mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-17 22:05:08 +00:00
e3fc2fd77c
After commit 0edb555a65d1 ("platform: Make platform_driver::remove() return void") .remove() is (again) the right callback to implement for platform drivers. Convert all platform drivers below sound to use .remove(), with the eventual goal to drop struct platform_driver::remove_new(). As .remove() and .remove_new() have the same prototypes, conversion is done by just changing the structure member name in the driver initializer. On the way do a few whitespace changes to make indention consistent. Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com> Link: https://patch.msgid.link/20241029073748.508077-2-u.kleine-koenig@baylibre.com Signed-off-by: Takashi Iwai <tiwai@suse.de>
780 lines
22 KiB
C
780 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Virtual ALSA driver for PCM testing/fuzzing
|
|
*
|
|
* Copyright 2023 Ivan Orlov <ivan.orlov0322@gmail.com>
|
|
*
|
|
* This is a simple virtual ALSA driver, which can be used for audio applications/PCM middle layer
|
|
* testing or fuzzing.
|
|
* It can:
|
|
* - Simulate 'playback' and 'capture' actions
|
|
* - Generate random or pattern-based capture data
|
|
* - Check playback buffer for containing looped template, and notify about the results
|
|
* through the debugfs entry
|
|
* - Inject delays into the playback and capturing processes. See 'inject_delay' parameter.
|
|
* - Inject errors during the PCM callbacks.
|
|
* - Register custom RESET ioctl and notify when it is called through the debugfs entry
|
|
* - Work in interleaved and non-interleaved modes
|
|
* - Support up to 8 substreams
|
|
* - Support up to 4 channels
|
|
* - Support framerates from 8 kHz to 48 kHz
|
|
*
|
|
* When driver works in the capture mode with multiple channels, it duplicates the looped
|
|
* pattern to each separate channel. For example, if we have 2 channels, format = U8, interleaved
|
|
* access mode and pattern 'abacaba', the DMA buffer will look like aabbccaabbaaaa..., so buffer for
|
|
* each channel will contain abacabaabacaba... Same for the non-interleaved mode.
|
|
*
|
|
* However, it may break the capturing on the higher framerates with small period size, so it is
|
|
* better to choose larger period sizes.
|
|
*
|
|
* You can find the corresponding selftest in the 'alsa' selftests folder.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <sound/pcm.h>
|
|
#include <sound/core.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/random.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/delay.h>
|
|
|
|
#define TIMER_PER_SEC 5
|
|
#define TIMER_INTERVAL (HZ / TIMER_PER_SEC)
|
|
#define DELAY_JIFFIES HZ
|
|
#define PLAYBACK_SUBSTREAM_CNT 8
|
|
#define CAPTURE_SUBSTREAM_CNT 8
|
|
#define MAX_CHANNELS_NUM 4
|
|
|
|
#define DEFAULT_PATTERN "abacaba"
|
|
#define DEFAULT_PATTERN_LEN 7
|
|
|
|
#define FILL_MODE_RAND 0
|
|
#define FILL_MODE_PAT 1
|
|
|
|
#define MAX_PATTERN_LEN 4096
|
|
|
|
static int index = -1;
|
|
static char *id = "pcmtest";
|
|
static bool enable = true;
|
|
static int inject_delay;
|
|
static bool inject_hwpars_err;
|
|
static bool inject_prepare_err;
|
|
static bool inject_trigger_err;
|
|
static bool inject_open_err;
|
|
|
|
static short fill_mode = FILL_MODE_PAT;
|
|
|
|
static u8 playback_capture_test;
|
|
static u8 ioctl_reset_test;
|
|
static struct dentry *driver_debug_dir;
|
|
|
|
module_param(index, int, 0444);
|
|
MODULE_PARM_DESC(index, "Index value for pcmtest soundcard");
|
|
module_param(id, charp, 0444);
|
|
MODULE_PARM_DESC(id, "ID string for pcmtest soundcard");
|
|
module_param(enable, bool, 0444);
|
|
MODULE_PARM_DESC(enable, "Enable pcmtest soundcard.");
|
|
module_param(fill_mode, short, 0600);
|
|
MODULE_PARM_DESC(fill_mode, "Buffer fill mode: rand(0) or pattern(1)");
|
|
module_param(inject_delay, int, 0600);
|
|
MODULE_PARM_DESC(inject_delay, "Inject delays during playback/capture (in jiffies)");
|
|
module_param(inject_hwpars_err, bool, 0600);
|
|
MODULE_PARM_DESC(inject_hwpars_err, "Inject EBUSY error in the 'hw_params' callback");
|
|
module_param(inject_prepare_err, bool, 0600);
|
|
MODULE_PARM_DESC(inject_prepare_err, "Inject EINVAL error in the 'prepare' callback");
|
|
module_param(inject_trigger_err, bool, 0600);
|
|
MODULE_PARM_DESC(inject_trigger_err, "Inject EINVAL error in the 'trigger' callback");
|
|
module_param(inject_open_err, bool, 0600);
|
|
MODULE_PARM_DESC(inject_open_err, "Inject EBUSY error in the 'open' callback");
|
|
|
|
struct pcmtst {
|
|
struct snd_pcm *pcm;
|
|
struct snd_card *card;
|
|
struct platform_device *pdev;
|
|
};
|
|
|
|
struct pcmtst_buf_iter {
|
|
size_t buf_pos; // position in the DMA buffer
|
|
size_t period_pos; // period-relative position
|
|
size_t b_rw; // Bytes to write on every timer tick
|
|
size_t s_rw_ch; // Samples to write to one channel on every tick
|
|
unsigned int sample_bytes; // sample_bits / 8
|
|
bool is_buf_corrupted; // playback test result indicator
|
|
size_t period_bytes; // bytes in a one period
|
|
bool interleaved; // Interleaved/Non-interleaved mode
|
|
size_t total_bytes; // Total bytes read/written
|
|
size_t chan_block; // Bytes in one channel buffer when non-interleaved
|
|
struct snd_pcm_substream *substream;
|
|
bool suspend; // We need to pause timer without shutting it down
|
|
struct timer_list timer_instance;
|
|
};
|
|
|
|
static struct snd_pcm_hardware snd_pcmtst_hw = {
|
|
.info = (SNDRV_PCM_INFO_INTERLEAVED |
|
|
SNDRV_PCM_INFO_BLOCK_TRANSFER |
|
|
SNDRV_PCM_INFO_NONINTERLEAVED |
|
|
SNDRV_PCM_INFO_MMAP_VALID |
|
|
SNDRV_PCM_INFO_PAUSE),
|
|
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
|
|
.rates = SNDRV_PCM_RATE_8000_48000,
|
|
.rate_min = 8000,
|
|
.rate_max = 48000,
|
|
.channels_min = 1,
|
|
.channels_max = MAX_CHANNELS_NUM,
|
|
.buffer_bytes_max = 128 * 1024,
|
|
.period_bytes_min = 4096,
|
|
.period_bytes_max = 32768,
|
|
.periods_min = 1,
|
|
.periods_max = 1024,
|
|
};
|
|
|
|
struct pattern_buf {
|
|
char *buf;
|
|
u32 len;
|
|
};
|
|
|
|
static int buf_allocated;
|
|
static struct pattern_buf patt_bufs[MAX_CHANNELS_NUM];
|
|
|
|
static inline void inc_buf_pos(struct pcmtst_buf_iter *v_iter, size_t by, size_t bytes)
|
|
{
|
|
v_iter->total_bytes += by;
|
|
v_iter->buf_pos += by;
|
|
if (v_iter->buf_pos >= bytes)
|
|
v_iter->buf_pos %= bytes;
|
|
}
|
|
|
|
/*
|
|
* Position in the DMA buffer when we are in the non-interleaved mode. We increment buf_pos
|
|
* every time we write a byte to any channel, so the position in the current channel buffer is
|
|
* (position in the DMA buffer) / count_of_channels + size_of_channel_buf * current_channel
|
|
*/
|
|
static inline size_t buf_pos_n(struct pcmtst_buf_iter *v_iter, unsigned int channels,
|
|
unsigned int chan_num)
|
|
{
|
|
return v_iter->buf_pos / channels + v_iter->chan_block * chan_num;
|
|
}
|
|
|
|
/*
|
|
* Get the count of bytes written for the current channel in the interleaved mode.
|
|
* This is (count of samples written for the current channel) * bytes_in_sample +
|
|
* (relative position in the current sample)
|
|
*/
|
|
static inline size_t ch_pos_i(size_t b_total, unsigned int channels, unsigned int b_sample)
|
|
{
|
|
return b_total / channels / b_sample * b_sample + (b_total % b_sample);
|
|
}
|
|
|
|
static void check_buf_block_i(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
|
|
{
|
|
size_t i;
|
|
short ch_num;
|
|
u8 current_byte;
|
|
|
|
for (i = 0; i < v_iter->b_rw; i++) {
|
|
current_byte = runtime->dma_area[v_iter->buf_pos];
|
|
if (!current_byte)
|
|
break;
|
|
ch_num = (v_iter->total_bytes / v_iter->sample_bytes) % runtime->channels;
|
|
if (current_byte != patt_bufs[ch_num].buf[ch_pos_i(v_iter->total_bytes,
|
|
runtime->channels,
|
|
v_iter->sample_bytes)
|
|
% patt_bufs[ch_num].len]) {
|
|
v_iter->is_buf_corrupted = true;
|
|
break;
|
|
}
|
|
inc_buf_pos(v_iter, 1, runtime->dma_bytes);
|
|
}
|
|
// If we broke during the loop, add remaining bytes to the buffer position.
|
|
inc_buf_pos(v_iter, v_iter->b_rw - i, runtime->dma_bytes);
|
|
}
|
|
|
|
static void check_buf_block_ni(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
|
|
{
|
|
unsigned int channels = runtime->channels;
|
|
size_t i;
|
|
short ch_num;
|
|
u8 current_byte;
|
|
|
|
for (i = 0; i < v_iter->b_rw; i++) {
|
|
ch_num = i % channels;
|
|
current_byte = runtime->dma_area[buf_pos_n(v_iter, channels, ch_num)];
|
|
if (!current_byte)
|
|
break;
|
|
if (current_byte != patt_bufs[ch_num].buf[(v_iter->total_bytes / channels)
|
|
% patt_bufs[ch_num].len]) {
|
|
v_iter->is_buf_corrupted = true;
|
|
break;
|
|
}
|
|
inc_buf_pos(v_iter, 1, runtime->dma_bytes);
|
|
}
|
|
inc_buf_pos(v_iter, v_iter->b_rw - i, runtime->dma_bytes);
|
|
}
|
|
|
|
/*
|
|
* Check one block of the buffer. Here we iterate the buffer until we find '0'. This condition is
|
|
* necessary because we need to detect when the reading/writing ends, so we assume that the pattern
|
|
* doesn't contain zeros.
|
|
*/
|
|
static void check_buf_block(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
|
|
{
|
|
if (v_iter->interleaved)
|
|
check_buf_block_i(v_iter, runtime);
|
|
else
|
|
check_buf_block_ni(v_iter, runtime);
|
|
}
|
|
|
|
/*
|
|
* Fill buffer in the non-interleaved mode. The order of samples is C0, ..., C0, C1, ..., C1, C2...
|
|
* The channel buffers lay in the DMA buffer continuously (see default copy
|
|
* handlers in the pcm_lib.c file).
|
|
*
|
|
* Here we increment the DMA buffer position every time we write a byte to any channel 'buffer'.
|
|
* We need this to simulate the correct hardware pointer moving.
|
|
*/
|
|
static void fill_block_pattern_n(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
|
|
{
|
|
size_t i;
|
|
unsigned int channels = runtime->channels;
|
|
short ch_num;
|
|
|
|
for (i = 0; i < v_iter->b_rw; i++) {
|
|
ch_num = i % channels;
|
|
runtime->dma_area[buf_pos_n(v_iter, channels, ch_num)] =
|
|
patt_bufs[ch_num].buf[(v_iter->total_bytes / channels)
|
|
% patt_bufs[ch_num].len];
|
|
inc_buf_pos(v_iter, 1, runtime->dma_bytes);
|
|
}
|
|
}
|
|
|
|
// Fill buffer in the interleaved mode. The order of samples is C0, C1, C2, C0, C1, C2, ...
|
|
static void fill_block_pattern_i(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
|
|
{
|
|
size_t sample;
|
|
size_t pos_in_ch, pos_pattern;
|
|
short ch, pos_sample;
|
|
|
|
pos_in_ch = ch_pos_i(v_iter->total_bytes, runtime->channels, v_iter->sample_bytes);
|
|
|
|
for (sample = 0; sample < v_iter->s_rw_ch; sample++) {
|
|
for (ch = 0; ch < runtime->channels; ch++) {
|
|
for (pos_sample = 0; pos_sample < v_iter->sample_bytes; pos_sample++) {
|
|
pos_pattern = (pos_in_ch + sample * v_iter->sample_bytes
|
|
+ pos_sample) % patt_bufs[ch].len;
|
|
runtime->dma_area[v_iter->buf_pos] = patt_bufs[ch].buf[pos_pattern];
|
|
inc_buf_pos(v_iter, 1, runtime->dma_bytes);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void fill_block_pattern(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
|
|
{
|
|
if (v_iter->interleaved)
|
|
fill_block_pattern_i(v_iter, runtime);
|
|
else
|
|
fill_block_pattern_n(v_iter, runtime);
|
|
}
|
|
|
|
static void fill_block_rand_n(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
|
|
{
|
|
unsigned int channels = runtime->channels;
|
|
// Remaining space in all channel buffers
|
|
size_t bytes_remain = runtime->dma_bytes - v_iter->buf_pos;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < channels; i++) {
|
|
if (v_iter->b_rw <= bytes_remain) {
|
|
//b_rw - count of bytes must be written for all channels at each timer tick
|
|
get_random_bytes(runtime->dma_area + buf_pos_n(v_iter, channels, i),
|
|
v_iter->b_rw / channels);
|
|
} else {
|
|
// Write to the end of buffer and start from the beginning of it
|
|
get_random_bytes(runtime->dma_area + buf_pos_n(v_iter, channels, i),
|
|
bytes_remain / channels);
|
|
get_random_bytes(runtime->dma_area + v_iter->chan_block * i,
|
|
(v_iter->b_rw - bytes_remain) / channels);
|
|
}
|
|
}
|
|
inc_buf_pos(v_iter, v_iter->b_rw, runtime->dma_bytes);
|
|
}
|
|
|
|
static void fill_block_rand_i(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
|
|
{
|
|
size_t in_cur_block = runtime->dma_bytes - v_iter->buf_pos;
|
|
|
|
if (v_iter->b_rw <= in_cur_block) {
|
|
get_random_bytes(&runtime->dma_area[v_iter->buf_pos], v_iter->b_rw);
|
|
} else {
|
|
get_random_bytes(&runtime->dma_area[v_iter->buf_pos], in_cur_block);
|
|
get_random_bytes(runtime->dma_area, v_iter->b_rw - in_cur_block);
|
|
}
|
|
inc_buf_pos(v_iter, v_iter->b_rw, runtime->dma_bytes);
|
|
}
|
|
|
|
static void fill_block_random(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
|
|
{
|
|
if (v_iter->interleaved)
|
|
fill_block_rand_i(v_iter, runtime);
|
|
else
|
|
fill_block_rand_n(v_iter, runtime);
|
|
}
|
|
|
|
static void fill_block(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
|
|
{
|
|
switch (fill_mode) {
|
|
case FILL_MODE_RAND:
|
|
fill_block_random(v_iter, runtime);
|
|
break;
|
|
case FILL_MODE_PAT:
|
|
fill_block_pattern(v_iter, runtime);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Here we iterate through the buffer by (buffer_size / iterates_per_second) bytes.
|
|
* The driver uses timer to simulate the hardware pointer moving, and notify the PCM middle layer
|
|
* about period elapsed.
|
|
*/
|
|
static void timer_timeout(struct timer_list *data)
|
|
{
|
|
struct pcmtst_buf_iter *v_iter;
|
|
struct snd_pcm_substream *substream;
|
|
|
|
v_iter = from_timer(v_iter, data, timer_instance);
|
|
substream = v_iter->substream;
|
|
|
|
if (v_iter->suspend)
|
|
return;
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && !v_iter->is_buf_corrupted)
|
|
check_buf_block(v_iter, substream->runtime);
|
|
else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
|
|
fill_block(v_iter, substream->runtime);
|
|
else
|
|
inc_buf_pos(v_iter, v_iter->b_rw, substream->runtime->dma_bytes);
|
|
|
|
v_iter->period_pos += v_iter->b_rw;
|
|
if (v_iter->period_pos >= v_iter->period_bytes) {
|
|
v_iter->period_pos %= v_iter->period_bytes;
|
|
snd_pcm_period_elapsed(substream);
|
|
}
|
|
|
|
if (!v_iter->suspend)
|
|
mod_timer(&v_iter->timer_instance, jiffies + TIMER_INTERVAL + inject_delay);
|
|
}
|
|
|
|
static int snd_pcmtst_pcm_open(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct pcmtst_buf_iter *v_iter;
|
|
|
|
if (inject_open_err)
|
|
return -EBUSY;
|
|
|
|
v_iter = kzalloc(sizeof(*v_iter), GFP_KERNEL);
|
|
if (!v_iter)
|
|
return -ENOMEM;
|
|
|
|
v_iter->substream = substream;
|
|
runtime->hw = snd_pcmtst_hw;
|
|
runtime->private_data = v_iter;
|
|
|
|
playback_capture_test = 0;
|
|
ioctl_reset_test = 0;
|
|
|
|
timer_setup(&v_iter->timer_instance, timer_timeout, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int snd_pcmtst_pcm_close(struct snd_pcm_substream *substream)
|
|
{
|
|
struct pcmtst_buf_iter *v_iter = substream->runtime->private_data;
|
|
|
|
timer_shutdown_sync(&v_iter->timer_instance);
|
|
playback_capture_test = !v_iter->is_buf_corrupted;
|
|
kfree(v_iter);
|
|
return 0;
|
|
}
|
|
|
|
static inline void reset_buf_iterator(struct pcmtst_buf_iter *v_iter)
|
|
{
|
|
v_iter->buf_pos = 0;
|
|
v_iter->is_buf_corrupted = false;
|
|
v_iter->period_pos = 0;
|
|
v_iter->total_bytes = 0;
|
|
}
|
|
|
|
static inline void start_pcmtest_timer(struct pcmtst_buf_iter *v_iter)
|
|
{
|
|
v_iter->suspend = false;
|
|
mod_timer(&v_iter->timer_instance, jiffies + TIMER_INTERVAL);
|
|
}
|
|
|
|
static int snd_pcmtst_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
|
|
{
|
|
struct pcmtst_buf_iter *v_iter = substream->runtime->private_data;
|
|
|
|
if (inject_trigger_err)
|
|
return -EINVAL;
|
|
switch (cmd) {
|
|
case SNDRV_PCM_TRIGGER_START:
|
|
reset_buf_iterator(v_iter);
|
|
start_pcmtest_timer(v_iter);
|
|
break;
|
|
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
|
|
start_pcmtest_timer(v_iter);
|
|
break;
|
|
case SNDRV_PCM_TRIGGER_STOP:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
|
|
// We can't call timer_shutdown_sync here, as it is forbidden to sleep here
|
|
v_iter->suspend = true;
|
|
timer_delete(&v_iter->timer_instance);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static snd_pcm_uframes_t snd_pcmtst_pcm_pointer(struct snd_pcm_substream *substream)
|
|
{
|
|
struct pcmtst_buf_iter *v_iter = substream->runtime->private_data;
|
|
|
|
return bytes_to_frames(substream->runtime, v_iter->buf_pos);
|
|
}
|
|
|
|
static int snd_pcmtst_free(struct pcmtst *pcmtst)
|
|
{
|
|
if (!pcmtst)
|
|
return 0;
|
|
kfree(pcmtst);
|
|
return 0;
|
|
}
|
|
|
|
// These callbacks are required, but empty - all freeing occurs in pdev_remove
|
|
static int snd_pcmtst_dev_free(struct snd_device *device)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void pcmtst_pdev_release(struct device *dev)
|
|
{
|
|
}
|
|
|
|
static int snd_pcmtst_pcm_prepare(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct pcmtst_buf_iter *v_iter = runtime->private_data;
|
|
|
|
if (inject_prepare_err)
|
|
return -EINVAL;
|
|
|
|
v_iter->sample_bytes = samples_to_bytes(runtime, 1);
|
|
v_iter->period_bytes = snd_pcm_lib_period_bytes(substream);
|
|
v_iter->interleaved = true;
|
|
if (runtime->access == SNDRV_PCM_ACCESS_RW_NONINTERLEAVED ||
|
|
runtime->access == SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED) {
|
|
v_iter->chan_block = snd_pcm_lib_buffer_bytes(substream) / runtime->channels;
|
|
v_iter->interleaved = false;
|
|
}
|
|
// We want to record RATE * ch_cnt samples per sec, it is rate * sample_bytes * ch_cnt bytes
|
|
v_iter->s_rw_ch = runtime->rate / TIMER_PER_SEC;
|
|
v_iter->b_rw = v_iter->s_rw_ch * v_iter->sample_bytes * runtime->channels;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int snd_pcmtst_pcm_hw_params(struct snd_pcm_substream *substream,
|
|
struct snd_pcm_hw_params *params)
|
|
{
|
|
if (inject_hwpars_err)
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
static int snd_pcmtst_pcm_hw_free(struct snd_pcm_substream *substream)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int snd_pcmtst_ioctl(struct snd_pcm_substream *substream, unsigned int cmd, void *arg)
|
|
{
|
|
switch (cmd) {
|
|
case SNDRV_PCM_IOCTL1_RESET:
|
|
ioctl_reset_test = 1;
|
|
break;
|
|
}
|
|
return snd_pcm_lib_ioctl(substream, cmd, arg);
|
|
}
|
|
|
|
static int snd_pcmtst_sync_stop(struct snd_pcm_substream *substream)
|
|
{
|
|
struct pcmtst_buf_iter *v_iter = substream->runtime->private_data;
|
|
|
|
timer_delete_sync(&v_iter->timer_instance);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct snd_pcm_ops snd_pcmtst_playback_ops = {
|
|
.open = snd_pcmtst_pcm_open,
|
|
.close = snd_pcmtst_pcm_close,
|
|
.trigger = snd_pcmtst_pcm_trigger,
|
|
.hw_params = snd_pcmtst_pcm_hw_params,
|
|
.ioctl = snd_pcmtst_ioctl,
|
|
.sync_stop = snd_pcmtst_sync_stop,
|
|
.hw_free = snd_pcmtst_pcm_hw_free,
|
|
.prepare = snd_pcmtst_pcm_prepare,
|
|
.pointer = snd_pcmtst_pcm_pointer,
|
|
};
|
|
|
|
static const struct snd_pcm_ops snd_pcmtst_capture_ops = {
|
|
.open = snd_pcmtst_pcm_open,
|
|
.close = snd_pcmtst_pcm_close,
|
|
.trigger = snd_pcmtst_pcm_trigger,
|
|
.hw_params = snd_pcmtst_pcm_hw_params,
|
|
.hw_free = snd_pcmtst_pcm_hw_free,
|
|
.ioctl = snd_pcmtst_ioctl,
|
|
.sync_stop = snd_pcmtst_sync_stop,
|
|
.prepare = snd_pcmtst_pcm_prepare,
|
|
.pointer = snd_pcmtst_pcm_pointer,
|
|
};
|
|
|
|
static int snd_pcmtst_new_pcm(struct pcmtst *pcmtst)
|
|
{
|
|
struct snd_pcm *pcm;
|
|
int err;
|
|
|
|
err = snd_pcm_new(pcmtst->card, "PCMTest", 0, PLAYBACK_SUBSTREAM_CNT,
|
|
CAPTURE_SUBSTREAM_CNT, &pcm);
|
|
if (err < 0)
|
|
return err;
|
|
pcm->private_data = pcmtst;
|
|
strcpy(pcm->name, "PCMTest");
|
|
pcmtst->pcm = pcm;
|
|
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pcmtst_playback_ops);
|
|
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pcmtst_capture_ops);
|
|
|
|
err = snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &pcmtst->pdev->dev,
|
|
0, 128 * 1024);
|
|
return err;
|
|
}
|
|
|
|
static int snd_pcmtst_create(struct snd_card *card, struct platform_device *pdev,
|
|
struct pcmtst **r_pcmtst)
|
|
{
|
|
struct pcmtst *pcmtst;
|
|
int err;
|
|
static const struct snd_device_ops ops = {
|
|
.dev_free = snd_pcmtst_dev_free,
|
|
};
|
|
|
|
pcmtst = kzalloc(sizeof(*pcmtst), GFP_KERNEL);
|
|
if (!pcmtst)
|
|
return -ENOMEM;
|
|
pcmtst->card = card;
|
|
pcmtst->pdev = pdev;
|
|
|
|
err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, pcmtst, &ops);
|
|
if (err < 0)
|
|
goto _err_free_chip;
|
|
|
|
err = snd_pcmtst_new_pcm(pcmtst);
|
|
if (err < 0)
|
|
goto _err_free_chip;
|
|
|
|
*r_pcmtst = pcmtst;
|
|
return 0;
|
|
|
|
_err_free_chip:
|
|
snd_pcmtst_free(pcmtst);
|
|
return err;
|
|
}
|
|
|
|
static int pcmtst_probe(struct platform_device *pdev)
|
|
{
|
|
struct snd_card *card;
|
|
struct pcmtst *pcmtst;
|
|
int err;
|
|
|
|
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
|
|
if (err)
|
|
return err;
|
|
|
|
err = snd_devm_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
|
|
if (err < 0)
|
|
return err;
|
|
err = snd_pcmtst_create(card, pdev, &pcmtst);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
strcpy(card->driver, "PCM-TEST Driver");
|
|
strcpy(card->shortname, "PCM-Test");
|
|
strcpy(card->longname, "PCM-Test virtual driver");
|
|
|
|
err = snd_card_register(card);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
platform_set_drvdata(pdev, pcmtst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pdev_remove(struct platform_device *pdev)
|
|
{
|
|
struct pcmtst *pcmtst = platform_get_drvdata(pdev);
|
|
|
|
snd_pcmtst_free(pcmtst);
|
|
}
|
|
|
|
static struct platform_device pcmtst_pdev = {
|
|
.name = "pcmtest",
|
|
.dev.release = pcmtst_pdev_release,
|
|
};
|
|
|
|
static struct platform_driver pcmtst_pdrv = {
|
|
.probe = pcmtst_probe,
|
|
.remove = pdev_remove,
|
|
.driver = {
|
|
.name = "pcmtest",
|
|
},
|
|
};
|
|
|
|
static ssize_t pattern_write(struct file *file, const char __user *u_buff, size_t len, loff_t *off)
|
|
{
|
|
struct pattern_buf *patt_buf = file->f_inode->i_private;
|
|
ssize_t to_write = len;
|
|
|
|
if (*off + to_write > MAX_PATTERN_LEN)
|
|
to_write = MAX_PATTERN_LEN - *off;
|
|
|
|
// Crop silently everything over the buffer
|
|
if (to_write <= 0)
|
|
return len;
|
|
|
|
if (copy_from_user(patt_buf->buf + *off, u_buff, to_write))
|
|
return -EFAULT;
|
|
|
|
patt_buf->len = *off + to_write;
|
|
*off += to_write;
|
|
|
|
return to_write;
|
|
}
|
|
|
|
static ssize_t pattern_read(struct file *file, char __user *u_buff, size_t len, loff_t *off)
|
|
{
|
|
struct pattern_buf *patt_buf = file->f_inode->i_private;
|
|
ssize_t to_read = len;
|
|
|
|
if (*off + to_read >= MAX_PATTERN_LEN)
|
|
to_read = MAX_PATTERN_LEN - *off;
|
|
if (to_read <= 0)
|
|
return 0;
|
|
|
|
if (copy_to_user(u_buff, patt_buf->buf + *off, to_read))
|
|
to_read = 0;
|
|
else
|
|
*off += to_read;
|
|
|
|
return to_read;
|
|
}
|
|
|
|
static const struct file_operations fill_pattern_fops = {
|
|
.read = pattern_read,
|
|
.write = pattern_write,
|
|
};
|
|
|
|
static int setup_patt_bufs(void)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(patt_bufs); i++) {
|
|
patt_bufs[i].buf = kzalloc(MAX_PATTERN_LEN, GFP_KERNEL);
|
|
if (!patt_bufs[i].buf)
|
|
break;
|
|
strcpy(patt_bufs[i].buf, DEFAULT_PATTERN);
|
|
patt_bufs[i].len = DEFAULT_PATTERN_LEN;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
static const char * const pattern_files[] = { "fill_pattern0", "fill_pattern1",
|
|
"fill_pattern2", "fill_pattern3"};
|
|
static int init_debug_files(int buf_count)
|
|
{
|
|
size_t i;
|
|
char len_file_name[32];
|
|
|
|
driver_debug_dir = debugfs_create_dir("pcmtest", NULL);
|
|
if (IS_ERR(driver_debug_dir))
|
|
return PTR_ERR(driver_debug_dir);
|
|
debugfs_create_u8("pc_test", 0444, driver_debug_dir, &playback_capture_test);
|
|
debugfs_create_u8("ioctl_test", 0444, driver_debug_dir, &ioctl_reset_test);
|
|
|
|
for (i = 0; i < buf_count; i++) {
|
|
debugfs_create_file(pattern_files[i], 0600, driver_debug_dir,
|
|
&patt_bufs[i], &fill_pattern_fops);
|
|
snprintf(len_file_name, sizeof(len_file_name), "%s_len", pattern_files[i]);
|
|
debugfs_create_u32(len_file_name, 0444, driver_debug_dir, &patt_bufs[i].len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_pattern_buffers(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < buf_allocated; i++)
|
|
kfree(patt_bufs[i].buf);
|
|
}
|
|
|
|
static void clear_debug_files(void)
|
|
{
|
|
debugfs_remove_recursive(driver_debug_dir);
|
|
}
|
|
|
|
static int __init mod_init(void)
|
|
{
|
|
int err = 0;
|
|
|
|
buf_allocated = setup_patt_bufs();
|
|
if (!buf_allocated)
|
|
return -ENOMEM;
|
|
|
|
snd_pcmtst_hw.channels_max = buf_allocated;
|
|
|
|
err = init_debug_files(buf_allocated);
|
|
if (err)
|
|
return err;
|
|
err = platform_device_register(&pcmtst_pdev);
|
|
if (err)
|
|
return err;
|
|
err = platform_driver_register(&pcmtst_pdrv);
|
|
if (err)
|
|
platform_device_unregister(&pcmtst_pdev);
|
|
return err;
|
|
}
|
|
|
|
static void __exit mod_exit(void)
|
|
{
|
|
clear_debug_files();
|
|
free_pattern_buffers();
|
|
|
|
platform_driver_unregister(&pcmtst_pdrv);
|
|
platform_device_unregister(&pcmtst_pdev);
|
|
}
|
|
|
|
MODULE_DESCRIPTION("Virtual ALSA driver for PCM testing/fuzzing");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Ivan Orlov");
|
|
module_init(mod_init);
|
|
module_exit(mod_exit);
|