linux-next/drivers/scsi/mpi3mr/mpi3mr_app.c
Arnd Bergmann fc1fbd13a2 scsi: mpi3mr: Fix printk() format strings
The newly introduced error messages get multiple format strings wrong:
size_t must be printed using the %z modifier rather than %l and dma_addr_t
must be printed by reference using the special %pad pointer type:

drivers/scsi/mpi3mr/mpi3mr_app.c: In function 'mpi3mr_build_nvme_prp':
include/linux/kern_levels.h:5:25: error: format '%llx' expects argument of type 'long long unsigned int', but argument 4 has type 'dma_addr_t' {aka 'unsigned int'} [-Werror=format=]
drivers/scsi/mpi3mr/mpi3mr_app.c:949:25: note: in expansion of macro 'dprint_bsg_err'
  949 |                         dprint_bsg_err(mrioc,
      |                         ^~~~~~~~~~~~~~
include/linux/kern_levels.h:5:25: error: format '%ld' expects argument of type 'long int', but argument 4 has type 'size_t' {aka 'unsigned int'} [-Werror=format=]
drivers/scsi/mpi3mr/mpi3mr_app.c:1112:41: note: in expansion of macro 'dprint_bsg_err'
 1112 |                                         dprint_bsg_err(mrioc,
      |                                         ^~~~~~~~~~~~~~

Fixes: 9536af615dc9 ("scsi: mpi3mr: Support for preallocation of SGL BSG data buffers part-3")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20231207142813.935717-1-arnd@kernel.org
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-12-08 12:04:56 -05:00

2176 lines
62 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for Broadcom MPI3 Storage Controllers
*
* Copyright (C) 2017-2023 Broadcom Inc.
* (mailto: mpi3mr-linuxdrv.pdl@broadcom.com)
*
*/
#include "mpi3mr.h"
#include <linux/bsg-lib.h>
#include <uapi/scsi/scsi_bsg_mpi3mr.h>
/**
* mpi3mr_bsg_pel_abort - sends PEL abort request
* @mrioc: Adapter instance reference
*
* This function sends PEL abort request to the firmware through
* admin request queue.
*
* Return: 0 on success, -1 on failure
*/
static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
{
struct mpi3_pel_req_action_abort pel_abort_req;
struct mpi3_pel_reply *pel_reply;
int retval = 0;
u16 pe_log_status;
if (mrioc->reset_in_progress) {
dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
return -1;
}
if (mrioc->stop_bsgs) {
dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
return -1;
}
memset(&pel_abort_req, 0, sizeof(pel_abort_req));
mutex_lock(&mrioc->pel_abort_cmd.mutex);
if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
mutex_unlock(&mrioc->pel_abort_cmd.mutex);
return -1;
}
mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
mrioc->pel_abort_cmd.is_waiting = 1;
mrioc->pel_abort_cmd.callback = NULL;
pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
mrioc->pel_abort_requested = 1;
init_completion(&mrioc->pel_abort_cmd.done);
retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
sizeof(pel_abort_req), 0);
if (retval) {
retval = -1;
dprint_bsg_err(mrioc, "%s: admin request post failed\n",
__func__);
mrioc->pel_abort_requested = 0;
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
mrioc->pel_abort_cmd.is_waiting = 0;
dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
mpi3mr_soft_reset_handler(mrioc,
MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
retval = -1;
goto out_unlock;
}
if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
dprint_bsg_err(mrioc,
"%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
__func__, (mrioc->pel_abort_cmd.ioc_status &
MPI3_IOCSTATUS_STATUS_MASK),
mrioc->pel_abort_cmd.ioc_loginfo);
retval = -1;
goto out_unlock;
}
if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
dprint_bsg_err(mrioc,
"%s: command failed, pel_status(0x%04x)\n",
__func__, pe_log_status);
retval = -1;
}
}
out_unlock:
mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->pel_abort_cmd.mutex);
return retval;
}
/**
* mpi3mr_bsg_verify_adapter - verify adapter number is valid
* @ioc_number: Adapter number
*
* This function returns the adapter instance pointer of given
* adapter number. If adapter number does not match with the
* driver's adapter list, driver returns NULL.
*
* Return: adapter instance reference
*/
static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
{
struct mpi3mr_ioc *mrioc = NULL;
spin_lock(&mrioc_list_lock);
list_for_each_entry(mrioc, &mrioc_list, list) {
if (mrioc->id == ioc_number) {
spin_unlock(&mrioc_list_lock);
return mrioc;
}
}
spin_unlock(&mrioc_list_lock);
return NULL;
}
/**
* mpi3mr_enable_logdata - Handler for log data enable
* @mrioc: Adapter instance reference
* @job: BSG job reference
*
* This function enables log data caching in the driver if not
* already enabled and return the maximum number of log data
* entries that can be cached in the driver.
*
* Return: 0 on success and proper error codes on failure
*/
static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
struct bsg_job *job)
{
struct mpi3mr_logdata_enable logdata_enable;
if (!mrioc->logdata_buf) {
mrioc->logdata_entry_sz =
(mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
+ MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
mrioc->logdata_buf_idx = 0;
mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
mrioc->logdata_entry_sz, GFP_KERNEL);
if (!mrioc->logdata_buf)
return -ENOMEM;
}
memset(&logdata_enable, 0, sizeof(logdata_enable));
logdata_enable.max_entries =
MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
sg_copy_from_buffer(job->request_payload.sg_list,
job->request_payload.sg_cnt,
&logdata_enable, sizeof(logdata_enable));
return 0;
}
return -EINVAL;
}
/**
* mpi3mr_get_logdata - Handler for get log data
* @mrioc: Adapter instance reference
* @job: BSG job pointer
* This function copies the log data entries to the user buffer
* when log caching is enabled in the driver.
*
* Return: 0 on success and proper error codes on failure
*/
static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
struct bsg_job *job)
{
u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
return -EINVAL;
num_entries = job->request_payload.payload_len / entry_sz;
if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
sz = num_entries * entry_sz;
if (job->request_payload.payload_len >= sz) {
sg_copy_from_buffer(job->request_payload.sg_list,
job->request_payload.sg_cnt,
mrioc->logdata_buf, sz);
return 0;
}
return -EINVAL;
}
/**
* mpi3mr_bsg_pel_enable - Handler for PEL enable driver
* @mrioc: Adapter instance reference
* @job: BSG job pointer
*
* This function is the handler for PEL enable driver.
* Validates the application given class and locale and if
* requires aborts the existing PEL wait request and/or issues
* new PEL wait request to the firmware and returns.
*
* Return: 0 on success and proper error codes on failure.
*/
static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
struct bsg_job *job)
{
long rval = -EINVAL;
struct mpi3mr_bsg_out_pel_enable pel_enable;
u8 issue_pel_wait;
u8 tmp_class;
u16 tmp_locale;
if (job->request_payload.payload_len != sizeof(pel_enable)) {
dprint_bsg_err(mrioc, "%s: invalid size argument\n",
__func__);
return rval;
}
if (mrioc->unrecoverable) {
dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
__func__);
return -EFAULT;
}
if (mrioc->reset_in_progress) {
dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
return -EAGAIN;
}
if (mrioc->stop_bsgs) {
dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
return -EAGAIN;
}
sg_copy_to_buffer(job->request_payload.sg_list,
job->request_payload.sg_cnt,
&pel_enable, sizeof(pel_enable));
if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
__func__, pel_enable.pel_class);
rval = 0;
goto out;
}
if (!mrioc->pel_enabled)
issue_pel_wait = 1;
else {
if ((mrioc->pel_class <= pel_enable.pel_class) &&
!((mrioc->pel_locale & pel_enable.pel_locale) ^
pel_enable.pel_locale)) {
issue_pel_wait = 0;
rval = 0;
} else {
pel_enable.pel_locale |= mrioc->pel_locale;
if (mrioc->pel_class < pel_enable.pel_class)
pel_enable.pel_class = mrioc->pel_class;
rval = mpi3mr_bsg_pel_abort(mrioc);
if (rval) {
dprint_bsg_err(mrioc,
"%s: pel_abort failed, status(%ld)\n",
__func__, rval);
goto out;
}
issue_pel_wait = 1;
}
}
if (issue_pel_wait) {
tmp_class = mrioc->pel_class;
tmp_locale = mrioc->pel_locale;
mrioc->pel_class = pel_enable.pel_class;
mrioc->pel_locale = pel_enable.pel_locale;
mrioc->pel_enabled = 1;
rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
if (rval) {
mrioc->pel_class = tmp_class;
mrioc->pel_locale = tmp_locale;
mrioc->pel_enabled = 0;
dprint_bsg_err(mrioc,
"%s: pel get sequence number failed, status(%ld)\n",
__func__, rval);
}
}
out:
return rval;
}
/**
* mpi3mr_get_all_tgt_info - Get all target information
* @mrioc: Adapter instance reference
* @job: BSG job reference
*
* This function copies the driver managed target devices device
* handle, persistent ID, bus ID and taret ID to the user
* provided buffer for the specific controller. This function
* also provides the number of devices managed by the driver for
* the specific controller.
*
* Return: 0 on success and proper error codes on failure
*/
static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
struct bsg_job *job)
{
u16 num_devices = 0, i = 0, size;
unsigned long flags;
struct mpi3mr_tgt_dev *tgtdev;
struct mpi3mr_device_map_info *devmap_info = NULL;
struct mpi3mr_all_tgt_info *alltgt_info = NULL;
uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
if (job->request_payload.payload_len < sizeof(u32)) {
dprint_bsg_err(mrioc, "%s: invalid size argument\n",
__func__);
return -EINVAL;
}
spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
num_devices++;
spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
if ((job->request_payload.payload_len <= sizeof(u64)) ||
list_empty(&mrioc->tgtdev_list)) {
sg_copy_from_buffer(job->request_payload.sg_list,
job->request_payload.sg_cnt,
&num_devices, sizeof(num_devices));
return 0;
}
kern_entrylen = num_devices * sizeof(*devmap_info);
size = sizeof(u64) + kern_entrylen;
alltgt_info = kzalloc(size, GFP_KERNEL);
if (!alltgt_info)
return -ENOMEM;
devmap_info = alltgt_info->dmi;
memset((u8 *)devmap_info, 0xFF, kern_entrylen);
spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
if (i < num_devices) {
devmap_info[i].handle = tgtdev->dev_handle;
devmap_info[i].perst_id = tgtdev->perst_id;
if (tgtdev->host_exposed && tgtdev->starget) {
devmap_info[i].target_id = tgtdev->starget->id;
devmap_info[i].bus_id =
tgtdev->starget->channel;
}
i++;
}
}
num_devices = i;
spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
alltgt_info->num_devices = num_devices;
usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) /
sizeof(*devmap_info);
usr_entrylen *= sizeof(*devmap_info);
min_entrylen = min(usr_entrylen, kern_entrylen);
sg_copy_from_buffer(job->request_payload.sg_list,
job->request_payload.sg_cnt,
alltgt_info, (min_entrylen + sizeof(u64)));
kfree(alltgt_info);
return 0;
}
/**
* mpi3mr_get_change_count - Get topology change count
* @mrioc: Adapter instance reference
* @job: BSG job reference
*
* This function copies the toplogy change count provided by the
* driver in events and cached in the driver to the user
* provided buffer for the specific controller.
*
* Return: 0 on success and proper error codes on failure
*/
static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
struct bsg_job *job)
{
struct mpi3mr_change_count chgcnt;
memset(&chgcnt, 0, sizeof(chgcnt));
chgcnt.change_count = mrioc->change_count;
if (job->request_payload.payload_len >= sizeof(chgcnt)) {
sg_copy_from_buffer(job->request_payload.sg_list,
job->request_payload.sg_cnt,
&chgcnt, sizeof(chgcnt));
return 0;
}
return -EINVAL;
}
/**
* mpi3mr_bsg_adp_reset - Issue controller reset
* @mrioc: Adapter instance reference
* @job: BSG job reference
*
* This function identifies the user provided reset type and
* issues approporiate reset to the controller and wait for that
* to complete and reinitialize the controller and then returns
*
* Return: 0 on success and proper error codes on failure
*/
static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
struct bsg_job *job)
{
long rval = -EINVAL;
u8 save_snapdump;
struct mpi3mr_bsg_adp_reset adpreset;
if (job->request_payload.payload_len !=
sizeof(adpreset)) {
dprint_bsg_err(mrioc, "%s: invalid size argument\n",
__func__);
goto out;
}
sg_copy_to_buffer(job->request_payload.sg_list,
job->request_payload.sg_cnt,
&adpreset, sizeof(adpreset));
switch (adpreset.reset_type) {
case MPI3MR_BSG_ADPRESET_SOFT:
save_snapdump = 0;
break;
case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
save_snapdump = 1;
break;
default:
dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
__func__, adpreset.reset_type);
goto out;
}
rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
save_snapdump);
if (rval)
dprint_bsg_err(mrioc,
"%s: reset handler returned error(%ld) for reset type %d\n",
__func__, rval, adpreset.reset_type);
out:
return rval;
}
/**
* mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
* @mrioc: Adapter instance reference
* @job: BSG job reference
*
* This function provides adapter information for the given
* controller
*
* Return: 0 on success and proper error codes on failure
*/
static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
struct bsg_job *job)
{
enum mpi3mr_iocstate ioc_state;
struct mpi3mr_bsg_in_adpinfo adpinfo;
memset(&adpinfo, 0, sizeof(adpinfo));
adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
adpinfo.pci_dev_id = mrioc->pdev->device;
adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
adpinfo.pci_bus = mrioc->pdev->bus->number;
adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
ioc_state = mpi3mr_get_iocstate(mrioc);
if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
else if (ioc_state == MRIOC_STATE_FAULT)
adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
else
adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
sizeof(adpinfo.driver_info));
if (job->request_payload.payload_len >= sizeof(adpinfo)) {
sg_copy_from_buffer(job->request_payload.sg_list,
job->request_payload.sg_cnt,
&adpinfo, sizeof(adpinfo));
return 0;
}
return -EINVAL;
}
/**
* mpi3mr_bsg_process_drv_cmds - Driver Command handler
* @job: BSG job reference
*
* This function is the top level handler for driver commands,
* this does basic validation of the buffer and identifies the
* opcode and switches to correct sub handler.
*
* Return: 0 on success and proper error codes on failure
*/
static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
{
long rval = -EINVAL;
struct mpi3mr_ioc *mrioc = NULL;
struct mpi3mr_bsg_packet *bsg_req = NULL;
struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
bsg_req = job->request;
drvrcmd = &bsg_req->cmd.drvrcmd;
mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
if (!mrioc)
return -ENODEV;
if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
return rval;
}
if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
return -ERESTARTSYS;
switch (drvrcmd->opcode) {
case MPI3MR_DRVBSG_OPCODE_ADPRESET:
rval = mpi3mr_bsg_adp_reset(mrioc, job);
break;
case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
rval = mpi3mr_get_all_tgt_info(mrioc, job);
break;
case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
rval = mpi3mr_get_change_count(mrioc, job);
break;
case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
rval = mpi3mr_enable_logdata(mrioc, job);
break;
case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
rval = mpi3mr_get_logdata(mrioc, job);
break;
case MPI3MR_DRVBSG_OPCODE_PELENABLE:
rval = mpi3mr_bsg_pel_enable(mrioc, job);
break;
case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
default:
pr_err("%s: unsupported driver command opcode %d\n",
MPI3MR_DRIVER_NAME, drvrcmd->opcode);
break;
}
mutex_unlock(&mrioc->bsg_cmds.mutex);
return rval;
}
/**
* mpi3mr_total_num_ioctl_sges - Count number of SGEs required
* @drv_bufs: DMA address of the buffers to be placed in sgl
* @bufcnt: Number of DMA buffers
*
* This function returns total number of data SGEs required
* including zero length SGEs and excluding management request
* and response buffer for the given list of data buffer
* descriptors
*
* Return: Number of SGE elements needed
*/
static inline u16 mpi3mr_total_num_ioctl_sges(struct mpi3mr_buf_map *drv_bufs,
u8 bufcnt)
{
u16 i, sge_count = 0;
for (i = 0; i < bufcnt; i++, drv_bufs++) {
if (drv_bufs->data_dir == DMA_NONE ||
drv_bufs->kern_buf)
continue;
sge_count += drv_bufs->num_dma_desc;
if (!drv_bufs->num_dma_desc)
sge_count++;
}
return sge_count;
}
/**
* mpi3mr_bsg_build_sgl - SGL construction for MPI commands
* @mrioc: Adapter instance reference
* @mpi_req: MPI request
* @sgl_offset: offset to start sgl in the MPI request
* @drv_bufs: DMA address of the buffers to be placed in sgl
* @bufcnt: Number of DMA buffers
* @is_rmc: Does the buffer list has management command buffer
* @is_rmr: Does the buffer list has management response buffer
* @num_datasges: Number of data buffers in the list
*
* This function places the DMA address of the given buffers in
* proper format as SGEs in the given MPI request.
*
* Return: 0 on success,-1 on failure
*/
static int mpi3mr_bsg_build_sgl(struct mpi3mr_ioc *mrioc, u8 *mpi_req,
u32 sgl_offset, struct mpi3mr_buf_map *drv_bufs,
u8 bufcnt, u8 is_rmc, u8 is_rmr, u8 num_datasges)
{
struct mpi3_request_header *mpi_header =
(struct mpi3_request_header *)mpi_req;
u8 *sgl = (mpi_req + sgl_offset), count = 0;
struct mpi3_mgmt_passthrough_request *rmgmt_req =
(struct mpi3_mgmt_passthrough_request *)mpi_req;
struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
u8 flag, sgl_flags, sgl_flag_eob, sgl_flags_last, last_chain_sgl_flag;
u16 available_sges, i, sges_needed;
u32 sge_element_size = sizeof(struct mpi3_sge_common);
bool chain_used = false;
sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
MPI3_SGE_FLAGS_DLAS_SYSTEM;
sgl_flag_eob = sgl_flags | MPI3_SGE_FLAGS_END_OF_BUFFER;
sgl_flags_last = sgl_flag_eob | MPI3_SGE_FLAGS_END_OF_LIST;
last_chain_sgl_flag = MPI3_SGE_FLAGS_ELEMENT_TYPE_LAST_CHAIN |
MPI3_SGE_FLAGS_DLAS_SYSTEM;
sges_needed = mpi3mr_total_num_ioctl_sges(drv_bufs, bufcnt);
if (is_rmc) {
mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
sgl_flags_last, drv_buf_iter->kern_buf_len,
drv_buf_iter->kern_buf_dma);
sgl = (u8 *)drv_buf_iter->kern_buf +
drv_buf_iter->bsg_buf_len;
available_sges = (drv_buf_iter->kern_buf_len -
drv_buf_iter->bsg_buf_len) / sge_element_size;
if (sges_needed > available_sges)
return -1;
chain_used = true;
drv_buf_iter++;
count++;
if (is_rmr) {
mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
sgl_flags_last, drv_buf_iter->kern_buf_len,
drv_buf_iter->kern_buf_dma);
drv_buf_iter++;
count++;
} else
mpi3mr_build_zero_len_sge(
&rmgmt_req->response_sgl);
if (num_datasges) {
i = 0;
goto build_sges;
}
} else {
if (sgl_offset >= MPI3MR_ADMIN_REQ_FRAME_SZ)
return -1;
available_sges = (MPI3MR_ADMIN_REQ_FRAME_SZ - sgl_offset) /
sge_element_size;
if (!available_sges)
return -1;
}
if (!num_datasges) {
mpi3mr_build_zero_len_sge(sgl);
return 0;
}
if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
if ((sges_needed > 2) || (sges_needed > available_sges))
return -1;
for (; count < bufcnt; count++, drv_buf_iter++) {
if (drv_buf_iter->data_dir == DMA_NONE ||
!drv_buf_iter->num_dma_desc)
continue;
mpi3mr_add_sg_single(sgl, sgl_flags_last,
drv_buf_iter->dma_desc[0].size,
drv_buf_iter->dma_desc[0].dma_addr);
sgl += sge_element_size;
}
return 0;
}
i = 0;
build_sges:
for (; count < bufcnt; count++, drv_buf_iter++) {
if (drv_buf_iter->data_dir == DMA_NONE)
continue;
if (!drv_buf_iter->num_dma_desc) {
if (chain_used && !available_sges)
return -1;
if (!chain_used && (available_sges == 1) &&
(sges_needed > 1))
goto setup_chain;
flag = sgl_flag_eob;
if (num_datasges == 1)
flag = sgl_flags_last;
mpi3mr_add_sg_single(sgl, flag, 0, 0);
sgl += sge_element_size;
sges_needed--;
available_sges--;
num_datasges--;
continue;
}
for (; i < drv_buf_iter->num_dma_desc; i++) {
if (chain_used && !available_sges)
return -1;
if (!chain_used && (available_sges == 1) &&
(sges_needed > 1))
goto setup_chain;
flag = sgl_flags;
if (i == (drv_buf_iter->num_dma_desc - 1)) {
if (num_datasges == 1)
flag = sgl_flags_last;
else
flag = sgl_flag_eob;
}
mpi3mr_add_sg_single(sgl, flag,
drv_buf_iter->dma_desc[i].size,
drv_buf_iter->dma_desc[i].dma_addr);
sgl += sge_element_size;
available_sges--;
sges_needed--;
}
num_datasges--;
i = 0;
}
return 0;
setup_chain:
available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
if (sges_needed > available_sges)
return -1;
mpi3mr_add_sg_single(sgl, last_chain_sgl_flag,
(sges_needed * sge_element_size),
mrioc->ioctl_chain_sge.dma_addr);
memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
sgl = (u8 *)mrioc->ioctl_chain_sge.addr;
chain_used = true;
goto build_sges;
}
/**
* mpi3mr_get_nvme_data_fmt - returns the NVMe data format
* @nvme_encap_request: NVMe encapsulated MPI request
*
* This function returns the type of the data format specified
* in user provided NVMe command in NVMe encapsulated request.
*
* Return: Data format of the NVMe command (PRP/SGL etc)
*/
static unsigned int mpi3mr_get_nvme_data_fmt(
struct mpi3_nvme_encapsulated_request *nvme_encap_request)
{
u8 format = 0;
format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
return format;
}
/**
* mpi3mr_build_nvme_sgl - SGL constructor for NVME
* encapsulated request
* @mrioc: Adapter instance reference
* @nvme_encap_request: NVMe encapsulated MPI request
* @drv_bufs: DMA address of the buffers to be placed in sgl
* @bufcnt: Number of DMA buffers
*
* This function places the DMA address of the given buffers in
* proper format as SGEs in the given NVMe encapsulated request.
*
* Return: 0 on success, -1 on failure
*/
static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
struct mpi3_nvme_encapsulated_request *nvme_encap_request,
struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
{
struct mpi3mr_nvme_pt_sge *nvme_sgl;
__le64 sgl_dma;
u8 count;
size_t length = 0;
u16 available_sges = 0, i;
u32 sge_element_size = sizeof(struct mpi3mr_nvme_pt_sge);
struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
mrioc->facts.sge_mod_shift) << 32);
u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
mrioc->facts.sge_mod_shift) << 32;
u32 size;
nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
/*
* Not all commands require a data transfer. If no data, just return
* without constructing any sgl.
*/
for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
if (drv_buf_iter->data_dir == DMA_NONE)
continue;
length = drv_buf_iter->kern_buf_len;
break;
}
if (!length || !drv_buf_iter->num_dma_desc)
return 0;
if (drv_buf_iter->num_dma_desc == 1) {
available_sges = 1;
goto build_sges;
}
sgl_dma = cpu_to_le64(mrioc->ioctl_chain_sge.dma_addr);
if (sgl_dma & sgemod_mask) {
dprint_bsg_err(mrioc,
"%s: SGL chain address collides with SGE modifier\n",
__func__);
return -1;
}
sgl_dma &= ~sgemod_mask;
sgl_dma |= sgemod_val;
memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
if (available_sges < drv_buf_iter->num_dma_desc)
return -1;
memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
nvme_sgl->base_addr = sgl_dma;
size = drv_buf_iter->num_dma_desc * sizeof(struct mpi3mr_nvme_pt_sge);
nvme_sgl->length = cpu_to_le32(size);
nvme_sgl->type = MPI3MR_NVMESGL_LAST_SEGMENT;
nvme_sgl = (struct mpi3mr_nvme_pt_sge *)mrioc->ioctl_chain_sge.addr;
build_sges:
for (i = 0; i < drv_buf_iter->num_dma_desc; i++) {
sgl_dma = cpu_to_le64(drv_buf_iter->dma_desc[i].dma_addr);
if (sgl_dma & sgemod_mask) {
dprint_bsg_err(mrioc,
"%s: SGL address collides with SGE modifier\n",
__func__);
return -1;
}
sgl_dma &= ~sgemod_mask;
sgl_dma |= sgemod_val;
nvme_sgl->base_addr = sgl_dma;
nvme_sgl->length = cpu_to_le32(drv_buf_iter->dma_desc[i].size);
nvme_sgl->type = MPI3MR_NVMESGL_DATA_SEGMENT;
nvme_sgl++;
available_sges--;
}
return 0;
}
/**
* mpi3mr_build_nvme_prp - PRP constructor for NVME
* encapsulated request
* @mrioc: Adapter instance reference
* @nvme_encap_request: NVMe encapsulated MPI request
* @drv_bufs: DMA address of the buffers to be placed in SGL
* @bufcnt: Number of DMA buffers
*
* This function places the DMA address of the given buffers in
* proper format as PRP entries in the given NVMe encapsulated
* request.
*
* Return: 0 on success, -1 on failure
*/
static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
struct mpi3_nvme_encapsulated_request *nvme_encap_request,
struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
{
int prp_size = MPI3MR_NVME_PRP_SIZE;
__le64 *prp_entry, *prp1_entry, *prp2_entry;
__le64 *prp_page;
dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
u32 offset, entry_len, dev_pgsz;
u32 page_mask_result, page_mask;
size_t length = 0, desc_len;
u8 count;
struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
mrioc->facts.sge_mod_shift) << 32);
u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
mrioc->facts.sge_mod_shift) << 32;
u16 dev_handle = nvme_encap_request->dev_handle;
struct mpi3mr_tgt_dev *tgtdev;
u16 desc_count = 0;
tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
if (!tgtdev) {
dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
__func__, dev_handle);
return -1;
}
if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
dprint_bsg_err(mrioc,
"%s: NVMe device page size is zero for handle 0x%04x\n",
__func__, dev_handle);
mpi3mr_tgtdev_put(tgtdev);
return -1;
}
dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
mpi3mr_tgtdev_put(tgtdev);
page_mask = dev_pgsz - 1;
if (dev_pgsz > MPI3MR_IOCTL_SGE_SIZE) {
dprint_bsg_err(mrioc,
"%s: NVMe device page size(%d) is greater than ioctl data sge size(%d) for handle 0x%04x\n",
__func__, dev_pgsz, MPI3MR_IOCTL_SGE_SIZE, dev_handle);
return -1;
}
if (MPI3MR_IOCTL_SGE_SIZE % dev_pgsz) {
dprint_bsg_err(mrioc,
"%s: ioctl data sge size(%d) is not a multiple of NVMe device page size(%d) for handle 0x%04x\n",
__func__, MPI3MR_IOCTL_SGE_SIZE, dev_pgsz, dev_handle);
return -1;
}
/*
* Not all commands require a data transfer. If no data, just return
* without constructing any PRP.
*/
for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
if (drv_buf_iter->data_dir == DMA_NONE)
continue;
length = drv_buf_iter->kern_buf_len;
break;
}
if (!length || !drv_buf_iter->num_dma_desc)
return 0;
for (count = 0; count < drv_buf_iter->num_dma_desc; count++) {
dma_addr = drv_buf_iter->dma_desc[count].dma_addr;
if (dma_addr & page_mask) {
dprint_bsg_err(mrioc,
"%s:dma_addr %pad is not aligned with page size 0x%x\n",
__func__, &dma_addr, dev_pgsz);
return -1;
}
}
dma_addr = drv_buf_iter->dma_desc[0].dma_addr;
desc_len = drv_buf_iter->dma_desc[0].size;
mrioc->prp_sz = 0;
mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
if (!mrioc->prp_list_virt)
return -1;
mrioc->prp_sz = dev_pgsz;
/*
* Set pointers to PRP1 and PRP2, which are in the NVMe command.
* PRP1 is located at a 24 byte offset from the start of the NVMe
* command. Then set the current PRP entry pointer to PRP1.
*/
prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
MPI3MR_NVME_CMD_PRP1_OFFSET);
prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
MPI3MR_NVME_CMD_PRP2_OFFSET);
prp_entry = prp1_entry;
/*
* For the PRP entries, use the specially allocated buffer of
* contiguous memory.
*/
prp_page = (__le64 *)mrioc->prp_list_virt;
prp_page_dma = mrioc->prp_list_dma;
/*
* Check if we are within 1 entry of a page boundary we don't
* want our first entry to be a PRP List entry.
*/
page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
if (!page_mask_result) {
dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
__func__);
goto err_out;
}
/*
* Set PRP physical pointer, which initially points to the current PRP
* DMA memory page.
*/
prp_entry_dma = prp_page_dma;
/* Loop while the length is not zero. */
while (length) {
page_mask_result = (prp_entry_dma + prp_size) & page_mask;
if (!page_mask_result && (length > dev_pgsz)) {
dprint_bsg_err(mrioc,
"%s: single PRP page is not sufficient\n",
__func__);
goto err_out;
}
/* Need to handle if entry will be part of a page. */
offset = dma_addr & page_mask;
entry_len = dev_pgsz - offset;
if (prp_entry == prp1_entry) {
/*
* Must fill in the first PRP pointer (PRP1) before
* moving on.
*/
*prp1_entry = cpu_to_le64(dma_addr);
if (*prp1_entry & sgemod_mask) {
dprint_bsg_err(mrioc,
"%s: PRP1 address collides with SGE modifier\n",
__func__);
goto err_out;
}
*prp1_entry &= ~sgemod_mask;
*prp1_entry |= sgemod_val;
/*
* Now point to the second PRP entry within the
* command (PRP2).
*/
prp_entry = prp2_entry;
} else if (prp_entry == prp2_entry) {
/*
* Should the PRP2 entry be a PRP List pointer or just
* a regular PRP pointer? If there is more than one
* more page of data, must use a PRP List pointer.
*/
if (length > dev_pgsz) {
/*
* PRP2 will contain a PRP List pointer because
* more PRP's are needed with this command. The
* list will start at the beginning of the
* contiguous buffer.
*/
*prp2_entry = cpu_to_le64(prp_entry_dma);
if (*prp2_entry & sgemod_mask) {
dprint_bsg_err(mrioc,
"%s: PRP list address collides with SGE modifier\n",
__func__);
goto err_out;
}
*prp2_entry &= ~sgemod_mask;
*prp2_entry |= sgemod_val;
/*
* The next PRP Entry will be the start of the
* first PRP List.
*/
prp_entry = prp_page;
continue;
} else {
/*
* After this, the PRP Entries are complete.
* This command uses 2 PRP's and no PRP list.
*/
*prp2_entry = cpu_to_le64(dma_addr);
if (*prp2_entry & sgemod_mask) {
dprint_bsg_err(mrioc,
"%s: PRP2 collides with SGE modifier\n",
__func__);
goto err_out;
}
*prp2_entry &= ~sgemod_mask;
*prp2_entry |= sgemod_val;
}
} else {
/*
* Put entry in list and bump the addresses.
*
* After PRP1 and PRP2 are filled in, this will fill in
* all remaining PRP entries in a PRP List, one per
* each time through the loop.
*/
*prp_entry = cpu_to_le64(dma_addr);
if (*prp_entry & sgemod_mask) {
dprint_bsg_err(mrioc,
"%s: PRP address collides with SGE modifier\n",
__func__);
goto err_out;
}
*prp_entry &= ~sgemod_mask;
*prp_entry |= sgemod_val;
prp_entry++;
prp_entry_dma += prp_size;
}
/* decrement length accounting for last partial page. */
if (entry_len >= length) {
length = 0;
} else {
if (entry_len <= desc_len) {
dma_addr += entry_len;
desc_len -= entry_len;
}
if (!desc_len) {
if ((++desc_count) >=
drv_buf_iter->num_dma_desc) {
dprint_bsg_err(mrioc,
"%s: Invalid len %zd while building PRP\n",
__func__, length);
goto err_out;
}
dma_addr =
drv_buf_iter->dma_desc[desc_count].dma_addr;
desc_len =
drv_buf_iter->dma_desc[desc_count].size;
}
length -= entry_len;
}
}
return 0;
err_out:
if (mrioc->prp_list_virt) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
mrioc->prp_list_virt, mrioc->prp_list_dma);
mrioc->prp_list_virt = NULL;
}
return -1;
}
/**
* mpi3mr_map_data_buffer_dma - build dma descriptors for data
* buffers
* @mrioc: Adapter instance reference
* @drv_buf: buffer map descriptor
* @desc_count: Number of already consumed dma descriptors
*
* This function computes how many pre-allocated DMA descriptors
* are required for the given data buffer and if those number of
* descriptors are free, then setup the mapping of the scattered
* DMA address to the given data buffer, if the data direction
* of the buffer is DMA_TO_DEVICE then the actual data is copied to
* the DMA buffers
*
* Return: 0 on success, -1 on failure
*/
static int mpi3mr_map_data_buffer_dma(struct mpi3mr_ioc *mrioc,
struct mpi3mr_buf_map *drv_buf,
u16 desc_count)
{
u16 i, needed_desc = drv_buf->kern_buf_len / MPI3MR_IOCTL_SGE_SIZE;
u32 buf_len = drv_buf->kern_buf_len, copied_len = 0;
if (drv_buf->kern_buf_len % MPI3MR_IOCTL_SGE_SIZE)
needed_desc++;
if ((needed_desc + desc_count) > MPI3MR_NUM_IOCTL_SGE) {
dprint_bsg_err(mrioc, "%s: DMA descriptor mapping error %d:%d:%d\n",
__func__, needed_desc, desc_count, MPI3MR_NUM_IOCTL_SGE);
return -1;
}
drv_buf->dma_desc = kzalloc(sizeof(*drv_buf->dma_desc) * needed_desc,
GFP_KERNEL);
if (!drv_buf->dma_desc)
return -1;
for (i = 0; i < needed_desc; i++, desc_count++) {
drv_buf->dma_desc[i].addr = mrioc->ioctl_sge[desc_count].addr;
drv_buf->dma_desc[i].dma_addr =
mrioc->ioctl_sge[desc_count].dma_addr;
if (buf_len < mrioc->ioctl_sge[desc_count].size)
drv_buf->dma_desc[i].size = buf_len;
else
drv_buf->dma_desc[i].size =
mrioc->ioctl_sge[desc_count].size;
buf_len -= drv_buf->dma_desc[i].size;
memset(drv_buf->dma_desc[i].addr, 0,
mrioc->ioctl_sge[desc_count].size);
if (drv_buf->data_dir == DMA_TO_DEVICE) {
memcpy(drv_buf->dma_desc[i].addr,
drv_buf->bsg_buf + copied_len,
drv_buf->dma_desc[i].size);
copied_len += drv_buf->dma_desc[i].size;
}
}
drv_buf->num_dma_desc = needed_desc;
return 0;
}
/**
* mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
* @job: BSG job reference
*
* This function is the top level handler for MPI Pass through
* command, this does basic validation of the input data buffers,
* identifies the given buffer types and MPI command, allocates
* DMAable memory for user given buffers, construstcs SGL
* properly and passes the command to the firmware.
*
* Once the MPI command is completed the driver copies the data
* if any and reply, sense information to user provided buffers.
* If the command is timed out then issues controller reset
* prior to returning.
*
* Return: 0 on success and proper error codes on failure
*/
static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job)
{
long rval = -EINVAL;
struct mpi3mr_ioc *mrioc = NULL;
u8 *mpi_req = NULL, *sense_buff_k = NULL;
u8 mpi_msg_size = 0;
struct mpi3mr_bsg_packet *bsg_req = NULL;
struct mpi3mr_bsg_mptcmd *karg;
struct mpi3mr_buf_entry *buf_entries = NULL;
struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0;
u8 din_cnt = 0, dout_cnt = 0;
u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF;
u8 block_io = 0, nvme_fmt = 0, resp_code = 0;
struct mpi3_request_header *mpi_header = NULL;
struct mpi3_status_reply_descriptor *status_desc;
struct mpi3_scsi_task_mgmt_request *tm_req;
u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
u16 dev_handle;
struct mpi3mr_tgt_dev *tgtdev;
struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
u32 din_size = 0, dout_size = 0;
u8 *din_buf = NULL, *dout_buf = NULL;
u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
u16 rmc_size = 0, desc_count = 0;
bsg_req = job->request;
karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
if (!mrioc)
return -ENODEV;
if (!mrioc->ioctl_sges_allocated) {
dprint_bsg_err(mrioc, "%s: DMA memory was not allocated\n",
__func__);
return -ENOMEM;
}
if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
if (!mpi_req)
return -ENOMEM;
mpi_header = (struct mpi3_request_header *)mpi_req;
bufcnt = karg->buf_entry_list.num_of_entries;
drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
if (!drv_bufs) {
rval = -ENOMEM;
goto out;
}
dout_buf = kzalloc(job->request_payload.payload_len,
GFP_KERNEL);
if (!dout_buf) {
rval = -ENOMEM;
goto out;
}
din_buf = kzalloc(job->reply_payload.payload_len,
GFP_KERNEL);
if (!din_buf) {
rval = -ENOMEM;
goto out;
}
sg_copy_to_buffer(job->request_payload.sg_list,
job->request_payload.sg_cnt,
dout_buf, job->request_payload.payload_len);
buf_entries = karg->buf_entry_list.buf_entry;
sgl_din_iter = din_buf;
sgl_dout_iter = dout_buf;
drv_buf_iter = drv_bufs;
for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
switch (buf_entries->buf_type) {
case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
sgl_iter = sgl_dout_iter;
sgl_dout_iter += buf_entries->buf_len;
drv_buf_iter->data_dir = DMA_TO_DEVICE;
is_rmcb = 1;
if ((count != 0) || !buf_entries->buf_len)
invalid_be = 1;
break;
case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
sgl_iter = sgl_din_iter;
sgl_din_iter += buf_entries->buf_len;
drv_buf_iter->data_dir = DMA_FROM_DEVICE;
is_rmrb = 1;
if (count != 1 || !is_rmcb || !buf_entries->buf_len)
invalid_be = 1;
break;
case MPI3MR_BSG_BUFTYPE_DATA_IN:
sgl_iter = sgl_din_iter;
sgl_din_iter += buf_entries->buf_len;
drv_buf_iter->data_dir = DMA_FROM_DEVICE;
din_cnt++;
din_size += buf_entries->buf_len;
if ((din_cnt > 1) && !is_rmcb)
invalid_be = 1;
break;
case MPI3MR_BSG_BUFTYPE_DATA_OUT:
sgl_iter = sgl_dout_iter;
sgl_dout_iter += buf_entries->buf_len;
drv_buf_iter->data_dir = DMA_TO_DEVICE;
dout_cnt++;
dout_size += buf_entries->buf_len;
if ((dout_cnt > 1) && !is_rmcb)
invalid_be = 1;
break;
case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
sgl_iter = sgl_din_iter;
sgl_din_iter += buf_entries->buf_len;
drv_buf_iter->data_dir = DMA_NONE;
mpirep_offset = count;
if (!buf_entries->buf_len)
invalid_be = 1;
break;
case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
sgl_iter = sgl_din_iter;
sgl_din_iter += buf_entries->buf_len;
drv_buf_iter->data_dir = DMA_NONE;
erb_offset = count;
if (!buf_entries->buf_len)
invalid_be = 1;
break;
case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
sgl_iter = sgl_dout_iter;
sgl_dout_iter += buf_entries->buf_len;
drv_buf_iter->data_dir = DMA_NONE;
mpi_msg_size = buf_entries->buf_len;
if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
(mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
__func__);
rval = -EINVAL;
goto out;
}
memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
break;
default:
invalid_be = 1;
break;
}
if (invalid_be) {
dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
__func__);
rval = -EINVAL;
goto out;
}
if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
__func__);
rval = -EINVAL;
goto out;
}
if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
__func__);
rval = -EINVAL;
goto out;
}
drv_buf_iter->bsg_buf = sgl_iter;
drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
}
if (is_rmcb && ((din_size + dout_size) > MPI3MR_MAX_APP_XFER_SIZE)) {
dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x din_size = %d, dout_size = %d\n",
__func__, __LINE__, mpi_header->function, din_size,
dout_size);
rval = -EINVAL;
goto out;
}
if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
dprint_bsg_err(mrioc,
"%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
__func__, __LINE__, mpi_header->function, din_size);
rval = -EINVAL;
goto out;
}
if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
dprint_bsg_err(mrioc,
"%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
__func__, __LINE__, mpi_header->function, dout_size);
rval = -EINVAL;
goto out;
}
if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
if (din_size > MPI3MR_IOCTL_SGE_SIZE ||
dout_size > MPI3MR_IOCTL_SGE_SIZE) {
dprint_bsg_err(mrioc, "%s:%d: invalid message size passed:%d:%d:%d:%d\n",
__func__, __LINE__, din_cnt, dout_cnt, din_size,
dout_size);
rval = -EINVAL;
goto out;
}
}
drv_buf_iter = drv_bufs;
for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
if (drv_buf_iter->data_dir == DMA_NONE)
continue;
drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
if (is_rmcb && !count) {
drv_buf_iter->kern_buf_len =
mrioc->ioctl_chain_sge.size;
drv_buf_iter->kern_buf =
mrioc->ioctl_chain_sge.addr;
drv_buf_iter->kern_buf_dma =
mrioc->ioctl_chain_sge.dma_addr;
drv_buf_iter->dma_desc = NULL;
drv_buf_iter->num_dma_desc = 0;
memset(drv_buf_iter->kern_buf, 0,
drv_buf_iter->kern_buf_len);
tmplen = min(drv_buf_iter->kern_buf_len,
drv_buf_iter->bsg_buf_len);
rmc_size = tmplen;
memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
} else if (is_rmrb && (count == 1)) {
drv_buf_iter->kern_buf_len =
mrioc->ioctl_resp_sge.size;
drv_buf_iter->kern_buf =
mrioc->ioctl_resp_sge.addr;
drv_buf_iter->kern_buf_dma =
mrioc->ioctl_resp_sge.dma_addr;
drv_buf_iter->dma_desc = NULL;
drv_buf_iter->num_dma_desc = 0;
memset(drv_buf_iter->kern_buf, 0,
drv_buf_iter->kern_buf_len);
tmplen = min(drv_buf_iter->kern_buf_len,
drv_buf_iter->bsg_buf_len);
drv_buf_iter->kern_buf_len = tmplen;
memset(drv_buf_iter->bsg_buf, 0,
drv_buf_iter->bsg_buf_len);
} else {
if (!drv_buf_iter->kern_buf_len)
continue;
if (mpi3mr_map_data_buffer_dma(mrioc, drv_buf_iter, desc_count)) {
rval = -ENOMEM;
dprint_bsg_err(mrioc, "%s:%d: mapping data buffers failed\n",
__func__, __LINE__);
goto out;
}
desc_count += drv_buf_iter->num_dma_desc;
}
}
if (erb_offset != 0xFF) {
sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
if (!sense_buff_k) {
rval = -ENOMEM;
goto out;
}
}
if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) {
rval = -ERESTARTSYS;
goto out;
}
if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
rval = -EAGAIN;
dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
mutex_unlock(&mrioc->bsg_cmds.mutex);
goto out;
}
if (mrioc->unrecoverable) {
dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
__func__);
rval = -EFAULT;
mutex_unlock(&mrioc->bsg_cmds.mutex);
goto out;
}
if (mrioc->reset_in_progress) {
dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
rval = -EAGAIN;
mutex_unlock(&mrioc->bsg_cmds.mutex);
goto out;
}
if (mrioc->stop_bsgs) {
dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
rval = -EAGAIN;
mutex_unlock(&mrioc->bsg_cmds.mutex);
goto out;
}
if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
nvme_fmt = mpi3mr_get_nvme_data_fmt(
(struct mpi3_nvme_encapsulated_request *)mpi_req);
if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
if (mpi3mr_build_nvme_prp(mrioc,
(struct mpi3_nvme_encapsulated_request *)mpi_req,
drv_bufs, bufcnt)) {
rval = -ENOMEM;
mutex_unlock(&mrioc->bsg_cmds.mutex);
goto out;
}
} else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
if (mpi3mr_build_nvme_sgl(mrioc,
(struct mpi3_nvme_encapsulated_request *)mpi_req,
drv_bufs, bufcnt)) {
rval = -EINVAL;
mutex_unlock(&mrioc->bsg_cmds.mutex);
goto out;
}
} else {
dprint_bsg_err(mrioc,
"%s:invalid NVMe command format\n", __func__);
rval = -EINVAL;
mutex_unlock(&mrioc->bsg_cmds.mutex);
goto out;
}
} else {
if (mpi3mr_bsg_build_sgl(mrioc, mpi_req, mpi_msg_size,
drv_bufs, bufcnt, is_rmcb, is_rmrb,
(dout_cnt + din_cnt))) {
dprint_bsg_err(mrioc, "%s: sgl build failed\n", __func__);
rval = -EAGAIN;
mutex_unlock(&mrioc->bsg_cmds.mutex);
goto out;
}
}
if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
if (tm_req->task_type !=
MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
dev_handle = tm_req->dev_handle;
block_io = 1;
}
}
if (block_io) {
tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
stgt_priv = (struct mpi3mr_stgt_priv_data *)
tgtdev->starget->hostdata;
atomic_inc(&stgt_priv->block_io);
mpi3mr_tgtdev_put(tgtdev);
}
}
mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
mrioc->bsg_cmds.is_waiting = 1;
mrioc->bsg_cmds.callback = NULL;
mrioc->bsg_cmds.is_sense = 0;
mrioc->bsg_cmds.sensebuf = sense_buff_k;
memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
dprint_bsg_info(mrioc,
"%s: posting bsg request to the controller\n", __func__);
dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
"bsg_mpi3_req");
if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
drv_buf_iter = &drv_bufs[0];
dprint_dump(drv_buf_iter->kern_buf,
rmc_size, "mpi3_mgmt_req");
}
}
init_completion(&mrioc->bsg_cmds.done);
rval = mpi3mr_admin_request_post(mrioc, mpi_req,
MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
if (rval) {
mrioc->bsg_cmds.is_waiting = 0;
dprint_bsg_err(mrioc,
"%s: posting bsg request is failed\n", __func__);
rval = -EAGAIN;
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->bsg_cmds.done,
(karg->timeout * HZ));
if (block_io && stgt_priv)
atomic_dec(&stgt_priv->block_io);
if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
mrioc->bsg_cmds.is_waiting = 0;
rval = -EAGAIN;
if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
goto out_unlock;
dprint_bsg_err(mrioc,
"%s: bsg request timedout after %d seconds\n", __func__,
karg->timeout);
if (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR) {
dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
"bsg_mpi3_req");
if (mpi_header->function ==
MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
drv_buf_iter = &drv_bufs[0];
dprint_dump(drv_buf_iter->kern_buf,
rmc_size, "mpi3_mgmt_req");
}
}
if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
(mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO))
mpi3mr_issue_tm(mrioc,
MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
mpi_header->function_dependent, 0,
MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
&mrioc->host_tm_cmds, &resp_code, NULL);
if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
!(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
mpi3mr_soft_reset_handler(mrioc,
MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
goto out_unlock;
}
dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
if (mrioc->prp_list_virt) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
mrioc->prp_list_virt, mrioc->prp_list_dma);
mrioc->prp_list_virt = NULL;
}
if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
dprint_bsg_info(mrioc,
"%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
__func__,
(mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->bsg_cmds.ioc_loginfo);
}
if ((mpirep_offset != 0xFF) &&
drv_bufs[mpirep_offset].bsg_buf_len) {
drv_buf_iter = &drv_bufs[mpirep_offset];
drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) - 1 +
mrioc->reply_sz);
bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
if (!bsg_reply_buf) {
rval = -ENOMEM;
goto out_unlock;
}
if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
bsg_reply_buf->mpi_reply_type =
MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
memcpy(bsg_reply_buf->reply_buf,
mrioc->bsg_cmds.reply, mrioc->reply_sz);
} else {
bsg_reply_buf->mpi_reply_type =
MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
status_desc = (struct mpi3_status_reply_descriptor *)
bsg_reply_buf->reply_buf;
status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
}
tmplen = min(drv_buf_iter->kern_buf_len,
drv_buf_iter->bsg_buf_len);
memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
}
if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
mrioc->bsg_cmds.is_sense) {
drv_buf_iter = &drv_bufs[erb_offset];
tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
}
drv_buf_iter = drv_bufs;
for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
if (drv_buf_iter->data_dir == DMA_NONE)
continue;
if ((count == 1) && is_rmrb) {
memcpy(drv_buf_iter->bsg_buf,
drv_buf_iter->kern_buf,
drv_buf_iter->kern_buf_len);
} else if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
tmplen = 0;
for (desc_count = 0;
desc_count < drv_buf_iter->num_dma_desc;
desc_count++) {
memcpy(((u8 *)drv_buf_iter->bsg_buf + tmplen),
drv_buf_iter->dma_desc[desc_count].addr,
drv_buf_iter->dma_desc[desc_count].size);
tmplen +=
drv_buf_iter->dma_desc[desc_count].size;
}
}
}
out_unlock:
if (din_buf) {
job->reply_payload_rcv_len =
sg_copy_from_buffer(job->reply_payload.sg_list,
job->reply_payload.sg_cnt,
din_buf, job->reply_payload.payload_len);
}
mrioc->bsg_cmds.is_sense = 0;
mrioc->bsg_cmds.sensebuf = NULL;
mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->bsg_cmds.mutex);
out:
kfree(sense_buff_k);
kfree(dout_buf);
kfree(din_buf);
kfree(mpi_req);
if (drv_bufs) {
drv_buf_iter = drv_bufs;
for (count = 0; count < bufcnt; count++, drv_buf_iter++)
kfree(drv_buf_iter->dma_desc);
kfree(drv_bufs);
}
kfree(bsg_reply_buf);
return rval;
}
/**
* mpi3mr_app_save_logdata - Save Log Data events
* @mrioc: Adapter instance reference
* @event_data: event data associated with log data event
* @event_data_size: event data size to copy
*
* If log data event caching is enabled by the applicatiobns,
* then this function saves the log data in the circular queue
* and Sends async signal SIGIO to indicate there is an async
* event from the firmware to the event monitoring applications.
*
* Return:Nothing
*/
void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
u16 event_data_size)
{
u32 index = mrioc->logdata_buf_idx, sz;
struct mpi3mr_logdata_entry *entry;
if (!(mrioc->logdata_buf))
return;
entry = (struct mpi3mr_logdata_entry *)
(mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
entry->valid_entry = 1;
sz = min(mrioc->logdata_entry_sz, event_data_size);
memcpy(entry->data, event_data, sz);
mrioc->logdata_buf_idx =
((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
atomic64_inc(&event_counter);
}
/**
* mpi3mr_bsg_request - bsg request entry point
* @job: BSG job reference
*
* This is driver's entry point for bsg requests
*
* Return: 0 on success and proper error codes on failure
*/
static int mpi3mr_bsg_request(struct bsg_job *job)
{
long rval = -EINVAL;
unsigned int reply_payload_rcv_len = 0;
struct mpi3mr_bsg_packet *bsg_req = job->request;
switch (bsg_req->cmd_type) {
case MPI3MR_DRV_CMD:
rval = mpi3mr_bsg_process_drv_cmds(job);
break;
case MPI3MR_MPT_CMD:
rval = mpi3mr_bsg_process_mpt_cmds(job);
break;
default:
pr_err("%s: unsupported BSG command(0x%08x)\n",
MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
break;
}
bsg_job_done(job, rval, reply_payload_rcv_len);
return 0;
}
/**
* mpi3mr_bsg_exit - de-registration from bsg layer
* @mrioc: Adapter instance reference
*
* This will be called during driver unload and all
* bsg resources allocated during load will be freed.
*
* Return:Nothing
*/
void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
{
struct device *bsg_dev = &mrioc->bsg_dev;
if (!mrioc->bsg_queue)
return;
bsg_remove_queue(mrioc->bsg_queue);
mrioc->bsg_queue = NULL;
device_del(bsg_dev);
put_device(bsg_dev);
}
/**
* mpi3mr_bsg_node_release -release bsg device node
* @dev: bsg device node
*
* decrements bsg dev parent reference count
*
* Return:Nothing
*/
static void mpi3mr_bsg_node_release(struct device *dev)
{
put_device(dev->parent);
}
/**
* mpi3mr_bsg_init - registration with bsg layer
* @mrioc: Adapter instance reference
*
* This will be called during driver load and it will
* register driver with bsg layer
*
* Return:Nothing
*/
void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
{
struct device *bsg_dev = &mrioc->bsg_dev;
struct device *parent = &mrioc->shost->shost_gendev;
device_initialize(bsg_dev);
bsg_dev->parent = get_device(parent);
bsg_dev->release = mpi3mr_bsg_node_release;
dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
if (device_add(bsg_dev)) {
ioc_err(mrioc, "%s: bsg device add failed\n",
dev_name(bsg_dev));
put_device(bsg_dev);
return;
}
mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev),
mpi3mr_bsg_request, NULL, 0);
if (IS_ERR(mrioc->bsg_queue)) {
ioc_err(mrioc, "%s: bsg registration failed\n",
dev_name(bsg_dev));
device_del(bsg_dev);
put_device(bsg_dev);
return;
}
blk_queue_max_segments(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SEGMENTS);
blk_queue_max_hw_sectors(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SECTORS);
return;
}
/**
* version_fw_show - SysFS callback for firmware version read
* @dev: class device
* @attr: Device attributes
* @buf: Buffer to copy
*
* Return: sysfs_emit() return after copying firmware version
*/
static ssize_t
version_fw_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct mpi3mr_ioc *mrioc = shost_priv(shost);
struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
fwver->gen_major, fwver->gen_minor, fwver->ph_major,
fwver->ph_minor, fwver->cust_id, fwver->build_num);
}
static DEVICE_ATTR_RO(version_fw);
/**
* fw_queue_depth_show - SysFS callback for firmware max cmds
* @dev: class device
* @attr: Device attributes
* @buf: Buffer to copy
*
* Return: sysfs_emit() return after copying firmware max commands
*/
static ssize_t
fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct mpi3mr_ioc *mrioc = shost_priv(shost);
return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
}
static DEVICE_ATTR_RO(fw_queue_depth);
/**
* op_req_q_count_show - SysFS callback for request queue count
* @dev: class device
* @attr: Device attributes
* @buf: Buffer to copy
*
* Return: sysfs_emit() return after copying request queue count
*/
static ssize_t
op_req_q_count_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct mpi3mr_ioc *mrioc = shost_priv(shost);
return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
}
static DEVICE_ATTR_RO(op_req_q_count);
/**
* reply_queue_count_show - SysFS callback for reply queue count
* @dev: class device
* @attr: Device attributes
* @buf: Buffer to copy
*
* Return: sysfs_emit() return after copying reply queue count
*/
static ssize_t
reply_queue_count_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct mpi3mr_ioc *mrioc = shost_priv(shost);
return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
}
static DEVICE_ATTR_RO(reply_queue_count);
/**
* logging_level_show - Show controller debug level
* @dev: class device
* @attr: Device attributes
* @buf: Buffer to copy
*
* A sysfs 'read/write' shost attribute, to show the current
* debug log level used by the driver for the specific
* controller.
*
* Return: sysfs_emit() return
*/
static ssize_t
logging_level_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct mpi3mr_ioc *mrioc = shost_priv(shost);
return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
}
/**
* logging_level_store- Change controller debug level
* @dev: class device
* @attr: Device attributes
* @buf: Buffer to copy
* @count: size of the buffer
*
* A sysfs 'read/write' shost attribute, to change the current
* debug log level used by the driver for the specific
* controller.
*
* Return: strlen() return
*/
static ssize_t
logging_level_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct mpi3mr_ioc *mrioc = shost_priv(shost);
int val = 0;
if (kstrtoint(buf, 0, &val) != 0)
return -EINVAL;
mrioc->logging_level = val;
ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
return strlen(buf);
}
static DEVICE_ATTR_RW(logging_level);
/**
* adp_state_show() - SysFS callback for adapter state show
* @dev: class device
* @attr: Device attributes
* @buf: Buffer to copy
*
* Return: sysfs_emit() return after copying adapter state
*/
static ssize_t
adp_state_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct mpi3mr_ioc *mrioc = shost_priv(shost);
enum mpi3mr_iocstate ioc_state;
uint8_t adp_state;
ioc_state = mpi3mr_get_iocstate(mrioc);
if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
else if (ioc_state == MRIOC_STATE_FAULT)
adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
else
adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
return sysfs_emit(buf, "%u\n", adp_state);
}
static DEVICE_ATTR_RO(adp_state);
static struct attribute *mpi3mr_host_attrs[] = {
&dev_attr_version_fw.attr,
&dev_attr_fw_queue_depth.attr,
&dev_attr_op_req_q_count.attr,
&dev_attr_reply_queue_count.attr,
&dev_attr_logging_level.attr,
&dev_attr_adp_state.attr,
NULL,
};
static const struct attribute_group mpi3mr_host_attr_group = {
.attrs = mpi3mr_host_attrs
};
const struct attribute_group *mpi3mr_host_groups[] = {
&mpi3mr_host_attr_group,
NULL,
};
/*
* SCSI Device attributes under sysfs
*/
/**
* sas_address_show - SysFS callback for dev SASaddress display
* @dev: class device
* @attr: Device attributes
* @buf: Buffer to copy
*
* Return: sysfs_emit() return after copying SAS address of the
* specific SAS/SATA end device.
*/
static ssize_t
sas_address_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct mpi3mr_sdev_priv_data *sdev_priv_data;
struct mpi3mr_stgt_priv_data *tgt_priv_data;
struct mpi3mr_tgt_dev *tgtdev;
sdev_priv_data = sdev->hostdata;
if (!sdev_priv_data)
return 0;
tgt_priv_data = sdev_priv_data->tgt_priv_data;
if (!tgt_priv_data)
return 0;
tgtdev = tgt_priv_data->tgt_dev;
if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
return 0;
return sysfs_emit(buf, "0x%016llx\n",
(unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
}
static DEVICE_ATTR_RO(sas_address);
/**
* device_handle_show - SysFS callback for device handle display
* @dev: class device
* @attr: Device attributes
* @buf: Buffer to copy
*
* Return: sysfs_emit() return after copying firmware internal
* device handle of the specific device.
*/
static ssize_t
device_handle_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct mpi3mr_sdev_priv_data *sdev_priv_data;
struct mpi3mr_stgt_priv_data *tgt_priv_data;
struct mpi3mr_tgt_dev *tgtdev;
sdev_priv_data = sdev->hostdata;
if (!sdev_priv_data)
return 0;
tgt_priv_data = sdev_priv_data->tgt_priv_data;
if (!tgt_priv_data)
return 0;
tgtdev = tgt_priv_data->tgt_dev;
if (!tgtdev)
return 0;
return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
}
static DEVICE_ATTR_RO(device_handle);
/**
* persistent_id_show - SysFS callback for persisten ID display
* @dev: class device
* @attr: Device attributes
* @buf: Buffer to copy
*
* Return: sysfs_emit() return after copying persistent ID of the
* of the specific device.
*/
static ssize_t
persistent_id_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct mpi3mr_sdev_priv_data *sdev_priv_data;
struct mpi3mr_stgt_priv_data *tgt_priv_data;
struct mpi3mr_tgt_dev *tgtdev;
sdev_priv_data = sdev->hostdata;
if (!sdev_priv_data)
return 0;
tgt_priv_data = sdev_priv_data->tgt_priv_data;
if (!tgt_priv_data)
return 0;
tgtdev = tgt_priv_data->tgt_dev;
if (!tgtdev)
return 0;
return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
}
static DEVICE_ATTR_RO(persistent_id);
static struct attribute *mpi3mr_dev_attrs[] = {
&dev_attr_sas_address.attr,
&dev_attr_device_handle.attr,
&dev_attr_persistent_id.attr,
NULL,
};
static const struct attribute_group mpi3mr_dev_attr_group = {
.attrs = mpi3mr_dev_attrs
};
const struct attribute_group *mpi3mr_dev_groups[] = {
&mpi3mr_dev_attr_group,
NULL,
};