Chuck Lever d933cc3201 xprtrdma: Replace PAGE_MASK with offset_in_page()
Clean up.

Reported by: Geliang Tang <geliangtang@gmail.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2017-07-13 16:00:13 -04:00

1226 lines
35 KiB
C

/*
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* rpc_rdma.c
*
* This file contains the guts of the RPC RDMA protocol, and
* does marshaling/unmarshaling, etc. It is also where interfacing
* to the Linux RPC framework lives.
*/
#include "xprt_rdma.h"
#include <linux/highmem.h>
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
# define RPCDBG_FACILITY RPCDBG_TRANS
#endif
static const char transfertypes[][12] = {
"inline", /* no chunks */
"read list", /* some argument via rdma read */
"*read list", /* entire request via rdma read */
"write list", /* some result via rdma write */
"reply chunk" /* entire reply via rdma write */
};
/* Returns size of largest RPC-over-RDMA header in a Call message
*
* The largest Call header contains a full-size Read list and a
* minimal Reply chunk.
*/
static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
{
unsigned int size;
/* Fixed header fields and list discriminators */
size = RPCRDMA_HDRLEN_MIN;
/* Maximum Read list size */
maxsegs += 2; /* segment for head and tail buffers */
size = maxsegs * sizeof(struct rpcrdma_read_chunk);
/* Minimal Read chunk size */
size += sizeof(__be32); /* segment count */
size += sizeof(struct rpcrdma_segment);
size += sizeof(__be32); /* list discriminator */
dprintk("RPC: %s: max call header size = %u\n",
__func__, size);
return size;
}
/* Returns size of largest RPC-over-RDMA header in a Reply message
*
* There is only one Write list or one Reply chunk per Reply
* message. The larger list is the Write list.
*/
static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
{
unsigned int size;
/* Fixed header fields and list discriminators */
size = RPCRDMA_HDRLEN_MIN;
/* Maximum Write list size */
maxsegs += 2; /* segment for head and tail buffers */
size = sizeof(__be32); /* segment count */
size += maxsegs * sizeof(struct rpcrdma_segment);
size += sizeof(__be32); /* list discriminator */
dprintk("RPC: %s: max reply header size = %u\n",
__func__, size);
return size;
}
void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
unsigned int maxsegs = ia->ri_max_segs;
ia->ri_max_inline_write = cdata->inline_wsize -
rpcrdma_max_call_header_size(maxsegs);
ia->ri_max_inline_read = cdata->inline_rsize -
rpcrdma_max_reply_header_size(maxsegs);
}
/* The client can send a request inline as long as the RPCRDMA header
* plus the RPC call fit under the transport's inline limit. If the
* combined call message size exceeds that limit, the client must use
* a Read chunk for this operation.
*
* A Read chunk is also required if sending the RPC call inline would
* exceed this device's max_sge limit.
*/
static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
struct rpc_rqst *rqst)
{
struct xdr_buf *xdr = &rqst->rq_snd_buf;
unsigned int count, remaining, offset;
if (xdr->len > r_xprt->rx_ia.ri_max_inline_write)
return false;
if (xdr->page_len) {
remaining = xdr->page_len;
offset = offset_in_page(xdr->page_base);
count = 0;
while (remaining) {
remaining -= min_t(unsigned int,
PAGE_SIZE - offset, remaining);
offset = 0;
if (++count > r_xprt->rx_ia.ri_max_send_sges)
return false;
}
}
return true;
}
/* The client can't know how large the actual reply will be. Thus it
* plans for the largest possible reply for that particular ULP
* operation. If the maximum combined reply message size exceeds that
* limit, the client must provide a write list or a reply chunk for
* this request.
*/
static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
struct rpc_rqst *rqst)
{
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
}
/* Split "vec" on page boundaries into segments. FMR registers pages,
* not a byte range. Other modes coalesce these segments into a single
* MR when they can.
*/
static int
rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, int n)
{
size_t page_offset;
u32 remaining;
char *base;
base = vec->iov_base;
page_offset = offset_in_page(base);
remaining = vec->iov_len;
while (remaining && n < RPCRDMA_MAX_SEGS) {
seg[n].mr_page = NULL;
seg[n].mr_offset = base;
seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
remaining -= seg[n].mr_len;
base += seg[n].mr_len;
++n;
page_offset = 0;
}
return n;
}
/*
* Chunk assembly from upper layer xdr_buf.
*
* Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
* elements. Segments are then coalesced when registered, if possible
* within the selected memreg mode.
*
* Returns positive number of segments converted, or a negative errno.
*/
static int
rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
unsigned int pos, enum rpcrdma_chunktype type,
struct rpcrdma_mr_seg *seg)
{
int len, n, p, page_base;
struct page **ppages;
n = 0;
if (pos == 0) {
n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n);
if (n == RPCRDMA_MAX_SEGS)
goto out_overflow;
}
len = xdrbuf->page_len;
ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
page_base = offset_in_page(xdrbuf->page_base);
p = 0;
while (len && n < RPCRDMA_MAX_SEGS) {
if (!ppages[p]) {
/* alloc the pagelist for receiving buffer */
ppages[p] = alloc_page(GFP_ATOMIC);
if (!ppages[p])
return -EAGAIN;
}
seg[n].mr_page = ppages[p];
seg[n].mr_offset = (void *)(unsigned long) page_base;
seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
if (seg[n].mr_len > PAGE_SIZE)
goto out_overflow;
len -= seg[n].mr_len;
++n;
++p;
page_base = 0; /* page offset only applies to first page */
}
/* Message overflows the seg array */
if (len && n == RPCRDMA_MAX_SEGS)
goto out_overflow;
/* When encoding a Read chunk, the tail iovec contains an
* XDR pad and may be omitted.
*/
if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
return n;
/* When encoding a Write chunk, some servers need to see an
* extra segment for non-XDR-aligned Write chunks. The upper
* layer provides space in the tail iovec that may be used
* for this purpose.
*/
if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
return n;
if (xdrbuf->tail[0].iov_len) {
n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n);
if (n == RPCRDMA_MAX_SEGS)
goto out_overflow;
}
return n;
out_overflow:
pr_err("rpcrdma: segment array overflow\n");
return -EIO;
}
static inline __be32 *
xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mw *mw)
{
*iptr++ = cpu_to_be32(mw->mw_handle);
*iptr++ = cpu_to_be32(mw->mw_length);
return xdr_encode_hyper(iptr, mw->mw_offset);
}
/* XDR-encode the Read list. Supports encoding a list of read
* segments that belong to a single read chunk.
*
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
*
* Read chunklist (a linked list):
* N elements, position P (same P for all chunks of same arg!):
* 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
*
* Returns a pointer to the XDR word in the RDMA header following
* the end of the Read list, or an error pointer.
*/
static __be32 *
rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req, struct rpc_rqst *rqst,
__be32 *iptr, enum rpcrdma_chunktype rtype)
{
struct rpcrdma_mr_seg *seg;
struct rpcrdma_mw *mw;
unsigned int pos;
int n, nsegs;
if (rtype == rpcrdma_noch) {
*iptr++ = xdr_zero; /* item not present */
return iptr;
}
pos = rqst->rq_snd_buf.head[0].iov_len;
if (rtype == rpcrdma_areadch)
pos = 0;
seg = req->rl_segments;
nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
rtype, seg);
if (nsegs < 0)
return ERR_PTR(nsegs);
do {
n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
false, &mw);
if (n < 0)
return ERR_PTR(n);
rpcrdma_push_mw(mw, &req->rl_registered);
*iptr++ = xdr_one; /* item present */
/* All read segments in this chunk
* have the same "position".
*/
*iptr++ = cpu_to_be32(pos);
iptr = xdr_encode_rdma_segment(iptr, mw);
dprintk("RPC: %5u %s: pos %u %u@0x%016llx:0x%08x (%s)\n",
rqst->rq_task->tk_pid, __func__, pos,
mw->mw_length, (unsigned long long)mw->mw_offset,
mw->mw_handle, n < nsegs ? "more" : "last");
r_xprt->rx_stats.read_chunk_count++;
seg += n;
nsegs -= n;
} while (nsegs);
/* Finish Read list */
*iptr++ = xdr_zero; /* Next item not present */
return iptr;
}
/* XDR-encode the Write list. Supports encoding a list containing
* one array of plain segments that belong to a single write chunk.
*
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
*
* Write chunklist (a list of (one) counted array):
* N elements:
* 1 - N - HLOO - HLOO - ... - HLOO - 0
*
* Returns a pointer to the XDR word in the RDMA header following
* the end of the Write list, or an error pointer.
*/
static __be32 *
rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
struct rpc_rqst *rqst, __be32 *iptr,
enum rpcrdma_chunktype wtype)
{
struct rpcrdma_mr_seg *seg;
struct rpcrdma_mw *mw;
int n, nsegs, nchunks;
__be32 *segcount;
if (wtype != rpcrdma_writech) {
*iptr++ = xdr_zero; /* no Write list present */
return iptr;
}
seg = req->rl_segments;
nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
rqst->rq_rcv_buf.head[0].iov_len,
wtype, seg);
if (nsegs < 0)
return ERR_PTR(nsegs);
*iptr++ = xdr_one; /* Write list present */
segcount = iptr++; /* save location of segment count */
nchunks = 0;
do {
n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
true, &mw);
if (n < 0)
return ERR_PTR(n);
rpcrdma_push_mw(mw, &req->rl_registered);
iptr = xdr_encode_rdma_segment(iptr, mw);
dprintk("RPC: %5u %s: %u@0x016%llx:0x%08x (%s)\n",
rqst->rq_task->tk_pid, __func__,
mw->mw_length, (unsigned long long)mw->mw_offset,
mw->mw_handle, n < nsegs ? "more" : "last");
r_xprt->rx_stats.write_chunk_count++;
r_xprt->rx_stats.total_rdma_request += seg->mr_len;
nchunks++;
seg += n;
nsegs -= n;
} while (nsegs);
/* Update count of segments in this Write chunk */
*segcount = cpu_to_be32(nchunks);
/* Finish Write list */
*iptr++ = xdr_zero; /* Next item not present */
return iptr;
}
/* XDR-encode the Reply chunk. Supports encoding an array of plain
* segments that belong to a single write (reply) chunk.
*
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
*
* Reply chunk (a counted array):
* N elements:
* 1 - N - HLOO - HLOO - ... - HLOO
*
* Returns a pointer to the XDR word in the RDMA header following
* the end of the Reply chunk, or an error pointer.
*/
static __be32 *
rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req, struct rpc_rqst *rqst,
__be32 *iptr, enum rpcrdma_chunktype wtype)
{
struct rpcrdma_mr_seg *seg;
struct rpcrdma_mw *mw;
int n, nsegs, nchunks;
__be32 *segcount;
if (wtype != rpcrdma_replych) {
*iptr++ = xdr_zero; /* no Reply chunk present */
return iptr;
}
seg = req->rl_segments;
nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
if (nsegs < 0)
return ERR_PTR(nsegs);
*iptr++ = xdr_one; /* Reply chunk present */
segcount = iptr++; /* save location of segment count */
nchunks = 0;
do {
n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
true, &mw);
if (n < 0)
return ERR_PTR(n);
rpcrdma_push_mw(mw, &req->rl_registered);
iptr = xdr_encode_rdma_segment(iptr, mw);
dprintk("RPC: %5u %s: %u@0x%016llx:0x%08x (%s)\n",
rqst->rq_task->tk_pid, __func__,
mw->mw_length, (unsigned long long)mw->mw_offset,
mw->mw_handle, n < nsegs ? "more" : "last");
r_xprt->rx_stats.reply_chunk_count++;
r_xprt->rx_stats.total_rdma_request += seg->mr_len;
nchunks++;
seg += n;
nsegs -= n;
} while (nsegs);
/* Update count of segments in the Reply chunk */
*segcount = cpu_to_be32(nchunks);
return iptr;
}
/* Prepare the RPC-over-RDMA header SGE.
*/
static bool
rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
u32 len)
{
struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
struct ib_sge *sge = &req->rl_send_sge[0];
if (unlikely(!rpcrdma_regbuf_is_mapped(rb))) {
if (!__rpcrdma_dma_map_regbuf(ia, rb))
return false;
sge->addr = rdmab_addr(rb);
sge->lkey = rdmab_lkey(rb);
}
sge->length = len;
ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr,
sge->length, DMA_TO_DEVICE);
req->rl_send_wr.num_sge++;
return true;
}
/* Prepare the Send SGEs. The head and tail iovec, and each entry
* in the page list, gets its own SGE.
*/
static bool
rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
{
unsigned int sge_no, page_base, len, remaining;
struct rpcrdma_regbuf *rb = req->rl_sendbuf;
struct ib_device *device = ia->ri_device;
struct ib_sge *sge = req->rl_send_sge;
u32 lkey = ia->ri_pd->local_dma_lkey;
struct page *page, **ppages;
/* The head iovec is straightforward, as it is already
* DMA-mapped. Sync the content that has changed.
*/
if (!rpcrdma_dma_map_regbuf(ia, rb))
return false;
sge_no = 1;
sge[sge_no].addr = rdmab_addr(rb);
sge[sge_no].length = xdr->head[0].iov_len;
sge[sge_no].lkey = rdmab_lkey(rb);
ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
sge[sge_no].length, DMA_TO_DEVICE);
/* If there is a Read chunk, the page list is being handled
* via explicit RDMA, and thus is skipped here. However, the
* tail iovec may include an XDR pad for the page list, as
* well as additional content, and may not reside in the
* same page as the head iovec.
*/
if (rtype == rpcrdma_readch) {
len = xdr->tail[0].iov_len;
/* Do not include the tail if it is only an XDR pad */
if (len < 4)
goto out;
page = virt_to_page(xdr->tail[0].iov_base);
page_base = offset_in_page(xdr->tail[0].iov_base);
/* If the content in the page list is an odd length,
* xdr_write_pages() has added a pad at the beginning
* of the tail iovec. Force the tail's non-pad content
* to land at the next XDR position in the Send message.
*/
page_base += len & 3;
len -= len & 3;
goto map_tail;
}
/* If there is a page list present, temporarily DMA map
* and prepare an SGE for each page to be sent.
*/
if (xdr->page_len) {
ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
page_base = offset_in_page(xdr->page_base);
remaining = xdr->page_len;
while (remaining) {
sge_no++;
if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
goto out_mapping_overflow;
len = min_t(u32, PAGE_SIZE - page_base, remaining);
sge[sge_no].addr = ib_dma_map_page(device, *ppages,
page_base, len,
DMA_TO_DEVICE);
if (ib_dma_mapping_error(device, sge[sge_no].addr))
goto out_mapping_err;
sge[sge_no].length = len;
sge[sge_no].lkey = lkey;
req->rl_mapped_sges++;
ppages++;
remaining -= len;
page_base = 0;
}
}
/* The tail iovec is not always constructed in the same
* page where the head iovec resides (see, for example,
* gss_wrap_req_priv). To neatly accommodate that case,
* DMA map it separately.
*/
if (xdr->tail[0].iov_len) {
page = virt_to_page(xdr->tail[0].iov_base);
page_base = offset_in_page(xdr->tail[0].iov_base);
len = xdr->tail[0].iov_len;
map_tail:
sge_no++;
sge[sge_no].addr = ib_dma_map_page(device, page,
page_base, len,
DMA_TO_DEVICE);
if (ib_dma_mapping_error(device, sge[sge_no].addr))
goto out_mapping_err;
sge[sge_no].length = len;
sge[sge_no].lkey = lkey;
req->rl_mapped_sges++;
}
out:
req->rl_send_wr.num_sge = sge_no + 1;
return true;
out_mapping_overflow:
pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
return false;
out_mapping_err:
pr_err("rpcrdma: Send mapping error\n");
return false;
}
bool
rpcrdma_prepare_send_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
u32 hdrlen, struct xdr_buf *xdr,
enum rpcrdma_chunktype rtype)
{
req->rl_send_wr.num_sge = 0;
req->rl_mapped_sges = 0;
if (!rpcrdma_prepare_hdr_sge(ia, req, hdrlen))
goto out_map;
if (rtype != rpcrdma_areadch)
if (!rpcrdma_prepare_msg_sges(ia, req, xdr, rtype))
goto out_map;
return true;
out_map:
pr_err("rpcrdma: failed to DMA map a Send buffer\n");
return false;
}
void
rpcrdma_unmap_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
{
struct ib_device *device = ia->ri_device;
struct ib_sge *sge;
int count;
sge = &req->rl_send_sge[2];
for (count = req->rl_mapped_sges; count--; sge++)
ib_dma_unmap_page(device, sge->addr, sge->length,
DMA_TO_DEVICE);
req->rl_mapped_sges = 0;
}
/*
* Marshal a request: the primary job of this routine is to choose
* the transfer modes. See comments below.
*
* Returns zero on success, otherwise a negative errno.
*/
int
rpcrdma_marshal_req(struct rpc_rqst *rqst)
{
struct rpc_xprt *xprt = rqst->rq_xprt;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
enum rpcrdma_chunktype rtype, wtype;
struct rpcrdma_msg *headerp;
bool ddp_allowed;
ssize_t hdrlen;
size_t rpclen;
__be32 *iptr;
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
return rpcrdma_bc_marshal_reply(rqst);
#endif
headerp = rdmab_to_msg(req->rl_rdmabuf);
/* don't byte-swap XID, it's already done in request */
headerp->rm_xid = rqst->rq_xid;
headerp->rm_vers = rpcrdma_version;
headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
headerp->rm_type = rdma_msg;
/* When the ULP employs a GSS flavor that guarantees integrity
* or privacy, direct data placement of individual data items
* is not allowed.
*/
ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
RPCAUTH_AUTH_DATATOUCH);
/*
* Chunks needed for results?
*
* o If the expected result is under the inline threshold, all ops
* return as inline.
* o Large read ops return data as write chunk(s), header as
* inline.
* o Large non-read ops return as a single reply chunk.
*/
if (rpcrdma_results_inline(r_xprt, rqst))
wtype = rpcrdma_noch;
else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
wtype = rpcrdma_writech;
else
wtype = rpcrdma_replych;
/*
* Chunks needed for arguments?
*
* o If the total request is under the inline threshold, all ops
* are sent as inline.
* o Large write ops transmit data as read chunk(s), header as
* inline.
* o Large non-write ops are sent with the entire message as a
* single read chunk (protocol 0-position special case).
*
* This assumes that the upper layer does not present a request
* that both has a data payload, and whose non-data arguments
* by themselves are larger than the inline threshold.
*/
if (rpcrdma_args_inline(r_xprt, rqst)) {
rtype = rpcrdma_noch;
rpclen = rqst->rq_snd_buf.len;
} else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
rtype = rpcrdma_readch;
rpclen = rqst->rq_snd_buf.head[0].iov_len +
rqst->rq_snd_buf.tail[0].iov_len;
} else {
r_xprt->rx_stats.nomsg_call_count++;
headerp->rm_type = htonl(RDMA_NOMSG);
rtype = rpcrdma_areadch;
rpclen = 0;
}
req->rl_xid = rqst->rq_xid;
rpcrdma_insert_req(&r_xprt->rx_buf, req);
/* This implementation supports the following combinations
* of chunk lists in one RPC-over-RDMA Call message:
*
* - Read list
* - Write list
* - Reply chunk
* - Read list + Reply chunk
*
* It might not yet support the following combinations:
*
* - Read list + Write list
*
* It does not support the following combinations:
*
* - Write list + Reply chunk
* - Read list + Write list + Reply chunk
*
* This implementation supports only a single chunk in each
* Read or Write list. Thus for example the client cannot
* send a Call message with a Position Zero Read chunk and a
* regular Read chunk at the same time.
*/
iptr = headerp->rm_body.rm_chunks;
iptr = rpcrdma_encode_read_list(r_xprt, req, rqst, iptr, rtype);
if (IS_ERR(iptr))
goto out_err;
iptr = rpcrdma_encode_write_list(r_xprt, req, rqst, iptr, wtype);
if (IS_ERR(iptr))
goto out_err;
iptr = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, iptr, wtype);
if (IS_ERR(iptr))
goto out_err;
hdrlen = (unsigned char *)iptr - (unsigned char *)headerp;
dprintk("RPC: %5u %s: %s/%s: hdrlen %zd rpclen %zd\n",
rqst->rq_task->tk_pid, __func__,
transfertypes[rtype], transfertypes[wtype],
hdrlen, rpclen);
if (!rpcrdma_prepare_send_sges(&r_xprt->rx_ia, req, hdrlen,
&rqst->rq_snd_buf, rtype)) {
iptr = ERR_PTR(-EIO);
goto out_err;
}
return 0;
out_err:
if (PTR_ERR(iptr) != -ENOBUFS) {
pr_err("rpcrdma: rpcrdma_marshal_req failed, status %ld\n",
PTR_ERR(iptr));
r_xprt->rx_stats.failed_marshal_count++;
}
return PTR_ERR(iptr);
}
/*
* Chase down a received write or reply chunklist to get length
* RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
*/
static int
rpcrdma_count_chunks(struct rpcrdma_rep *rep, int wrchunk, __be32 **iptrp)
{
unsigned int i, total_len;
struct rpcrdma_write_chunk *cur_wchunk;
char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
i = be32_to_cpu(**iptrp);
cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
total_len = 0;
while (i--) {
struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
ifdebug(FACILITY) {
u64 off;
xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
dprintk("RPC: %s: chunk %d@0x%016llx:0x%08x\n",
__func__,
be32_to_cpu(seg->rs_length),
(unsigned long long)off,
be32_to_cpu(seg->rs_handle));
}
total_len += be32_to_cpu(seg->rs_length);
++cur_wchunk;
}
/* check and adjust for properly terminated write chunk */
if (wrchunk) {
__be32 *w = (__be32 *) cur_wchunk;
if (*w++ != xdr_zero)
return -1;
cur_wchunk = (struct rpcrdma_write_chunk *) w;
}
if ((char *)cur_wchunk > base + rep->rr_len)
return -1;
*iptrp = (__be32 *) cur_wchunk;
return total_len;
}
/**
* rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
* @rqst: controlling RPC request
* @srcp: points to RPC message payload in receive buffer
* @copy_len: remaining length of receive buffer content
* @pad: Write chunk pad bytes needed (zero for pure inline)
*
* The upper layer has set the maximum number of bytes it can
* receive in each component of rq_rcv_buf. These values are set in
* the head.iov_len, page_len, tail.iov_len, and buflen fields.
*
* Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
* many cases this function simply updates iov_base pointers in
* rq_rcv_buf to point directly to the received reply data, to
* avoid copying reply data.
*
* Returns the count of bytes which had to be memcopied.
*/
static unsigned long
rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
{
unsigned long fixup_copy_count;
int i, npages, curlen;
char *destp;
struct page **ppages;
int page_base;
/* The head iovec is redirected to the RPC reply message
* in the receive buffer, to avoid a memcopy.
*/
rqst->rq_rcv_buf.head[0].iov_base = srcp;
rqst->rq_private_buf.head[0].iov_base = srcp;
/* The contents of the receive buffer that follow
* head.iov_len bytes are copied into the page list.
*/
curlen = rqst->rq_rcv_buf.head[0].iov_len;
if (curlen > copy_len)
curlen = copy_len;
dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
__func__, srcp, copy_len, curlen);
srcp += curlen;
copy_len -= curlen;
ppages = rqst->rq_rcv_buf.pages +
(rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
fixup_copy_count = 0;
if (copy_len && rqst->rq_rcv_buf.page_len) {
int pagelist_len;
pagelist_len = rqst->rq_rcv_buf.page_len;
if (pagelist_len > copy_len)
pagelist_len = copy_len;
npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
for (i = 0; i < npages; i++) {
curlen = PAGE_SIZE - page_base;
if (curlen > pagelist_len)
curlen = pagelist_len;
dprintk("RPC: %s: page %d"
" srcp 0x%p len %d curlen %d\n",
__func__, i, srcp, copy_len, curlen);
destp = kmap_atomic(ppages[i]);
memcpy(destp + page_base, srcp, curlen);
flush_dcache_page(ppages[i]);
kunmap_atomic(destp);
srcp += curlen;
copy_len -= curlen;
fixup_copy_count += curlen;
pagelist_len -= curlen;
if (!pagelist_len)
break;
page_base = 0;
}
/* Implicit padding for the last segment in a Write
* chunk is inserted inline at the front of the tail
* iovec. The upper layer ignores the content of
* the pad. Simply ensure inline content in the tail
* that follows the Write chunk is properly aligned.
*/
if (pad)
srcp -= pad;
}
/* The tail iovec is redirected to the remaining data
* in the receive buffer, to avoid a memcopy.
*/
if (copy_len || pad) {
rqst->rq_rcv_buf.tail[0].iov_base = srcp;
rqst->rq_private_buf.tail[0].iov_base = srcp;
}
return fixup_copy_count;
}
/* Caller must guarantee @rep remains stable during this call.
*/
static void
rpcrdma_mark_remote_invalidation(struct list_head *mws,
struct rpcrdma_rep *rep)
{
struct rpcrdma_mw *mw;
if (!(rep->rr_wc_flags & IB_WC_WITH_INVALIDATE))
return;
list_for_each_entry(mw, mws, mw_list)
if (mw->mw_handle == rep->rr_inv_rkey) {
mw->mw_flags = RPCRDMA_MW_F_RI;
break; /* only one invalidated MR per RPC */
}
}
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
/* By convention, backchannel calls arrive via rdma_msg type
* messages, and never populate the chunk lists. This makes
* the RPC/RDMA header small and fixed in size, so it is
* straightforward to check the RPC header's direction field.
*/
static bool
rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
{
__be32 *p = (__be32 *)headerp;
if (headerp->rm_type != rdma_msg)
return false;
if (headerp->rm_body.rm_chunks[0] != xdr_zero)
return false;
if (headerp->rm_body.rm_chunks[1] != xdr_zero)
return false;
if (headerp->rm_body.rm_chunks[2] != xdr_zero)
return false;
/* sanity */
if (p[7] != headerp->rm_xid)
return false;
/* call direction */
if (p[8] != cpu_to_be32(RPC_CALL))
return false;
return true;
}
#endif /* CONFIG_SUNRPC_BACKCHANNEL */
/* Process received RPC/RDMA messages.
*
* Errors must result in the RPC task either being awakened, or
* allowed to timeout, to discover the errors at that time.
*/
void
rpcrdma_reply_handler(struct work_struct *work)
{
struct rpcrdma_rep *rep =
container_of(work, struct rpcrdma_rep, rr_work);
struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
struct rpcrdma_msg *headerp;
struct rpcrdma_req *req;
struct rpc_rqst *rqst;
__be32 *iptr;
int rdmalen, status, rmerr;
unsigned long cwnd;
struct list_head mws;
dprintk("RPC: %s: incoming rep %p\n", __func__, rep);
if (rep->rr_len == RPCRDMA_BAD_LEN)
goto out_badstatus;
if (rep->rr_len < RPCRDMA_HDRLEN_ERR)
goto out_shortreply;
headerp = rdmab_to_msg(rep->rr_rdmabuf);
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
if (rpcrdma_is_bcall(headerp))
goto out_bcall;
#endif
/* Match incoming rpcrdma_rep to an rpcrdma_req to
* get context for handling any incoming chunks.
*/
spin_lock(&buf->rb_lock);
req = rpcrdma_lookup_req_locked(&r_xprt->rx_buf,
headerp->rm_xid);
if (!req)
goto out_nomatch;
if (req->rl_reply)
goto out_duplicate;
list_replace_init(&req->rl_registered, &mws);
rpcrdma_mark_remote_invalidation(&mws, rep);
/* Avoid races with signals and duplicate replies
* by marking this req as matched.
*/
req->rl_reply = rep;
spin_unlock(&buf->rb_lock);
dprintk("RPC: %s: reply %p completes request %p (xid 0x%08x)\n",
__func__, rep, req, be32_to_cpu(headerp->rm_xid));
/* Invalidate and unmap the data payloads before waking the
* waiting application. This guarantees the memory regions
* are properly fenced from the server before the application
* accesses the data. It also ensures proper send flow control:
* waking the next RPC waits until this RPC has relinquished
* all its Send Queue entries.
*/
if (!list_empty(&mws))
r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, &mws);
/* Perform XID lookup, reconstruction of the RPC reply, and
* RPC completion while holding the transport lock to ensure
* the rep, rqst, and rq_task pointers remain stable.
*/
spin_lock_bh(&xprt->transport_lock);
rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
if (!rqst)
goto out_norqst;
xprt->reestablish_timeout = 0;
if (headerp->rm_vers != rpcrdma_version)
goto out_badversion;
/* check for expected message types */
/* The order of some of these tests is important. */
switch (headerp->rm_type) {
case rdma_msg:
/* never expect read chunks */
/* never expect reply chunks (two ways to check) */
if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
(headerp->rm_body.rm_chunks[1] == xdr_zero &&
headerp->rm_body.rm_chunks[2] != xdr_zero))
goto badheader;
if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
/* count any expected write chunks in read reply */
/* start at write chunk array count */
iptr = &headerp->rm_body.rm_chunks[2];
rdmalen = rpcrdma_count_chunks(rep, 1, &iptr);
/* check for validity, and no reply chunk after */
if (rdmalen < 0 || *iptr++ != xdr_zero)
goto badheader;
rep->rr_len -=
((unsigned char *)iptr - (unsigned char *)headerp);
status = rep->rr_len + rdmalen;
r_xprt->rx_stats.total_rdma_reply += rdmalen;
/* special case - last chunk may omit padding */
if (rdmalen &= 3) {
rdmalen = 4 - rdmalen;
status += rdmalen;
}
} else {
/* else ordinary inline */
rdmalen = 0;
iptr = (__be32 *)((unsigned char *)headerp +
RPCRDMA_HDRLEN_MIN);
rep->rr_len -= RPCRDMA_HDRLEN_MIN;
status = rep->rr_len;
}
r_xprt->rx_stats.fixup_copy_count +=
rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len,
rdmalen);
break;
case rdma_nomsg:
/* never expect read or write chunks, always reply chunks */
if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
headerp->rm_body.rm_chunks[1] != xdr_zero ||
headerp->rm_body.rm_chunks[2] != xdr_one)
goto badheader;
iptr = (__be32 *)((unsigned char *)headerp +
RPCRDMA_HDRLEN_MIN);
rdmalen = rpcrdma_count_chunks(rep, 0, &iptr);
if (rdmalen < 0)
goto badheader;
r_xprt->rx_stats.total_rdma_reply += rdmalen;
/* Reply chunk buffer already is the reply vector - no fixup. */
status = rdmalen;
break;
case rdma_error:
goto out_rdmaerr;
badheader:
default:
dprintk("RPC: %5u %s: invalid rpcrdma reply (type %u)\n",
rqst->rq_task->tk_pid, __func__,
be32_to_cpu(headerp->rm_type));
status = -EIO;
r_xprt->rx_stats.bad_reply_count++;
break;
}
out:
cwnd = xprt->cwnd;
xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
if (xprt->cwnd > cwnd)
xprt_release_rqst_cong(rqst->rq_task);
xprt_complete_rqst(rqst->rq_task, status);
spin_unlock_bh(&xprt->transport_lock);
dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
__func__, xprt, rqst, status);
return;
out_badstatus:
rpcrdma_recv_buffer_put(rep);
if (r_xprt->rx_ep.rep_connected == 1) {
r_xprt->rx_ep.rep_connected = -EIO;
rpcrdma_conn_func(&r_xprt->rx_ep);
}
return;
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
out_bcall:
rpcrdma_bc_receive_call(r_xprt, rep);
return;
#endif
/* If the incoming reply terminated a pending RPC, the next
* RPC call will post a replacement receive buffer as it is
* being marshaled.
*/
out_badversion:
dprintk("RPC: %s: invalid version %d\n",
__func__, be32_to_cpu(headerp->rm_vers));
status = -EIO;
r_xprt->rx_stats.bad_reply_count++;
goto out;
out_rdmaerr:
rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err);
switch (rmerr) {
case ERR_VERS:
pr_err("%s: server reports header version error (%u-%u)\n",
__func__,
be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low),
be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high));
break;
case ERR_CHUNK:
pr_err("%s: server reports header decoding error\n",
__func__);
break;
default:
pr_err("%s: server reports unknown error %d\n",
__func__, rmerr);
}
status = -EREMOTEIO;
r_xprt->rx_stats.bad_reply_count++;
goto out;
/* The req was still available, but by the time the transport_lock
* was acquired, the rqst and task had been released. Thus the RPC
* has already been terminated.
*/
out_norqst:
spin_unlock_bh(&xprt->transport_lock);
rpcrdma_buffer_put(req);
dprintk("RPC: %s: race, no rqst left for req %p\n",
__func__, req);
return;
out_shortreply:
dprintk("RPC: %s: short/invalid reply\n", __func__);
goto repost;
out_nomatch:
spin_unlock(&buf->rb_lock);
dprintk("RPC: %s: no match for incoming xid 0x%08x len %d\n",
__func__, be32_to_cpu(headerp->rm_xid),
rep->rr_len);
goto repost;
out_duplicate:
spin_unlock(&buf->rb_lock);
dprintk("RPC: %s: "
"duplicate reply %p to RPC request %p: xid 0x%08x\n",
__func__, rep, req, be32_to_cpu(headerp->rm_xid));
/* If no pending RPC transaction was matched, post a replacement
* receive buffer before returning.
*/
repost:
r_xprt->rx_stats.bad_reply_count++;
if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
rpcrdma_recv_buffer_put(rep);
}