assign_pointer(rkt->table[r], mr);
mr->lkey_published = 1;
success:
spin_unlock_irqrestore(&rkt->lock, flags);
out:
return ret;
bail:
rvt_put_mr(mr);
spin_unlock_irqrestore(&rkt->lock, flags);
ret = -ENOMEM;
goto out;
}
/**
* rvt_free_lkey - free an lkey
* @mr: mr to free from tables
*/
static void rvt_free_lkey(struct rvt_mregion *mr)
{
unsigned long flags;
u32 lkey = mr->lkey;
u32 r;
struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
struct rvt_lkey_table *rkt = &dev->lkey_table;
int freed = 0;
spin_lock_irqsave(&rkt->lock, flags);
if (!mr->lkey_published)
goto out;
if (lkey == 0) {
RCU_INIT_POINTER(dev->dma_mr, NULL);
} else {
r = lkey >> (32 - dev->dparms.lkey_table_size);
RCU_INIT_POINTER(rkt->table[r], NULL);
}
mr->lkey_published = 0;
freed++;
out:
spin_unlock_irqrestore(&rkt->lock, flags);
if (freed) {
synchronize_rcu();
rvt_put_mr(mr);
}
}
static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
{
struct rvt_mr *mr;
int rval = -ENOMEM;
int m;
/* Allocate struct plus pointers to first level page tables. */
m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL);
if (!mr)
goto bail;
rval = rvt_init_mregion(&mr->mr, pd, count);
if (rval)
goto bail;
/*
* ib_reg_phys_mr() will initialize mr->ibmr except for
* lkey and rkey.
*/
rval = rvt_alloc_lkey(&mr->mr, 0);
if (rval)
goto bail_mregion;
mr->ibmr.lkey = mr->mr.lkey;
mr->ibmr.rkey = mr->mr.lkey;
done:
return mr;
bail_mregion:
rvt_deinit_mregion(&mr->mr);
bail:
kfree(mr);
mr = ERR_PTR(rval);
goto done;
}
static void __rvt_free_mr(struct rvt_mr *mr)
{
rvt_deinit_mregion(&mr->mr);
rvt_free_lkey(&mr->mr);
vfree(mr);
}
/**
* rvt_get_dma_mr - get a DMA memory region
* @pd: protection domain for this memory region
* @acc: access flags
*
* Return: the memory region on success, otherwise returns an errno.
* Note that all DMA addresses should be created via the
* struct ib_dma_mapping_ops functions (see dma.c).
*/
struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
{
struct rvt_mr *mr;
struct ib_mr *ret;
int rval;
if (ibpd_to_rvtpd(pd)->user)
return ERR_PTR(-EPERM);
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr) {
ret = ERR_PTR(-ENOMEM);
goto bail;
}
rval = rvt_init_mregion(&mr->mr, pd, 0);
if (rval) {
ret = ERR_PTR(rval);
goto bail;
}
rval = rvt_alloc_lkey(&mr->mr, 1);
if (rval) {
ret = ERR_PTR(rval);
goto bail_mregion;
}
mr->mr.access_flags = acc;
ret = &mr->ibmr;
done:
return ret;
bail_mregion:
rvt_deinit_mregion(&mr->mr);
bail:
kfree(mr);
goto done;
}
/**
* rvt_reg_user_mr - register a userspace memory region
* @pd: protection domain for this memory region
* @start: starting userspace address
* @length: length of region to register
* @mr_access_flags: access flags for this memory region
* @udata: unused by the driver
*
* Return: the memory region on success, otherwise returns an errno.
*/
struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt_addr, int mr_access_flags,
struct ib_udata *udata)
{
struct rvt_mr *mr;
struct ib_umem *umem;
struct scatterlist *sg;
int n, m, entry;
struct ib_mr *ret;
if (length == 0)
return ERR_PTR(-EINVAL);
umem = ib_umem_get(pd->uobject->context, start, length,
mr_access_flags, 0);
if (IS_ERR(umem))
return (void *)umem;
n = umem->nmap;
mr = __rvt_alloc_mr(n, pd);
if (IS_ERR(mr)) {
ret = (struct ib_mr *)mr;
goto bail_umem;
}
mr->mr.user_base = start;
mr->mr.iova = virt_addr;
mr->mr.length = length;
mr->mr.offset = ib_umem_offset(umem);
mr->mr.access_flags = mr_access_flags;
mr->umem = umem;
if (is_power_of_2(umem->page_size))
mr->mr.page_shift = ilog2(umem->page_size);
m = 0;
n = 0;
for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
void *vaddr;
vaddr = page_address(sg_page(sg));
if (!vaddr) {
ret = ERR_PTR(-EINVAL);
goto bail_inval;
}
mr->mr.map[m]->segs[n].vaddr = vaddr;
mr->mr.map[m]->segs[n].length = umem->page_size;
n++;
if (n == RVT_SEGSZ) {
m++;
n = 0;
}
}
return &mr->ibmr;
bail_inval:
__rvt_free_mr(mr);
bail_umem:
ib_umem_release(umem);
return ret;
}
/**
* rvt_dereg_mr - unregister and free a memory region
* @ibmr: the memory region to free
*
*
* Note that this is called to free MRs created by rvt_get_dma_mr()
* or rvt_reg_user_mr().
*
* Returns 0 on success.
*/
int rvt_dereg_mr(struct ib_mr *ibmr)
{
struct rvt_mr *mr = to_imr(ibmr);
struct rvt_dev_info *rdi = ib_to_rvt(ibmr->pd->device);
int ret = 0;
unsigned long timeout;
rvt_free_lkey(&mr->mr);
rvt_put_mr(&mr->mr); /* will set completion if last */
timeout = wait_for_completion_timeout(&mr->mr.comp, 5 * HZ);
if (!timeout) {
rvt_pr_err(rdi,
"rvt_dereg_mr timeout mr %p pd %p refcount %u\n",
mr, mr->mr.pd, atomic_read(&mr->mr.refcount));
rvt_get_mr(&mr->mr);
ret = -EBUSY;
goto out;
}
rvt_deinit_mregion(&mr->mr);
if (mr->umem)
ib_umem_release(mr->umem);
kfree(mr);
out:
return ret;
}
/**
* rvt_alloc_mr - Allocate a memory region usable with the
* @pd: protection domain for this memory region
* @mr_type: mem region type
* @max_num_sg: Max number of segments allowed
*
* Return: the memory region on success, otherwise return an errno.
*/
struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
enum ib_mr_type mr_type,
u32 max_num_sg)
{
struct rvt_mr *mr;
if (mr_type != IB_MR_TYPE_MEM_REG)
return ERR_PTR(-EINVAL);
mr = __rvt_alloc_mr(max_num_sg, pd);
if (IS_ERR(mr))
return (struct ib_mr *)mr;
return &mr->ibmr;
}
/**
* rvt_set_page - page assignment function called by ib_sg_to_pages
* @ibmr: memory region
* @addr: dma address of mapped page
*
* Return: 0 on success
*/
static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
{
struct rvt_mr *mr = to_imr(ibmr);
u32 ps = 1 << mr->mr.page_shift;
u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
int m, n;
if (unlikely(mapped_segs == mr->mr.max_segs))
return -ENOMEM;
if (mr->mr.length == 0) {
mr->mr.user_base = addr;
mr->mr.iova = addr;
}
m = mapped_segs / RVT_SEGSZ;
n = mapped_segs % RVT_SEGSZ;
mr->mr.map[m]->segs[n].vaddr = (void *)addr;
mr->mr.map[m]->segs[n].length = ps;
mr->mr.length += ps;
return 0;
}
/**
* rvt_map_mr_sg - map sg list and set it the memory region
* @ibmr: memory region
* @sg: dma mapped scatterlist
* @sg_nents: number of entries in sg
* @sg_offset: offset in bytes into sg
*
* Return: number of sg elements mapped to the memory region
*/
int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
int sg_nents, unsigned int *sg_offset)
{
struct rvt_mr *mr = to_imr(ibmr);
mr->mr.length = 0;
mr->mr.page_shift = PAGE_SHIFT;
return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
rvt_set_page);
}
/**
* rvt_fast_reg_mr - fast register physical MR
* @qp: the queue pair where the work request comes from
* @ibmr: the memory region to be registered
* @key: updated key for this memory region
* @access: access flags for this memory region
*
* Returns 0 on success.
*/
int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
int access)
{
struct rvt_mr *mr = to_imr(ibmr);
if (qp->ibqp.pd != mr->mr.pd)
return -EACCES;
/* not applicable to dma MR or user MR */
if (!mr->mr.lkey || mr->umem)
return -EINVAL;
if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
return -EINVAL;
ibmr->lkey = key;
ibmr->rkey = key;
mr->mr.lkey = key;
mr->mr.access_flags = access;
atomic_set(&mr->mr.lkey_invalid, 0);
return 0;
}
EXPORT_SYMBOL(rvt_fast_reg_mr);
/**
* rvt_invalidate_rkey - invalidate an MR rkey
* @qp: queue pair associated with the invalidate op
* @rkey: rkey to invalidate
*
* Returns 0 on success.
*/
int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
{
struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
struct rvt_lkey_table *rkt = &dev->lkey_table;
struct rvt_mregion *mr;
if (rkey == 0)
return -EINVAL;
rcu_read_lock();
mr = rcu_dereference(
rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
goto bail;
atomic_set(&mr->lkey_invalid, 1);
rcu_read_unlock();
return 0;
bail:
rcu_read_unlock();
return -EINVAL;
}
EXPORT_SYMBOL(rvt_invalidate_rkey);
/**
* rvt_alloc_fmr - allocate a fast memory region
* @pd: the protection domain for this memory region
* @mr_access_flags: access flags for this memory region
* @fmr_attr: fast memory region attributes
*
* Return: the memory region on success, otherwise returns an errno.
*/
struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
struct ib_fmr_attr *fmr_attr)
{
struct rvt_fmr *fmr;
int m;
struct ib_fmr *ret;
int rval = -ENOMEM;
/* Allocate struct plus pointers to first level page tables. */
m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL);
if (!fmr)
goto bail;
rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages);
if (rval)
goto bail;
/*
* ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
* rkey.
*/
rval = rvt_alloc_lkey(&fmr->mr, 0);
if (rval)
goto bail_mregion;
fmr->ibfmr.rkey = fmr->mr.lkey;
fmr->ibfmr.lkey = fmr->mr.lkey;
/*
* Resources are allocated but no valid mapping (RKEY can't be
* used).
*/
fmr->mr.access_flags = mr_access_flags;
fmr->mr.max_segs = fmr_attr->max_pages;
fmr->mr.page_shift = fmr_attr->page_shift;
ret = &fmr->ibfmr;
done:
return ret;
bail_mregion:
rvt_deinit_mregion(&fmr->mr);
bail:
kfree(fmr);
ret = ERR_PTR(rval);
goto done;
}
/**
* rvt_map_phys_fmr - set up a fast memory region
* @ibmfr: the fast memory region to set up
* @page_list: the list of pages to associate with the fast memory region
* @list_len: the number of pages to associate with the fast memory region
* @iova: the virtual address of the start of the fast memory region
*
* This may be called from interrupt context.
*
* Return: 0 on success
*/
int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
int list_len, u64 iova)
{
struct rvt_fmr *fmr = to_ifmr(ibfmr);
struct rvt_lkey_table *rkt;
unsigned long flags;
int m, n, i;
u32 ps;
struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
i = atomic_read(&fmr->mr.refcount);
if (i > 2)
return -EBUSY;
if (list_len > fmr->mr.max_segs)
return -EINVAL;
rkt = &rdi->lkey_table;
spin_lock_irqsave(&rkt->lock, flags);
fmr->mr.user_base = iova;
fmr->mr.iova = iova;
ps = 1 << fmr->mr.page_shift;
fmr->mr.length = list_len * ps;
m = 0;
n = 0;
for (i = 0; i < list_len; i++) {
fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
fmr->mr.map[m]->segs[n].length = ps;
if (++n == RVT_SEGSZ) {
m++;
n = 0;
}
}
spin_unlock_irqrestore(&rkt->lock, flags);
return 0;
}
/**
* rvt_unmap_fmr - unmap fast memory regions
* @fmr_list: the list of fast memory regions to unmap
*
* Return: 0 on success.
*/
int rvt_unmap_fmr(struct list_head *fmr_list)
{
struct rvt_fmr *fmr;
struct rvt_lkey_table *rkt;
unsigned long flags;
struct rvt_dev_info *rdi;
list_for_each_entry(fmr, fmr_list, ibfmr.list) {
rdi = ib_to_rvt(fmr->ibfmr.device);
rkt = &rdi->lkey_table;
spin_lock_irqsave(&rkt->lock, flags);
fmr->mr.user_base = 0;
fmr->mr.iova = 0;
fmr->mr.length = 0;
spin_unlock_irqrestore(&rkt->lock, flags);
}
return 0;
}
/**
* rvt_dealloc_fmr - deallocate a fast memory region
* @ibfmr: the fast memory region to deallocate
*
* Return: 0 on success.
*/
int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
{
struct rvt_fmr *fmr = to_ifmr(ibfmr);
int ret = 0;
unsigned long timeout;
rvt_free_lkey(&fmr->mr);
rvt_put_mr(&fmr->mr); /* will set completion if last */
timeout = wait_for_completion_timeout(&fmr->mr.comp, 5 * HZ);
if (!timeout) {
rvt_get_mr(&fmr->mr);
ret = -EBUSY;
goto out;
}
rvt_deinit_mregion(&fmr->mr);
kfree(fmr);
out:
return ret;
}
/**
* rvt_lkey_ok - check IB SGE for validity and initialize
* @rkt: table containing lkey to check SGE against
* @pd: protection domain
* @isge: outgoing internal SGE
* @sge: SGE to check
* @acc: access flags
*
* Check the IB SGE for validity and initialize our internal version
* of it.
*
* Return: 1 if valid and successful, otherwise returns 0.
*
* increments the reference count upon success
*
*/
int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
struct rvt_sge *isge, struct ib_sge *sge, int acc)
{
struct rvt_mregion *mr;
unsigned n, m;
size_t off;
struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
/*
* We use LKEY == zero for kernel virtual addresses
* (see rvt_get_dma_mr and dma.c).
*/
rcu_read_lock();
if (sge->lkey == 0) {
if (pd->user)
goto bail;
mr = rcu_dereference(dev->dma_mr);
if (!mr)
goto bail;
atomic_inc(&mr->refcount);
rcu_read_unlock();
isge->mr = mr;
isge->vaddr = (void *)sge->addr;
isge->length = sge->length;
isge->sge_length = sge->length;
isge->m = 0;
isge->n = 0;
goto ok;
}
mr = rcu_dereference(
rkt->table[(sge->lkey >> (32 - dev->dparms.lkey_table_size))]);
if (unlikely(!mr || atomic_read(&mr->lkey_invalid) ||
mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
goto bail;
off = sge->addr - mr->user_base;
if (unlikely(sge->addr < mr->user_base ||
off + sge->length > mr->length ||
(mr->access_flags & acc) != acc))
goto bail;
atomic_inc(&mr->refcount);
rcu_read_unlock();
off += mr->offset;
if (mr->page_shift) {
/*
* page sizes are uniform power of 2 so no loop is necessary
* entries_spanned_by_off is the number of times the loop below
* would have executed.
*/
size_t entries_spanned_by_off;
entries_spanned_by_off = off >> mr->page_shift;
off -= (entries_spanned_by_off << mr->page_shift);
m = entries_spanned_by_off / RVT_SEGSZ;
n = entries_spanned_by_off % RVT_SEGSZ;
} else {
m = 0;
n = 0;
while (off >= mr->map[m]->segs[n].length) {
off -= mr->map[m]->segs[n].length;
n++;
if (n >= RVT_SEGSZ) {
m++;
n = 0;
}
}
}
isge->mr = mr;
isge->vaddr = mr->map[m]->segs[n].vaddr + off;
isge->length = mr->map[m]->segs[n].length - off;
isge->sge_length = sge->length;
isge->m = m;
isge->n = n;
ok:
return 1;
bail:
rcu_read_unlock();
return 0;
}
EXPORT_SYMBOL(rvt_lkey_ok);
/**
* rvt_rkey_ok - check the IB virtual address, length, and RKEY
* @qp: qp for validation
* @sge: SGE state
* @len: length of data
* @vaddr: virtual address to place data
* @rkey: rkey to check
* @acc: access flags
*
* Return: 1 if successful, otherwise 0.
*
* increments the reference count upon success
*/
int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
u32 len, u64 vaddr, u32 rkey, int acc)
{
struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
struct rvt_lkey_table *rkt = &dev->lkey_table;
struct rvt_mregion *mr;
unsigned n, m;
size_t off;
/*
* We use RKEY == zero for kernel virtual addresses
* (see rvt_get_dma_mr and dma.c).
*/
rcu_read_lock();
if (rkey == 0) {
struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
if (pd->user)
goto bail;
mr = rcu_dereference(rdi->dma_mr);
if (!mr)
goto bail;
atomic_inc(&mr->refcount);
rcu_read_unlock();
sge->mr = mr;
sge->vaddr = (void *)vaddr;
sge->length = len;
sge->sge_length = len;
sge->m = 0;
sge->n = 0;
goto ok;
}
mr = rcu_dereference(
rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
if (unlikely(!mr || atomic_read(&mr->lkey_invalid) ||
mr->lkey != rkey || qp->ibqp.pd != mr->pd))
goto bail;
off = vaddr - mr->iova;
if (unlikely(vaddr < mr->iova || off + len > mr->length ||
(mr->access_flags & acc) == 0))
goto bail;
atomic_inc(&mr->refcount);
rcu_read_unlock();
off += mr->offset;
if (mr->page_shift) {
/*
* page sizes are uniform power of 2 so no loop is necessary
* entries_spanned_by_off is the number of times the loop below
* would have executed.
*/
size_t entries_spanned_by_off;
entries_spanned_by_off = off >> mr->page_shift;
off -= (entries_spanned_by_off << mr->page_shift);
m = entries_spanned_by_off / RVT_SEGSZ;
n = entries_spanned_by_off % RVT_SEGSZ;
} else {
m = 0;
n = 0;
while (off >= mr->map[m]->segs[n].length) {
off -= mr->map[m]->segs[n].length;
n++;
if (n >= RVT_SEGSZ) {
m++;
n = 0;
}
}
}
sge->mr = mr;
sge->vaddr = mr->map[m]->segs[n].vaddr + off;
sge->length = mr->map[m]->segs[n].length - off;
sge->sge_length = len;
sge->m = m;
sge->n = n;
ok:
return 1;
bail:
rcu_read_unlock();
return 0;
}
EXPORT_SYMBOL(rvt_rkey_ok);