mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-04 12:12:05 +00:00
840c2fbcc5
This runs on extents that haven't yet been validated, so we don't want to assert that we have a valid entry type. Reported-by: syzbot+4f29c3f12f864d8a8d17@syzkaller.appspotmail.com Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1674 lines
44 KiB
C
1674 lines
44 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
|
|
*
|
|
* Code for managing the extent btree and dynamically updating the writeback
|
|
* dirty sector count.
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "bkey_methods.h"
|
|
#include "btree_cache.h"
|
|
#include "btree_gc.h"
|
|
#include "btree_io.h"
|
|
#include "btree_iter.h"
|
|
#include "buckets.h"
|
|
#include "checksum.h"
|
|
#include "compress.h"
|
|
#include "debug.h"
|
|
#include "disk_groups.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "inode.h"
|
|
#include "journal.h"
|
|
#include "replicas.h"
|
|
#include "super.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
#include "util.h"
|
|
|
|
static unsigned bch2_crc_field_size_max[] = {
|
|
[BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX,
|
|
[BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX,
|
|
[BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX,
|
|
};
|
|
|
|
static void bch2_extent_crc_pack(union bch_extent_crc *,
|
|
struct bch_extent_crc_unpacked,
|
|
enum bch_extent_entry_type);
|
|
|
|
struct bch_dev_io_failures *bch2_dev_io_failures(struct bch_io_failures *f,
|
|
unsigned dev)
|
|
{
|
|
struct bch_dev_io_failures *i;
|
|
|
|
for (i = f->devs; i < f->devs + f->nr; i++)
|
|
if (i->dev == dev)
|
|
return i;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void bch2_mark_io_failure(struct bch_io_failures *failed,
|
|
struct extent_ptr_decoded *p)
|
|
{
|
|
struct bch_dev_io_failures *f = bch2_dev_io_failures(failed, p->ptr.dev);
|
|
|
|
if (!f) {
|
|
BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs));
|
|
|
|
f = &failed->devs[failed->nr++];
|
|
f->dev = p->ptr.dev;
|
|
f->idx = p->idx;
|
|
f->nr_failed = 1;
|
|
f->nr_retries = 0;
|
|
} else if (p->idx != f->idx) {
|
|
f->idx = p->idx;
|
|
f->nr_failed = 1;
|
|
f->nr_retries = 0;
|
|
} else {
|
|
f->nr_failed++;
|
|
}
|
|
}
|
|
|
|
static inline u64 dev_latency(struct bch_fs *c, unsigned dev)
|
|
{
|
|
struct bch_dev *ca = bch2_dev_rcu(c, dev);
|
|
return ca ? atomic64_read(&ca->cur_latency[READ]) : S64_MAX;
|
|
}
|
|
|
|
/*
|
|
* returns true if p1 is better than p2:
|
|
*/
|
|
static inline bool ptr_better(struct bch_fs *c,
|
|
const struct extent_ptr_decoded p1,
|
|
const struct extent_ptr_decoded p2)
|
|
{
|
|
if (likely(!p1.idx && !p2.idx)) {
|
|
u64 l1 = dev_latency(c, p1.ptr.dev);
|
|
u64 l2 = dev_latency(c, p2.ptr.dev);
|
|
|
|
/* Pick at random, biased in favor of the faster device: */
|
|
|
|
return bch2_rand_range(l1 + l2) > l1;
|
|
}
|
|
|
|
if (bch2_force_reconstruct_read)
|
|
return p1.idx > p2.idx;
|
|
|
|
return p1.idx < p2.idx;
|
|
}
|
|
|
|
/*
|
|
* This picks a non-stale pointer, preferably from a device other than @avoid.
|
|
* Avoid can be NULL, meaning pick any. If there are no non-stale pointers to
|
|
* other devices, it will still pick a pointer from avoid.
|
|
*/
|
|
int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k,
|
|
struct bch_io_failures *failed,
|
|
struct extent_ptr_decoded *pick)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
struct bch_dev_io_failures *f;
|
|
int ret = 0;
|
|
|
|
if (k.k->type == KEY_TYPE_error)
|
|
return -BCH_ERR_key_type_error;
|
|
|
|
rcu_read_lock();
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
|
|
/*
|
|
* Unwritten extent: no need to actually read, treat it as a
|
|
* hole and return 0s:
|
|
*/
|
|
if (p.ptr.unwritten) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If there are any dirty pointers it's an error if we can't
|
|
* read:
|
|
*/
|
|
if (!ret && !p.ptr.cached)
|
|
ret = -BCH_ERR_no_device_to_read_from;
|
|
|
|
struct bch_dev *ca = bch2_dev_rcu(c, p.ptr.dev);
|
|
|
|
if (p.ptr.cached && (!ca || dev_ptr_stale_rcu(ca, &p.ptr)))
|
|
continue;
|
|
|
|
f = failed ? bch2_dev_io_failures(failed, p.ptr.dev) : NULL;
|
|
if (f)
|
|
p.idx = f->nr_failed < f->nr_retries
|
|
? f->idx
|
|
: f->idx + 1;
|
|
|
|
if (!p.idx && (!ca || !bch2_dev_is_readable(ca)))
|
|
p.idx++;
|
|
|
|
if (!p.idx && p.has_ec && bch2_force_reconstruct_read)
|
|
p.idx++;
|
|
|
|
if (p.idx > (unsigned) p.has_ec)
|
|
continue;
|
|
|
|
if (ret > 0 && !ptr_better(c, p, *pick))
|
|
continue;
|
|
|
|
*pick = p;
|
|
ret = 1;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* KEY_TYPE_btree_ptr: */
|
|
|
|
int bch2_btree_ptr_validate(struct bch_fs *c, struct bkey_s_c k,
|
|
enum bch_validate_flags flags)
|
|
{
|
|
int ret = 0;
|
|
|
|
bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX,
|
|
c, btree_ptr_val_too_big,
|
|
"value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX);
|
|
|
|
ret = bch2_bkey_ptrs_validate(c, k, flags);
|
|
fsck_err:
|
|
return ret;
|
|
}
|
|
|
|
void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c,
|
|
struct bkey_s_c k)
|
|
{
|
|
bch2_bkey_ptrs_to_text(out, c, k);
|
|
}
|
|
|
|
int bch2_btree_ptr_v2_validate(struct bch_fs *c, struct bkey_s_c k,
|
|
enum bch_validate_flags flags)
|
|
{
|
|
struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
|
|
int ret = 0;
|
|
|
|
bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX,
|
|
c, btree_ptr_v2_val_too_big,
|
|
"value too big (%zu > %zu)",
|
|
bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX);
|
|
|
|
bkey_fsck_err_on(bpos_ge(bp.v->min_key, bp.k->p),
|
|
c, btree_ptr_v2_min_key_bad,
|
|
"min_key > key");
|
|
|
|
if (flags & BCH_VALIDATE_write)
|
|
bkey_fsck_err_on(!bp.v->sectors_written,
|
|
c, btree_ptr_v2_written_0,
|
|
"sectors_written == 0");
|
|
|
|
ret = bch2_bkey_ptrs_validate(c, k, flags);
|
|
fsck_err:
|
|
return ret;
|
|
}
|
|
|
|
void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c,
|
|
struct bkey_s_c k)
|
|
{
|
|
struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
|
|
|
|
prt_printf(out, "seq %llx written %u min_key %s",
|
|
le64_to_cpu(bp.v->seq),
|
|
le16_to_cpu(bp.v->sectors_written),
|
|
BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : "");
|
|
|
|
bch2_bpos_to_text(out, bp.v->min_key);
|
|
prt_printf(out, " ");
|
|
bch2_bkey_ptrs_to_text(out, c, k);
|
|
}
|
|
|
|
void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version,
|
|
unsigned big_endian, int write,
|
|
struct bkey_s k)
|
|
{
|
|
struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k);
|
|
|
|
compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key);
|
|
|
|
if (version < bcachefs_metadata_version_inode_btree_change &&
|
|
btree_id_is_extents(btree_id) &&
|
|
!bkey_eq(bp.v->min_key, POS_MIN))
|
|
bp.v->min_key = write
|
|
? bpos_nosnap_predecessor(bp.v->min_key)
|
|
: bpos_nosnap_successor(bp.v->min_key);
|
|
}
|
|
|
|
/* KEY_TYPE_extent: */
|
|
|
|
bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r)
|
|
{
|
|
struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(l);
|
|
struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r);
|
|
union bch_extent_entry *en_l;
|
|
const union bch_extent_entry *en_r;
|
|
struct extent_ptr_decoded lp, rp;
|
|
bool use_right_ptr;
|
|
|
|
en_l = l_ptrs.start;
|
|
en_r = r_ptrs.start;
|
|
while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
|
|
if (extent_entry_type(en_l) != extent_entry_type(en_r))
|
|
return false;
|
|
|
|
en_l = extent_entry_next(en_l);
|
|
en_r = extent_entry_next(en_r);
|
|
}
|
|
|
|
if (en_l < l_ptrs.end || en_r < r_ptrs.end)
|
|
return false;
|
|
|
|
en_l = l_ptrs.start;
|
|
en_r = r_ptrs.start;
|
|
lp.crc = bch2_extent_crc_unpack(l.k, NULL);
|
|
rp.crc = bch2_extent_crc_unpack(r.k, NULL);
|
|
|
|
while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) &&
|
|
__bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) {
|
|
if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size !=
|
|
rp.ptr.offset + rp.crc.offset ||
|
|
lp.ptr.dev != rp.ptr.dev ||
|
|
lp.ptr.gen != rp.ptr.gen ||
|
|
lp.ptr.unwritten != rp.ptr.unwritten ||
|
|
lp.has_ec != rp.has_ec)
|
|
return false;
|
|
|
|
/* Extents may not straddle buckets: */
|
|
rcu_read_lock();
|
|
struct bch_dev *ca = bch2_dev_rcu(c, lp.ptr.dev);
|
|
bool same_bucket = ca && PTR_BUCKET_NR(ca, &lp.ptr) == PTR_BUCKET_NR(ca, &rp.ptr);
|
|
rcu_read_unlock();
|
|
|
|
if (!same_bucket)
|
|
return false;
|
|
|
|
if (lp.has_ec != rp.has_ec ||
|
|
(lp.has_ec &&
|
|
(lp.ec.block != rp.ec.block ||
|
|
lp.ec.redundancy != rp.ec.redundancy ||
|
|
lp.ec.idx != rp.ec.idx)))
|
|
return false;
|
|
|
|
if (lp.crc.compression_type != rp.crc.compression_type ||
|
|
lp.crc.nonce != rp.crc.nonce)
|
|
return false;
|
|
|
|
if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <=
|
|
lp.crc.uncompressed_size) {
|
|
/* can use left extent's crc entry */
|
|
} else if (lp.crc.live_size <= rp.crc.offset) {
|
|
/* can use right extent's crc entry */
|
|
} else {
|
|
/* check if checksums can be merged: */
|
|
if (lp.crc.csum_type != rp.crc.csum_type ||
|
|
lp.crc.nonce != rp.crc.nonce ||
|
|
crc_is_compressed(lp.crc) ||
|
|
!bch2_checksum_mergeable(lp.crc.csum_type))
|
|
return false;
|
|
|
|
if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size ||
|
|
rp.crc.offset)
|
|
return false;
|
|
|
|
if (lp.crc.csum_type &&
|
|
lp.crc.uncompressed_size +
|
|
rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9))
|
|
return false;
|
|
}
|
|
|
|
en_l = extent_entry_next(en_l);
|
|
en_r = extent_entry_next(en_r);
|
|
}
|
|
|
|
en_l = l_ptrs.start;
|
|
en_r = r_ptrs.start;
|
|
while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
|
|
if (extent_entry_is_crc(en_l)) {
|
|
struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l));
|
|
struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r));
|
|
|
|
if (crc_l.uncompressed_size + crc_r.uncompressed_size >
|
|
bch2_crc_field_size_max[extent_entry_type(en_l)])
|
|
return false;
|
|
}
|
|
|
|
en_l = extent_entry_next(en_l);
|
|
en_r = extent_entry_next(en_r);
|
|
}
|
|
|
|
use_right_ptr = false;
|
|
en_l = l_ptrs.start;
|
|
en_r = r_ptrs.start;
|
|
while (en_l < l_ptrs.end) {
|
|
if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr &&
|
|
use_right_ptr)
|
|
en_l->ptr = en_r->ptr;
|
|
|
|
if (extent_entry_is_crc(en_l)) {
|
|
struct bch_extent_crc_unpacked crc_l =
|
|
bch2_extent_crc_unpack(l.k, entry_to_crc(en_l));
|
|
struct bch_extent_crc_unpacked crc_r =
|
|
bch2_extent_crc_unpack(r.k, entry_to_crc(en_r));
|
|
|
|
use_right_ptr = false;
|
|
|
|
if (crc_l.offset + crc_l.live_size + crc_r.live_size <=
|
|
crc_l.uncompressed_size) {
|
|
/* can use left extent's crc entry */
|
|
} else if (crc_l.live_size <= crc_r.offset) {
|
|
/* can use right extent's crc entry */
|
|
crc_r.offset -= crc_l.live_size;
|
|
bch2_extent_crc_pack(entry_to_crc(en_l), crc_r,
|
|
extent_entry_type(en_l));
|
|
use_right_ptr = true;
|
|
} else {
|
|
crc_l.csum = bch2_checksum_merge(crc_l.csum_type,
|
|
crc_l.csum,
|
|
crc_r.csum,
|
|
crc_r.uncompressed_size << 9);
|
|
|
|
crc_l.uncompressed_size += crc_r.uncompressed_size;
|
|
crc_l.compressed_size += crc_r.compressed_size;
|
|
bch2_extent_crc_pack(entry_to_crc(en_l), crc_l,
|
|
extent_entry_type(en_l));
|
|
}
|
|
}
|
|
|
|
en_l = extent_entry_next(en_l);
|
|
en_r = extent_entry_next(en_r);
|
|
}
|
|
|
|
bch2_key_resize(l.k, l.k->size + r.k->size);
|
|
return true;
|
|
}
|
|
|
|
/* KEY_TYPE_reservation: */
|
|
|
|
int bch2_reservation_validate(struct bch_fs *c, struct bkey_s_c k,
|
|
enum bch_validate_flags flags)
|
|
{
|
|
struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
|
|
int ret = 0;
|
|
|
|
bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX,
|
|
c, reservation_key_nr_replicas_invalid,
|
|
"invalid nr_replicas (%u)", r.v->nr_replicas);
|
|
fsck_err:
|
|
return ret;
|
|
}
|
|
|
|
void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c,
|
|
struct bkey_s_c k)
|
|
{
|
|
struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
|
|
|
|
prt_printf(out, "generation %u replicas %u",
|
|
le32_to_cpu(r.v->generation),
|
|
r.v->nr_replicas);
|
|
}
|
|
|
|
bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r)
|
|
{
|
|
struct bkey_s_reservation l = bkey_s_to_reservation(_l);
|
|
struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r);
|
|
|
|
if (l.v->generation != r.v->generation ||
|
|
l.v->nr_replicas != r.v->nr_replicas)
|
|
return false;
|
|
|
|
bch2_key_resize(l.k, l.k->size + r.k->size);
|
|
return true;
|
|
}
|
|
|
|
/* Extent checksum entries: */
|
|
|
|
/* returns true if not equal */
|
|
static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,
|
|
struct bch_extent_crc_unpacked r)
|
|
{
|
|
return (l.csum_type != r.csum_type ||
|
|
l.compression_type != r.compression_type ||
|
|
l.compressed_size != r.compressed_size ||
|
|
l.uncompressed_size != r.uncompressed_size ||
|
|
l.offset != r.offset ||
|
|
l.live_size != r.live_size ||
|
|
l.nonce != r.nonce ||
|
|
bch2_crc_cmp(l.csum, r.csum));
|
|
}
|
|
|
|
static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u,
|
|
struct bch_extent_crc_unpacked n)
|
|
{
|
|
return !crc_is_compressed(u) &&
|
|
u.csum_type &&
|
|
u.uncompressed_size > u.live_size &&
|
|
bch2_csum_type_is_encryption(u.csum_type) ==
|
|
bch2_csum_type_is_encryption(n.csum_type);
|
|
}
|
|
|
|
bool bch2_can_narrow_extent_crcs(struct bkey_s_c k,
|
|
struct bch_extent_crc_unpacked n)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
struct bch_extent_crc_unpacked crc;
|
|
const union bch_extent_entry *i;
|
|
|
|
if (!n.csum_type)
|
|
return false;
|
|
|
|
bkey_for_each_crc(k.k, ptrs, crc, i)
|
|
if (can_narrow_crc(crc, n))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We're writing another replica for this extent, so while we've got the data in
|
|
* memory we'll be computing a new checksum for the currently live data.
|
|
*
|
|
* If there are other replicas we aren't moving, and they are checksummed but
|
|
* not compressed, we can modify them to point to only the data that is
|
|
* currently live (so that readers won't have to bounce) while we've got the
|
|
* checksum we need:
|
|
*/
|
|
bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n)
|
|
{
|
|
struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
|
|
struct bch_extent_crc_unpacked u;
|
|
struct extent_ptr_decoded p;
|
|
union bch_extent_entry *i;
|
|
bool ret = false;
|
|
|
|
/* Find a checksum entry that covers only live data: */
|
|
if (!n.csum_type) {
|
|
bkey_for_each_crc(&k->k, ptrs, u, i)
|
|
if (!crc_is_compressed(u) &&
|
|
u.csum_type &&
|
|
u.live_size == u.uncompressed_size) {
|
|
n = u;
|
|
goto found;
|
|
}
|
|
return false;
|
|
}
|
|
found:
|
|
BUG_ON(crc_is_compressed(n));
|
|
BUG_ON(n.offset);
|
|
BUG_ON(n.live_size != k->k.size);
|
|
|
|
restart_narrow_pointers:
|
|
ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
|
|
|
|
bkey_for_each_ptr_decode(&k->k, ptrs, p, i)
|
|
if (can_narrow_crc(p.crc, n)) {
|
|
bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr);
|
|
p.ptr.offset += p.crc.offset;
|
|
p.crc = n;
|
|
bch2_extent_ptr_decoded_append(k, &p);
|
|
ret = true;
|
|
goto restart_narrow_pointers;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void bch2_extent_crc_pack(union bch_extent_crc *dst,
|
|
struct bch_extent_crc_unpacked src,
|
|
enum bch_extent_entry_type type)
|
|
{
|
|
#define set_common_fields(_dst, _src) \
|
|
_dst.type = 1 << type; \
|
|
_dst.csum_type = _src.csum_type, \
|
|
_dst.compression_type = _src.compression_type, \
|
|
_dst._compressed_size = _src.compressed_size - 1, \
|
|
_dst._uncompressed_size = _src.uncompressed_size - 1, \
|
|
_dst.offset = _src.offset
|
|
|
|
switch (type) {
|
|
case BCH_EXTENT_ENTRY_crc32:
|
|
set_common_fields(dst->crc32, src);
|
|
dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo);
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc64:
|
|
set_common_fields(dst->crc64, src);
|
|
dst->crc64.nonce = src.nonce;
|
|
dst->crc64.csum_lo = (u64 __force) src.csum.lo;
|
|
dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi);
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc128:
|
|
set_common_fields(dst->crc128, src);
|
|
dst->crc128.nonce = src.nonce;
|
|
dst->crc128.csum = src.csum;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
#undef set_common_fields
|
|
}
|
|
|
|
void bch2_extent_crc_append(struct bkey_i *k,
|
|
struct bch_extent_crc_unpacked new)
|
|
{
|
|
struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
|
|
union bch_extent_crc *crc = (void *) ptrs.end;
|
|
enum bch_extent_entry_type type;
|
|
|
|
if (bch_crc_bytes[new.csum_type] <= 4 &&
|
|
new.uncompressed_size <= CRC32_SIZE_MAX &&
|
|
new.nonce <= CRC32_NONCE_MAX)
|
|
type = BCH_EXTENT_ENTRY_crc32;
|
|
else if (bch_crc_bytes[new.csum_type] <= 10 &&
|
|
new.uncompressed_size <= CRC64_SIZE_MAX &&
|
|
new.nonce <= CRC64_NONCE_MAX)
|
|
type = BCH_EXTENT_ENTRY_crc64;
|
|
else if (bch_crc_bytes[new.csum_type] <= 16 &&
|
|
new.uncompressed_size <= CRC128_SIZE_MAX &&
|
|
new.nonce <= CRC128_NONCE_MAX)
|
|
type = BCH_EXTENT_ENTRY_crc128;
|
|
else
|
|
BUG();
|
|
|
|
bch2_extent_crc_pack(crc, new, type);
|
|
|
|
k->k.u64s += extent_entry_u64s(ptrs.end);
|
|
|
|
EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX);
|
|
}
|
|
|
|
/* Generic code for keys with pointers: */
|
|
|
|
unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k)
|
|
{
|
|
return bch2_bkey_devs(k).nr;
|
|
}
|
|
|
|
unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k)
|
|
{
|
|
return k.k->type == KEY_TYPE_reservation
|
|
? bkey_s_c_to_reservation(k).v->nr_replicas
|
|
: bch2_bkey_dirty_devs(k).nr;
|
|
}
|
|
|
|
unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k)
|
|
{
|
|
unsigned ret = 0;
|
|
|
|
if (k.k->type == KEY_TYPE_reservation) {
|
|
ret = bkey_s_c_to_reservation(k).v->nr_replicas;
|
|
} else {
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
|
|
ret += !p.ptr.cached && !crc_is_compressed(p.crc);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
unsigned ret = 0;
|
|
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
|
|
if (!p.ptr.cached && crc_is_compressed(p.crc))
|
|
ret += p.crc.compressed_size;
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool bch2_bkey_is_incompressible(struct bkey_s_c k)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct bch_extent_crc_unpacked crc;
|
|
|
|
bkey_for_each_crc(k.k, ptrs, crc, entry)
|
|
if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p = { 0 };
|
|
unsigned replicas = 0;
|
|
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
|
|
if (p.ptr.cached)
|
|
continue;
|
|
|
|
if (p.has_ec)
|
|
replicas += p.ec.redundancy;
|
|
|
|
replicas++;
|
|
|
|
}
|
|
|
|
return replicas;
|
|
}
|
|
|
|
static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p)
|
|
{
|
|
if (p->ptr.cached)
|
|
return 0;
|
|
|
|
return p->has_ec
|
|
? p->ec.redundancy + 1
|
|
: ca->mi.durability;
|
|
}
|
|
|
|
unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
|
|
{
|
|
struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev);
|
|
|
|
return ca ? __extent_ptr_durability(ca, p) : 0;
|
|
}
|
|
|
|
unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
|
|
{
|
|
struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev);
|
|
|
|
if (!ca || ca->mi.state == BCH_MEMBER_STATE_failed)
|
|
return 0;
|
|
|
|
return __extent_ptr_durability(ca, p);
|
|
}
|
|
|
|
unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
unsigned durability = 0;
|
|
|
|
rcu_read_lock();
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
|
|
durability += bch2_extent_ptr_durability(c, &p);
|
|
rcu_read_unlock();
|
|
|
|
return durability;
|
|
}
|
|
|
|
static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
unsigned durability = 0;
|
|
|
|
rcu_read_lock();
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
|
|
if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev])
|
|
durability += bch2_extent_ptr_durability(c, &p);
|
|
rcu_read_unlock();
|
|
|
|
return durability;
|
|
}
|
|
|
|
void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry)
|
|
{
|
|
union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k));
|
|
union bch_extent_entry *next = extent_entry_next(entry);
|
|
|
|
memmove_u64s(entry, next, (u64 *) end - (u64 *) next);
|
|
k->k.u64s -= extent_entry_u64s(entry);
|
|
}
|
|
|
|
void bch2_extent_ptr_decoded_append(struct bkey_i *k,
|
|
struct extent_ptr_decoded *p)
|
|
{
|
|
struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
|
|
struct bch_extent_crc_unpacked crc =
|
|
bch2_extent_crc_unpack(&k->k, NULL);
|
|
union bch_extent_entry *pos;
|
|
|
|
if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
|
|
pos = ptrs.start;
|
|
goto found;
|
|
}
|
|
|
|
bkey_for_each_crc(&k->k, ptrs, crc, pos)
|
|
if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
|
|
pos = extent_entry_next(pos);
|
|
goto found;
|
|
}
|
|
|
|
bch2_extent_crc_append(k, p->crc);
|
|
pos = bkey_val_end(bkey_i_to_s(k));
|
|
found:
|
|
p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr;
|
|
__extent_entry_insert(k, pos, to_entry(&p->ptr));
|
|
|
|
if (p->has_ec) {
|
|
p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr;
|
|
__extent_entry_insert(k, pos, to_entry(&p->ec));
|
|
}
|
|
}
|
|
|
|
static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs,
|
|
union bch_extent_entry *entry)
|
|
{
|
|
union bch_extent_entry *i = ptrs.start;
|
|
|
|
if (i == entry)
|
|
return NULL;
|
|
|
|
while (extent_entry_next(i) != entry)
|
|
i = extent_entry_next(i);
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Returns pointer to the next entry after the one being dropped:
|
|
*/
|
|
void bch2_bkey_drop_ptr_noerror(struct bkey_s k, struct bch_extent_ptr *ptr)
|
|
{
|
|
struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
|
|
union bch_extent_entry *entry = to_entry(ptr), *next;
|
|
bool drop_crc = true;
|
|
|
|
if (k.k->type == KEY_TYPE_stripe) {
|
|
ptr->dev = BCH_SB_MEMBER_INVALID;
|
|
return;
|
|
}
|
|
|
|
EBUG_ON(ptr < &ptrs.start->ptr ||
|
|
ptr >= &ptrs.end->ptr);
|
|
EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr);
|
|
|
|
for (next = extent_entry_next(entry);
|
|
next != ptrs.end;
|
|
next = extent_entry_next(next)) {
|
|
if (extent_entry_is_crc(next)) {
|
|
break;
|
|
} else if (extent_entry_is_ptr(next)) {
|
|
drop_crc = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
extent_entry_drop(k, entry);
|
|
|
|
while ((entry = extent_entry_prev(ptrs, entry))) {
|
|
if (extent_entry_is_ptr(entry))
|
|
break;
|
|
|
|
if ((extent_entry_is_crc(entry) && drop_crc) ||
|
|
extent_entry_is_stripe_ptr(entry))
|
|
extent_entry_drop(k, entry);
|
|
}
|
|
}
|
|
|
|
void bch2_bkey_drop_ptr(struct bkey_s k, struct bch_extent_ptr *ptr)
|
|
{
|
|
if (k.k->type != KEY_TYPE_stripe) {
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k.s_c);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
|
|
if (p.ptr.dev == ptr->dev && p.has_ec) {
|
|
ptr->dev = BCH_SB_MEMBER_INVALID;
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr;
|
|
|
|
bch2_bkey_drop_ptr_noerror(k, ptr);
|
|
|
|
/*
|
|
* If we deleted all the dirty pointers and there's still cached
|
|
* pointers, we could set the cached pointers to dirty if they're not
|
|
* stale - but to do that correctly we'd need to grab an open_bucket
|
|
* reference so that we don't race with bucket reuse:
|
|
*/
|
|
if (have_dirty &&
|
|
!bch2_bkey_dirty_devs(k.s_c).nr) {
|
|
k.k->type = KEY_TYPE_error;
|
|
set_bkey_val_u64s(k.k, 0);
|
|
} else if (!bch2_bkey_nr_ptrs(k.s_c)) {
|
|
k.k->type = KEY_TYPE_deleted;
|
|
set_bkey_val_u64s(k.k, 0);
|
|
}
|
|
}
|
|
|
|
void bch2_bkey_drop_device(struct bkey_s k, unsigned dev)
|
|
{
|
|
bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev);
|
|
}
|
|
|
|
void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev)
|
|
{
|
|
bch2_bkey_drop_ptrs_noerror(k, ptr, ptr->dev == dev);
|
|
}
|
|
|
|
const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
|
|
bkey_for_each_ptr(ptrs, ptr)
|
|
if (ptr->dev == dev)
|
|
return ptr;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
struct bch_dev *ca;
|
|
bool ret = false;
|
|
|
|
rcu_read_lock();
|
|
bkey_for_each_ptr(ptrs, ptr)
|
|
if (bch2_dev_in_target(c, ptr->dev, target) &&
|
|
(ca = bch2_dev_rcu(c, ptr->dev)) &&
|
|
(!ptr->cached ||
|
|
!dev_ptr_stale_rcu(ca, ptr))) {
|
|
ret = true;
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k,
|
|
struct bch_extent_ptr m, u64 offset)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
|
|
if (p.ptr.dev == m.dev &&
|
|
p.ptr.gen == m.gen &&
|
|
(s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) ==
|
|
(s64) m.offset - offset)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Returns true if two extents refer to the same data:
|
|
*/
|
|
bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2)
|
|
{
|
|
if (k1.k->type != k2.k->type)
|
|
return false;
|
|
|
|
if (bkey_extent_is_direct_data(k1.k)) {
|
|
struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1);
|
|
struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2);
|
|
const union bch_extent_entry *entry1, *entry2;
|
|
struct extent_ptr_decoded p1, p2;
|
|
|
|
if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2))
|
|
return false;
|
|
|
|
bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1)
|
|
bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
|
|
if (p1.ptr.dev == p2.ptr.dev &&
|
|
p1.ptr.gen == p2.ptr.gen &&
|
|
|
|
/*
|
|
* This checks that the two pointers point
|
|
* to the same region on disk - adjusting
|
|
* for the difference in where the extents
|
|
* start, since one may have been trimmed:
|
|
*/
|
|
(s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) ==
|
|
(s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k) &&
|
|
|
|
/*
|
|
* This additionally checks that the
|
|
* extents overlap on disk, since the
|
|
* previous check may trigger spuriously
|
|
* when one extent is immediately partially
|
|
* overwritten with another extent (so that
|
|
* on disk they are adjacent) and
|
|
* compression is in use:
|
|
*/
|
|
((p1.ptr.offset >= p2.ptr.offset &&
|
|
p1.ptr.offset < p2.ptr.offset + p2.crc.compressed_size) ||
|
|
(p2.ptr.offset >= p1.ptr.offset &&
|
|
p2.ptr.offset < p1.ptr.offset + p1.crc.compressed_size)))
|
|
return true;
|
|
|
|
return false;
|
|
} else {
|
|
/* KEY_TYPE_deleted, etc. */
|
|
return true;
|
|
}
|
|
}
|
|
|
|
struct bch_extent_ptr *
|
|
bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2)
|
|
{
|
|
struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2);
|
|
union bch_extent_entry *entry2;
|
|
struct extent_ptr_decoded p2;
|
|
|
|
bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
|
|
if (p1.ptr.dev == p2.ptr.dev &&
|
|
p1.ptr.gen == p2.ptr.gen &&
|
|
(s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) ==
|
|
(s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k))
|
|
return &entry2->ptr;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool want_cached_ptr(struct bch_fs *c, struct bch_io_opts *opts,
|
|
struct bch_extent_ptr *ptr)
|
|
{
|
|
if (!opts->promote_target ||
|
|
!bch2_dev_in_target(c, ptr->dev, opts->promote_target))
|
|
return false;
|
|
|
|
struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev);
|
|
|
|
return ca && bch2_dev_is_readable(ca) && !dev_ptr_stale_rcu(ca, ptr);
|
|
}
|
|
|
|
void bch2_extent_ptr_set_cached(struct bch_fs *c,
|
|
struct bch_io_opts *opts,
|
|
struct bkey_s k,
|
|
struct bch_extent_ptr *ptr)
|
|
{
|
|
struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
|
|
union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
|
|
rcu_read_lock();
|
|
if (!want_cached_ptr(c, opts, ptr)) {
|
|
bch2_bkey_drop_ptr_noerror(k, ptr);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Stripes can't contain cached data, for - reasons.
|
|
*
|
|
* Possibly something we can fix in the future?
|
|
*/
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
|
|
if (&entry->ptr == ptr) {
|
|
if (p.has_ec)
|
|
bch2_bkey_drop_ptr_noerror(k, ptr);
|
|
else
|
|
ptr->cached = true;
|
|
goto out;
|
|
}
|
|
|
|
BUG();
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* bch2_extent_normalize - clean up an extent, dropping stale pointers etc.
|
|
*
|
|
* Returns true if @k should be dropped entirely
|
|
*
|
|
* For existing keys, only called when btree nodes are being rewritten, not when
|
|
* they're merely being compacted/resorted in memory.
|
|
*/
|
|
bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k)
|
|
{
|
|
struct bch_dev *ca;
|
|
|
|
rcu_read_lock();
|
|
bch2_bkey_drop_ptrs(k, ptr,
|
|
ptr->cached &&
|
|
(!(ca = bch2_dev_rcu(c, ptr->dev)) ||
|
|
dev_ptr_stale_rcu(ca, ptr) > 0));
|
|
rcu_read_unlock();
|
|
|
|
return bkey_deleted(k.k);
|
|
}
|
|
|
|
/*
|
|
* bch2_extent_normalize_by_opts - clean up an extent, dropping stale pointers etc.
|
|
*
|
|
* Like bch2_extent_normalize(), but also only keeps a single cached pointer on
|
|
* the promote target.
|
|
*/
|
|
bool bch2_extent_normalize_by_opts(struct bch_fs *c,
|
|
struct bch_io_opts *opts,
|
|
struct bkey_s k)
|
|
{
|
|
struct bkey_ptrs ptrs;
|
|
bool have_cached_ptr;
|
|
|
|
rcu_read_lock();
|
|
restart_drop_ptrs:
|
|
ptrs = bch2_bkey_ptrs(k);
|
|
have_cached_ptr = false;
|
|
|
|
bkey_for_each_ptr(ptrs, ptr)
|
|
if (ptr->cached) {
|
|
if (have_cached_ptr || !want_cached_ptr(c, opts, ptr)) {
|
|
bch2_bkey_drop_ptr(k, ptr);
|
|
goto restart_drop_ptrs;
|
|
}
|
|
have_cached_ptr = true;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return bkey_deleted(k.k);
|
|
}
|
|
|
|
void bch2_extent_ptr_to_text(struct printbuf *out, struct bch_fs *c, const struct bch_extent_ptr *ptr)
|
|
{
|
|
out->atomic++;
|
|
rcu_read_lock();
|
|
struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev);
|
|
if (!ca) {
|
|
prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev,
|
|
(u64) ptr->offset, ptr->gen,
|
|
ptr->cached ? " cached" : "");
|
|
} else {
|
|
u32 offset;
|
|
u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset);
|
|
|
|
prt_printf(out, "ptr: %u:%llu:%u gen %u",
|
|
ptr->dev, b, offset, ptr->gen);
|
|
if (ca->mi.durability != 1)
|
|
prt_printf(out, " d=%u", ca->mi.durability);
|
|
if (ptr->cached)
|
|
prt_str(out, " cached");
|
|
if (ptr->unwritten)
|
|
prt_str(out, " unwritten");
|
|
int stale = dev_ptr_stale_rcu(ca, ptr);
|
|
if (stale > 0)
|
|
prt_printf(out, " stale");
|
|
else if (stale)
|
|
prt_printf(out, " invalid");
|
|
}
|
|
rcu_read_unlock();
|
|
--out->atomic;
|
|
}
|
|
|
|
void bch2_extent_crc_unpacked_to_text(struct printbuf *out, struct bch_extent_crc_unpacked *crc)
|
|
{
|
|
prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum ",
|
|
crc->compressed_size,
|
|
crc->uncompressed_size,
|
|
crc->offset, crc->nonce);
|
|
bch2_prt_csum_type(out, crc->csum_type);
|
|
prt_printf(out, " %0llx:%0llx ", crc->csum.hi, crc->csum.lo);
|
|
prt_str(out, " compress ");
|
|
bch2_prt_compression_type(out, crc->compression_type);
|
|
}
|
|
|
|
void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c,
|
|
struct bkey_s_c k)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
bool first = true;
|
|
|
|
if (c)
|
|
prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k));
|
|
|
|
bkey_extent_entry_for_each(ptrs, entry) {
|
|
if (!first)
|
|
prt_printf(out, " ");
|
|
|
|
switch (__extent_entry_type(entry)) {
|
|
case BCH_EXTENT_ENTRY_ptr:
|
|
bch2_extent_ptr_to_text(out, c, entry_to_ptr(entry));
|
|
break;
|
|
|
|
case BCH_EXTENT_ENTRY_crc32:
|
|
case BCH_EXTENT_ENTRY_crc64:
|
|
case BCH_EXTENT_ENTRY_crc128: {
|
|
struct bch_extent_crc_unpacked crc =
|
|
bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
|
|
|
|
bch2_extent_crc_unpacked_to_text(out, &crc);
|
|
break;
|
|
}
|
|
case BCH_EXTENT_ENTRY_stripe_ptr: {
|
|
const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr;
|
|
|
|
prt_printf(out, "ec: idx %llu block %u",
|
|
(u64) ec->idx, ec->block);
|
|
break;
|
|
}
|
|
case BCH_EXTENT_ENTRY_rebalance: {
|
|
const struct bch_extent_rebalance *r = &entry->rebalance;
|
|
|
|
prt_str(out, "rebalance: target ");
|
|
if (c)
|
|
bch2_target_to_text(out, c, r->target);
|
|
else
|
|
prt_printf(out, "%u", r->target);
|
|
prt_str(out, " compression ");
|
|
bch2_compression_opt_to_text(out, r->compression);
|
|
break;
|
|
}
|
|
default:
|
|
prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry));
|
|
return;
|
|
}
|
|
|
|
first = false;
|
|
}
|
|
}
|
|
|
|
static int extent_ptr_validate(struct bch_fs *c,
|
|
struct bkey_s_c k,
|
|
enum bch_validate_flags flags,
|
|
const struct bch_extent_ptr *ptr,
|
|
unsigned size_ondisk,
|
|
bool metadata)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* bad pointers are repaired by check_fix_ptrs(): */
|
|
rcu_read_lock();
|
|
struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev);
|
|
if (!ca) {
|
|
rcu_read_unlock();
|
|
return 0;
|
|
}
|
|
u32 bucket_offset;
|
|
u64 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset);
|
|
unsigned first_bucket = ca->mi.first_bucket;
|
|
u64 nbuckets = ca->mi.nbuckets;
|
|
unsigned bucket_size = ca->mi.bucket_size;
|
|
rcu_read_unlock();
|
|
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
bkey_for_each_ptr(ptrs, ptr2)
|
|
bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev,
|
|
c, ptr_to_duplicate_device,
|
|
"multiple pointers to same device (%u)", ptr->dev);
|
|
|
|
|
|
bkey_fsck_err_on(bucket >= nbuckets,
|
|
c, ptr_after_last_bucket,
|
|
"pointer past last bucket (%llu > %llu)", bucket, nbuckets);
|
|
bkey_fsck_err_on(bucket < first_bucket,
|
|
c, ptr_before_first_bucket,
|
|
"pointer before first bucket (%llu < %u)", bucket, first_bucket);
|
|
bkey_fsck_err_on(bucket_offset + size_ondisk > bucket_size,
|
|
c, ptr_spans_multiple_buckets,
|
|
"pointer spans multiple buckets (%u + %u > %u)",
|
|
bucket_offset, size_ondisk, bucket_size);
|
|
fsck_err:
|
|
return ret;
|
|
}
|
|
|
|
int bch2_bkey_ptrs_validate(struct bch_fs *c, struct bkey_s_c k,
|
|
enum bch_validate_flags flags)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct bch_extent_crc_unpacked crc;
|
|
unsigned size_ondisk = k.k->size;
|
|
unsigned nonce = UINT_MAX;
|
|
unsigned nr_ptrs = 0;
|
|
bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false;
|
|
int ret = 0;
|
|
|
|
if (bkey_is_btree_ptr(k.k))
|
|
size_ondisk = btree_sectors(c);
|
|
|
|
bkey_extent_entry_for_each(ptrs, entry) {
|
|
bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX,
|
|
c, extent_ptrs_invalid_entry,
|
|
"invalid extent entry type (got %u, max %u)",
|
|
__extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX);
|
|
|
|
bkey_fsck_err_on(bkey_is_btree_ptr(k.k) &&
|
|
!extent_entry_is_ptr(entry),
|
|
c, btree_ptr_has_non_ptr,
|
|
"has non ptr field");
|
|
|
|
switch (extent_entry_type(entry)) {
|
|
case BCH_EXTENT_ENTRY_ptr:
|
|
ret = extent_ptr_validate(c, k, flags, &entry->ptr, size_ondisk, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bkey_fsck_err_on(entry->ptr.cached && have_ec,
|
|
c, ptr_cached_and_erasure_coded,
|
|
"cached, erasure coded ptr");
|
|
|
|
if (!entry->ptr.unwritten)
|
|
have_written = true;
|
|
else
|
|
have_unwritten = true;
|
|
|
|
have_ec = false;
|
|
crc_since_last_ptr = false;
|
|
nr_ptrs++;
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc32:
|
|
case BCH_EXTENT_ENTRY_crc64:
|
|
case BCH_EXTENT_ENTRY_crc128:
|
|
crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
|
|
|
|
bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size,
|
|
c, ptr_crc_uncompressed_size_too_small,
|
|
"checksum offset + key size > uncompressed size");
|
|
bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type),
|
|
c, ptr_crc_csum_type_unknown,
|
|
"invalid checksum type");
|
|
bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR,
|
|
c, ptr_crc_compression_type_unknown,
|
|
"invalid compression type");
|
|
|
|
if (bch2_csum_type_is_encryption(crc.csum_type)) {
|
|
if (nonce == UINT_MAX)
|
|
nonce = crc.offset + crc.nonce;
|
|
else if (nonce != crc.offset + crc.nonce)
|
|
bkey_fsck_err(c, ptr_crc_nonce_mismatch,
|
|
"incorrect nonce");
|
|
}
|
|
|
|
bkey_fsck_err_on(crc_since_last_ptr,
|
|
c, ptr_crc_redundant,
|
|
"redundant crc entry");
|
|
crc_since_last_ptr = true;
|
|
|
|
bkey_fsck_err_on(crc_is_encoded(crc) &&
|
|
(crc.uncompressed_size > c->opts.encoded_extent_max >> 9) &&
|
|
(flags & (BCH_VALIDATE_write|BCH_VALIDATE_commit)),
|
|
c, ptr_crc_uncompressed_size_too_big,
|
|
"too large encoded extent");
|
|
|
|
size_ondisk = crc.compressed_size;
|
|
break;
|
|
case BCH_EXTENT_ENTRY_stripe_ptr:
|
|
bkey_fsck_err_on(have_ec,
|
|
c, ptr_stripe_redundant,
|
|
"redundant stripe entry");
|
|
have_ec = true;
|
|
break;
|
|
case BCH_EXTENT_ENTRY_rebalance: {
|
|
/*
|
|
* this shouldn't be a fsck error, for forward
|
|
* compatibility; the rebalance code should just refetch
|
|
* the compression opt if it's unknown
|
|
*/
|
|
#if 0
|
|
const struct bch_extent_rebalance *r = &entry->rebalance;
|
|
|
|
if (!bch2_compression_opt_valid(r->compression)) {
|
|
struct bch_compression_opt opt = __bch2_compression_decode(r->compression);
|
|
prt_printf(err, "invalid compression opt %u:%u",
|
|
opt.type, opt.level);
|
|
return -BCH_ERR_invalid_bkey;
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bkey_fsck_err_on(!nr_ptrs,
|
|
c, extent_ptrs_no_ptrs,
|
|
"no ptrs");
|
|
bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX,
|
|
c, extent_ptrs_too_many_ptrs,
|
|
"too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX);
|
|
bkey_fsck_err_on(have_written && have_unwritten,
|
|
c, extent_ptrs_written_and_unwritten,
|
|
"extent with unwritten and written ptrs");
|
|
bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten,
|
|
c, extent_ptrs_unwritten,
|
|
"has unwritten ptrs");
|
|
bkey_fsck_err_on(crc_since_last_ptr,
|
|
c, extent_ptrs_redundant_crc,
|
|
"redundant crc entry");
|
|
bkey_fsck_err_on(have_ec,
|
|
c, extent_ptrs_redundant_stripe,
|
|
"redundant stripe entry");
|
|
fsck_err:
|
|
return ret;
|
|
}
|
|
|
|
void bch2_ptr_swab(struct bkey_s k)
|
|
{
|
|
struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
|
|
union bch_extent_entry *entry;
|
|
u64 *d;
|
|
|
|
for (d = (u64 *) ptrs.start;
|
|
d != (u64 *) ptrs.end;
|
|
d++)
|
|
*d = swab64(*d);
|
|
|
|
for (entry = ptrs.start;
|
|
entry < ptrs.end;
|
|
entry = extent_entry_next(entry)) {
|
|
switch (__extent_entry_type(entry)) {
|
|
case BCH_EXTENT_ENTRY_ptr:
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc32:
|
|
entry->crc32.csum = swab32(entry->crc32.csum);
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc64:
|
|
entry->crc64.csum_hi = swab16(entry->crc64.csum_hi);
|
|
entry->crc64.csum_lo = swab64(entry->crc64.csum_lo);
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc128:
|
|
entry->crc128.csum.hi = (__force __le64)
|
|
swab64((__force u64) entry->crc128.csum.hi);
|
|
entry->crc128.csum.lo = (__force __le64)
|
|
swab64((__force u64) entry->crc128.csum.lo);
|
|
break;
|
|
case BCH_EXTENT_ENTRY_stripe_ptr:
|
|
break;
|
|
case BCH_EXTENT_ENTRY_rebalance:
|
|
break;
|
|
default:
|
|
/* Bad entry type: will be caught by validate() */
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
|
|
bkey_extent_entry_for_each(ptrs, entry)
|
|
if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance)
|
|
return &entry->rebalance;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k,
|
|
unsigned target, unsigned compression)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
unsigned rewrite_ptrs = 0;
|
|
|
|
if (compression) {
|
|
unsigned compression_type = bch2_compression_opt_to_type(compression);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
unsigned i = 0;
|
|
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
|
|
if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible ||
|
|
p.ptr.unwritten) {
|
|
rewrite_ptrs = 0;
|
|
goto incompressible;
|
|
}
|
|
|
|
if (!p.ptr.cached && p.crc.compression_type != compression_type)
|
|
rewrite_ptrs |= 1U << i;
|
|
i++;
|
|
}
|
|
}
|
|
incompressible:
|
|
if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) {
|
|
unsigned i = 0;
|
|
|
|
bkey_for_each_ptr(ptrs, ptr) {
|
|
if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target))
|
|
rewrite_ptrs |= 1U << i;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
return rewrite_ptrs;
|
|
}
|
|
|
|
bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k)
|
|
{
|
|
const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k);
|
|
|
|
/*
|
|
* If it's an indirect extent, we don't delete the rebalance entry when
|
|
* done so that we know what options were applied - check if it still
|
|
* needs work done:
|
|
*/
|
|
if (r &&
|
|
k.k->type == KEY_TYPE_reflink_v &&
|
|
!bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression))
|
|
r = NULL;
|
|
|
|
return r != NULL;
|
|
}
|
|
|
|
static u64 __bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k,
|
|
unsigned target, unsigned compression)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
u64 sectors = 0;
|
|
|
|
if (compression) {
|
|
unsigned compression_type = bch2_compression_opt_to_type(compression);
|
|
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
|
|
if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible ||
|
|
p.ptr.unwritten) {
|
|
sectors = 0;
|
|
goto incompressible;
|
|
}
|
|
|
|
if (!p.ptr.cached && p.crc.compression_type != compression_type)
|
|
sectors += p.crc.compressed_size;
|
|
}
|
|
}
|
|
incompressible:
|
|
if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) {
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
|
|
if (!p.ptr.cached && !bch2_dev_in_target(c, p.ptr.dev, target))
|
|
sectors += p.crc.compressed_size;
|
|
}
|
|
|
|
return sectors;
|
|
}
|
|
|
|
u64 bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k)
|
|
{
|
|
const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k);
|
|
|
|
return r ? __bch2_bkey_sectors_need_rebalance(c, k, r->target, r->compression) : 0;
|
|
}
|
|
|
|
int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k,
|
|
struct bch_io_opts *opts)
|
|
{
|
|
struct bkey_s k = bkey_i_to_s(_k);
|
|
struct bch_extent_rebalance *r;
|
|
unsigned target = opts->background_target;
|
|
unsigned compression = background_compression(*opts);
|
|
bool needs_rebalance;
|
|
|
|
if (!bkey_extent_is_direct_data(k.k))
|
|
return 0;
|
|
|
|
/* get existing rebalance entry: */
|
|
r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c);
|
|
if (r) {
|
|
if (k.k->type == KEY_TYPE_reflink_v) {
|
|
/*
|
|
* indirect extents: existing options take precedence,
|
|
* so that we don't move extents back and forth if
|
|
* they're referenced by different inodes with different
|
|
* options:
|
|
*/
|
|
if (r->target)
|
|
target = r->target;
|
|
if (r->compression)
|
|
compression = r->compression;
|
|
}
|
|
|
|
r->target = target;
|
|
r->compression = compression;
|
|
}
|
|
|
|
needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression);
|
|
|
|
if (needs_rebalance && !r) {
|
|
union bch_extent_entry *new = bkey_val_end(k);
|
|
|
|
new->rebalance.type = 1U << BCH_EXTENT_ENTRY_rebalance;
|
|
new->rebalance.compression = compression;
|
|
new->rebalance.target = target;
|
|
new->rebalance.unused = 0;
|
|
k.k->u64s += extent_entry_u64s(new);
|
|
} else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) {
|
|
/*
|
|
* For indirect extents, don't delete the rebalance entry when
|
|
* we're finished so that we know we specifically moved it or
|
|
* compressed it to its current location/compression type
|
|
*/
|
|
extent_entry_drop(k, (union bch_extent_entry *) r);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Generic extent code: */
|
|
|
|
int bch2_cut_front_s(struct bpos where, struct bkey_s k)
|
|
{
|
|
unsigned new_val_u64s = bkey_val_u64s(k.k);
|
|
int val_u64s_delta;
|
|
u64 sub;
|
|
|
|
if (bkey_le(where, bkey_start_pos(k.k)))
|
|
return 0;
|
|
|
|
EBUG_ON(bkey_gt(where, k.k->p));
|
|
|
|
sub = where.offset - bkey_start_offset(k.k);
|
|
|
|
k.k->size -= sub;
|
|
|
|
if (!k.k->size) {
|
|
k.k->type = KEY_TYPE_deleted;
|
|
new_val_u64s = 0;
|
|
}
|
|
|
|
switch (k.k->type) {
|
|
case KEY_TYPE_extent:
|
|
case KEY_TYPE_reflink_v: {
|
|
struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
|
|
union bch_extent_entry *entry;
|
|
bool seen_crc = false;
|
|
|
|
bkey_extent_entry_for_each(ptrs, entry) {
|
|
switch (extent_entry_type(entry)) {
|
|
case BCH_EXTENT_ENTRY_ptr:
|
|
if (!seen_crc)
|
|
entry->ptr.offset += sub;
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc32:
|
|
entry->crc32.offset += sub;
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc64:
|
|
entry->crc64.offset += sub;
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc128:
|
|
entry->crc128.offset += sub;
|
|
break;
|
|
case BCH_EXTENT_ENTRY_stripe_ptr:
|
|
break;
|
|
case BCH_EXTENT_ENTRY_rebalance:
|
|
break;
|
|
}
|
|
|
|
if (extent_entry_is_crc(entry))
|
|
seen_crc = true;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case KEY_TYPE_reflink_p: {
|
|
struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k);
|
|
|
|
le64_add_cpu(&p.v->idx, sub);
|
|
break;
|
|
}
|
|
case KEY_TYPE_inline_data:
|
|
case KEY_TYPE_indirect_inline_data: {
|
|
void *p = bkey_inline_data_p(k);
|
|
unsigned bytes = bkey_inline_data_bytes(k.k);
|
|
|
|
sub = min_t(u64, sub << 9, bytes);
|
|
|
|
memmove(p, p + sub, bytes - sub);
|
|
|
|
new_val_u64s -= sub >> 3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
|
|
BUG_ON(val_u64s_delta < 0);
|
|
|
|
set_bkey_val_u64s(k.k, new_val_u64s);
|
|
memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
|
|
return -val_u64s_delta;
|
|
}
|
|
|
|
int bch2_cut_back_s(struct bpos where, struct bkey_s k)
|
|
{
|
|
unsigned new_val_u64s = bkey_val_u64s(k.k);
|
|
int val_u64s_delta;
|
|
u64 len = 0;
|
|
|
|
if (bkey_ge(where, k.k->p))
|
|
return 0;
|
|
|
|
EBUG_ON(bkey_lt(where, bkey_start_pos(k.k)));
|
|
|
|
len = where.offset - bkey_start_offset(k.k);
|
|
|
|
k.k->p.offset = where.offset;
|
|
k.k->size = len;
|
|
|
|
if (!len) {
|
|
k.k->type = KEY_TYPE_deleted;
|
|
new_val_u64s = 0;
|
|
}
|
|
|
|
switch (k.k->type) {
|
|
case KEY_TYPE_inline_data:
|
|
case KEY_TYPE_indirect_inline_data:
|
|
new_val_u64s = (bkey_inline_data_offset(k.k) +
|
|
min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3;
|
|
break;
|
|
}
|
|
|
|
val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
|
|
BUG_ON(val_u64s_delta < 0);
|
|
|
|
set_bkey_val_u64s(k.k, new_val_u64s);
|
|
memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
|
|
return -val_u64s_delta;
|
|
}
|