linux-next/drivers/mmc/host/sdhci-xenon-phy.c
Elad Nachman 09e23823ae mmc: sdhci-xenon: add timeout for PHY init complete
AC5X spec says PHY init complete bit must be polled until zero.
We see cases in which timeout can take longer than the standard
calculation on AC5X, which is expected following the spec comment above.
According to the spec, we must wait as long as it takes for that bit to
toggle on AC5X.
Cap that with 100 delay loops so we won't get stuck forever.

Fixes: 06c8b667ff5b ("mmc: sdhci-xenon: Add support to PHYs of Marvell Xenon SDHC")
Acked-by: Adrian Hunter <adrian.hunter@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Elad Nachman <enachman@marvell.com>
Link: https://lore.kernel.org/r/20240222191714.1216470-3-enachman@marvell.com
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2024-02-28 13:41:35 +01:00

879 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* PHY support for Xenon SDHC
*
* Copyright (C) 2016 Marvell, All Rights Reserved.
*
* Author: Hu Ziji <huziji@marvell.com>
* Date: 2016-8-24
*/
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/ktime.h>
#include <linux/iopoll.h>
#include <linux/of_address.h>
#include "sdhci-pltfm.h"
#include "sdhci-xenon.h"
/* Register base for eMMC PHY 5.0 Version */
#define XENON_EMMC_5_0_PHY_REG_BASE 0x0160
/* Register base for eMMC PHY 5.1 Version */
#define XENON_EMMC_PHY_REG_BASE 0x0170
#define XENON_EMMC_PHY_TIMING_ADJUST XENON_EMMC_PHY_REG_BASE
#define XENON_EMMC_5_0_PHY_TIMING_ADJUST XENON_EMMC_5_0_PHY_REG_BASE
#define XENON_TIMING_ADJUST_SLOW_MODE BIT(29)
#define XENON_TIMING_ADJUST_SDIO_MODE BIT(28)
#define XENON_SAMPL_INV_QSP_PHASE_SELECT BIT(18)
#define XENON_SAMPL_INV_QSP_PHASE_SELECT_SHIFT 18
#define XENON_PHY_INITIALIZAION BIT(31)
#define XENON_WAIT_CYCLE_BEFORE_USING_MASK 0xF
#define XENON_WAIT_CYCLE_BEFORE_USING_SHIFT 12
#define XENON_FC_SYNC_EN_DURATION_MASK 0xF
#define XENON_FC_SYNC_EN_DURATION_SHIFT 8
#define XENON_FC_SYNC_RST_EN_DURATION_MASK 0xF
#define XENON_FC_SYNC_RST_EN_DURATION_SHIFT 4
#define XENON_FC_SYNC_RST_DURATION_MASK 0xF
#define XENON_FC_SYNC_RST_DURATION_SHIFT 0
#define XENON_EMMC_PHY_FUNC_CONTROL (XENON_EMMC_PHY_REG_BASE + 0x4)
#define XENON_EMMC_5_0_PHY_FUNC_CONTROL \
(XENON_EMMC_5_0_PHY_REG_BASE + 0x4)
#define XENON_ASYNC_DDRMODE_MASK BIT(23)
#define XENON_ASYNC_DDRMODE_SHIFT 23
#define XENON_CMD_DDR_MODE BIT(16)
#define XENON_DQ_DDR_MODE_SHIFT 8
#define XENON_DQ_DDR_MODE_MASK 0xFF
#define XENON_DQ_ASYNC_MODE BIT(4)
#define XENON_EMMC_PHY_PAD_CONTROL (XENON_EMMC_PHY_REG_BASE + 0x8)
#define XENON_EMMC_5_0_PHY_PAD_CONTROL \
(XENON_EMMC_5_0_PHY_REG_BASE + 0x8)
#define XENON_REC_EN_SHIFT 24
#define XENON_REC_EN_MASK 0xF
#define XENON_FC_DQ_RECEN BIT(24)
#define XENON_FC_CMD_RECEN BIT(25)
#define XENON_FC_QSP_RECEN BIT(26)
#define XENON_FC_QSN_RECEN BIT(27)
#define XENON_OEN_QSN BIT(28)
#define XENON_AUTO_RECEN_CTRL BIT(30)
#define XENON_FC_ALL_CMOS_RECEIVER 0xF000
#define XENON_EMMC5_FC_QSP_PD BIT(18)
#define XENON_EMMC5_FC_QSP_PU BIT(22)
#define XENON_EMMC5_FC_CMD_PD BIT(17)
#define XENON_EMMC5_FC_CMD_PU BIT(21)
#define XENON_EMMC5_FC_DQ_PD BIT(16)
#define XENON_EMMC5_FC_DQ_PU BIT(20)
#define XENON_EMMC_PHY_PAD_CONTROL1 (XENON_EMMC_PHY_REG_BASE + 0xC)
#define XENON_EMMC5_1_FC_QSP_PD BIT(9)
#define XENON_EMMC5_1_FC_QSP_PU BIT(25)
#define XENON_EMMC5_1_FC_CMD_PD BIT(8)
#define XENON_EMMC5_1_FC_CMD_PU BIT(24)
#define XENON_EMMC5_1_FC_DQ_PD 0xFF
#define XENON_EMMC5_1_FC_DQ_PU (0xFF << 16)
#define XENON_EMMC_PHY_PAD_CONTROL2 (XENON_EMMC_PHY_REG_BASE + 0x10)
#define XENON_EMMC_5_0_PHY_PAD_CONTROL2 \
(XENON_EMMC_5_0_PHY_REG_BASE + 0xC)
#define XENON_ZNR_MASK 0x1F
#define XENON_ZNR_SHIFT 8
#define XENON_ZPR_MASK 0x1F
/* Preferred ZNR and ZPR value vary between different boards.
* The specific ZNR and ZPR value should be defined here
* according to board actual timing.
*/
#define XENON_ZNR_DEF_VALUE 0xF
#define XENON_ZPR_DEF_VALUE 0xF
#define XENON_EMMC_PHY_DLL_CONTROL (XENON_EMMC_PHY_REG_BASE + 0x14)
#define XENON_EMMC_5_0_PHY_DLL_CONTROL \
(XENON_EMMC_5_0_PHY_REG_BASE + 0x10)
#define XENON_DLL_ENABLE BIT(31)
#define XENON_DLL_UPDATE_STROBE_5_0 BIT(30)
#define XENON_DLL_REFCLK_SEL BIT(30)
#define XENON_DLL_UPDATE BIT(23)
#define XENON_DLL_PHSEL1_SHIFT 24
#define XENON_DLL_PHSEL0_SHIFT 16
#define XENON_DLL_PHASE_MASK 0x3F
#define XENON_DLL_PHASE_90_DEGREE 0x1F
#define XENON_DLL_FAST_LOCK BIT(5)
#define XENON_DLL_GAIN2X BIT(3)
#define XENON_DLL_BYPASS_EN BIT(0)
#define XENON_EMMC_5_0_PHY_LOGIC_TIMING_ADJUST \
(XENON_EMMC_5_0_PHY_REG_BASE + 0x14)
#define XENON_EMMC_5_0_PHY_LOGIC_TIMING_VALUE 0x5A54
#define XENON_EMMC_PHY_LOGIC_TIMING_ADJUST (XENON_EMMC_PHY_REG_BASE + 0x18)
#define XENON_LOGIC_TIMING_VALUE 0x00AA8977
#define XENON_MAX_PHY_TIMEOUT_LOOPS 100
/*
* List offset of PHY registers and some special register values
* in eMMC PHY 5.0 or eMMC PHY 5.1
*/
struct xenon_emmc_phy_regs {
/* Offset of Timing Adjust register */
u16 timing_adj;
/* Offset of Func Control register */
u16 func_ctrl;
/* Offset of Pad Control register */
u16 pad_ctrl;
/* Offset of Pad Control register 2 */
u16 pad_ctrl2;
/* Offset of DLL Control register */
u16 dll_ctrl;
/* Offset of Logic Timing Adjust register */
u16 logic_timing_adj;
/* DLL Update Enable bit */
u32 dll_update;
/* value in Logic Timing Adjustment register */
u32 logic_timing_val;
};
static const char * const phy_types[] = {
"emmc 5.0 phy",
"emmc 5.1 phy"
};
enum xenon_phy_type_enum {
EMMC_5_0_PHY,
EMMC_5_1_PHY,
NR_PHY_TYPES
};
enum soc_pad_ctrl_type {
SOC_PAD_SD,
SOC_PAD_FIXED_1_8V,
};
struct soc_pad_ctrl {
/* Register address of SoC PHY PAD ctrl */
void __iomem *reg;
/* SoC PHY PAD ctrl type */
enum soc_pad_ctrl_type pad_type;
/* SoC specific operation to set SoC PHY PAD */
void (*set_soc_pad)(struct sdhci_host *host,
unsigned char signal_voltage);
};
static struct xenon_emmc_phy_regs xenon_emmc_5_0_phy_regs = {
.timing_adj = XENON_EMMC_5_0_PHY_TIMING_ADJUST,
.func_ctrl = XENON_EMMC_5_0_PHY_FUNC_CONTROL,
.pad_ctrl = XENON_EMMC_5_0_PHY_PAD_CONTROL,
.pad_ctrl2 = XENON_EMMC_5_0_PHY_PAD_CONTROL2,
.dll_ctrl = XENON_EMMC_5_0_PHY_DLL_CONTROL,
.logic_timing_adj = XENON_EMMC_5_0_PHY_LOGIC_TIMING_ADJUST,
.dll_update = XENON_DLL_UPDATE_STROBE_5_0,
.logic_timing_val = XENON_EMMC_5_0_PHY_LOGIC_TIMING_VALUE,
};
static struct xenon_emmc_phy_regs xenon_emmc_5_1_phy_regs = {
.timing_adj = XENON_EMMC_PHY_TIMING_ADJUST,
.func_ctrl = XENON_EMMC_PHY_FUNC_CONTROL,
.pad_ctrl = XENON_EMMC_PHY_PAD_CONTROL,
.pad_ctrl2 = XENON_EMMC_PHY_PAD_CONTROL2,
.dll_ctrl = XENON_EMMC_PHY_DLL_CONTROL,
.logic_timing_adj = XENON_EMMC_PHY_LOGIC_TIMING_ADJUST,
.dll_update = XENON_DLL_UPDATE,
.logic_timing_val = XENON_LOGIC_TIMING_VALUE,
};
/*
* eMMC PHY configuration and operations
*/
struct xenon_emmc_phy_params {
bool slow_mode;
u8 znr;
u8 zpr;
/* Nr of consecutive Sampling Points of a Valid Sampling Window */
u8 nr_tun_times;
/* Divider for calculating Tuning Step */
u8 tun_step_divider;
struct soc_pad_ctrl pad_ctrl;
};
static int xenon_alloc_emmc_phy(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params;
params = devm_kzalloc(mmc_dev(host->mmc), sizeof(*params), GFP_KERNEL);
if (!params)
return -ENOMEM;
priv->phy_params = params;
if (priv->phy_type == EMMC_5_0_PHY)
priv->emmc_phy_regs = &xenon_emmc_5_0_phy_regs;
else
priv->emmc_phy_regs = &xenon_emmc_5_1_phy_regs;
return 0;
}
static int xenon_check_stability_internal_clk(struct sdhci_host *host)
{
u32 reg;
int err;
err = read_poll_timeout(sdhci_readw, reg, reg & SDHCI_CLOCK_INT_STABLE,
1100, 20000, false, host, SDHCI_CLOCK_CONTROL);
if (err)
dev_err(mmc_dev(host->mmc), "phy_init: Internal clock never stabilized.\n");
return err;
}
/*
* eMMC 5.0/5.1 PHY init/re-init.
* eMMC PHY init should be executed after:
* 1. SDCLK frequency changes.
* 2. SDCLK is stopped and re-enabled.
* 3. config in emmc_phy_regs->timing_adj and emmc_phy_regs->func_ctrl
* are changed
*/
static int xenon_emmc_phy_init(struct sdhci_host *host)
{
u32 reg;
u32 wait, clock;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs;
int ret = xenon_check_stability_internal_clk(host);
if (ret)
return ret;
reg = sdhci_readl(host, phy_regs->timing_adj);
reg |= XENON_PHY_INITIALIZAION;
sdhci_writel(host, reg, phy_regs->timing_adj);
/* Add duration of FC_SYNC_RST */
wait = ((reg >> XENON_FC_SYNC_RST_DURATION_SHIFT) &
XENON_FC_SYNC_RST_DURATION_MASK);
/* Add interval between FC_SYNC_EN and FC_SYNC_RST */
wait += ((reg >> XENON_FC_SYNC_RST_EN_DURATION_SHIFT) &
XENON_FC_SYNC_RST_EN_DURATION_MASK);
/* Add duration of asserting FC_SYNC_EN */
wait += ((reg >> XENON_FC_SYNC_EN_DURATION_SHIFT) &
XENON_FC_SYNC_EN_DURATION_MASK);
/* Add duration of waiting for PHY */
wait += ((reg >> XENON_WAIT_CYCLE_BEFORE_USING_SHIFT) &
XENON_WAIT_CYCLE_BEFORE_USING_MASK);
/* 4 additional bus clock and 4 AXI bus clock are required */
wait += 8;
wait <<= 20;
clock = host->clock;
if (!clock)
/* Use the possibly slowest bus frequency value */
clock = XENON_LOWEST_SDCLK_FREQ;
/* get the wait time */
wait /= clock;
wait++;
/*
* AC5X spec says bit must be polled until zero.
* We see cases in which timeout can take longer
* than the standard calculation on AC5X, which is
* expected following the spec comment above.
* According to the spec, we must wait as long as
* it takes for that bit to toggle on AC5X.
* Cap that with 100 delay loops so we won't get
* stuck here forever:
*/
ret = read_poll_timeout(sdhci_readl, reg,
!(reg & XENON_PHY_INITIALIZAION),
wait, XENON_MAX_PHY_TIMEOUT_LOOPS * wait,
false, host, phy_regs->timing_adj);
if (ret)
dev_err(mmc_dev(host->mmc), "eMMC PHY init cannot complete after %d us\n",
wait * XENON_MAX_PHY_TIMEOUT_LOOPS);
return ret;
}
#define ARMADA_3700_SOC_PAD_1_8V 0x1
#define ARMADA_3700_SOC_PAD_3_3V 0x0
static void armada_3700_soc_pad_voltage_set(struct sdhci_host *host,
unsigned char signal_voltage)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
if (params->pad_ctrl.pad_type == SOC_PAD_FIXED_1_8V) {
writel(ARMADA_3700_SOC_PAD_1_8V, params->pad_ctrl.reg);
} else if (params->pad_ctrl.pad_type == SOC_PAD_SD) {
if (signal_voltage == MMC_SIGNAL_VOLTAGE_180)
writel(ARMADA_3700_SOC_PAD_1_8V, params->pad_ctrl.reg);
else if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
writel(ARMADA_3700_SOC_PAD_3_3V, params->pad_ctrl.reg);
}
}
/*
* Set SoC PHY voltage PAD control register,
* according to the operation voltage on PAD.
* The detailed operation depends on SoC implementation.
*/
static void xenon_emmc_phy_set_soc_pad(struct sdhci_host *host,
unsigned char signal_voltage)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
if (!params->pad_ctrl.reg)
return;
if (params->pad_ctrl.set_soc_pad)
params->pad_ctrl.set_soc_pad(host, signal_voltage);
}
/*
* Enable eMMC PHY HW DLL
* DLL should be enabled and stable before HS200/SDR104 tuning,
* and before HS400 data strobe setting.
*/
static int xenon_emmc_phy_enable_dll(struct sdhci_host *host)
{
u32 reg;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs;
ktime_t timeout;
if (WARN_ON(host->clock <= MMC_HIGH_52_MAX_DTR))
return -EINVAL;
reg = sdhci_readl(host, phy_regs->dll_ctrl);
if (reg & XENON_DLL_ENABLE)
return 0;
/* Enable DLL */
reg = sdhci_readl(host, phy_regs->dll_ctrl);
reg |= (XENON_DLL_ENABLE | XENON_DLL_FAST_LOCK);
/*
* Set Phase as 90 degree, which is most common value.
* Might set another value if necessary.
* The granularity is 1 degree.
*/
reg &= ~((XENON_DLL_PHASE_MASK << XENON_DLL_PHSEL0_SHIFT) |
(XENON_DLL_PHASE_MASK << XENON_DLL_PHSEL1_SHIFT));
reg |= ((XENON_DLL_PHASE_90_DEGREE << XENON_DLL_PHSEL0_SHIFT) |
(XENON_DLL_PHASE_90_DEGREE << XENON_DLL_PHSEL1_SHIFT));
reg &= ~XENON_DLL_BYPASS_EN;
reg |= phy_regs->dll_update;
if (priv->phy_type == EMMC_5_1_PHY)
reg &= ~XENON_DLL_REFCLK_SEL;
sdhci_writel(host, reg, phy_regs->dll_ctrl);
/* Wait max 32 ms */
timeout = ktime_add_ms(ktime_get(), 32);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
if (sdhci_readw(host, XENON_SLOT_EXT_PRESENT_STATE) &
XENON_DLL_LOCK_STATE)
break;
if (timedout) {
dev_err(mmc_dev(host->mmc), "Wait for DLL Lock time-out\n");
return -ETIMEDOUT;
}
udelay(100);
}
return 0;
}
/*
* Config to eMMC PHY to prepare for tuning.
* Enable HW DLL and set the TUNING_STEP
*/
static int xenon_emmc_phy_config_tuning(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
u32 reg, tuning_step;
int ret;
if (host->clock <= MMC_HIGH_52_MAX_DTR)
return -EINVAL;
ret = xenon_emmc_phy_enable_dll(host);
if (ret)
return ret;
/* Achieve TUNING_STEP with HW DLL help */
reg = sdhci_readl(host, XENON_SLOT_DLL_CUR_DLY_VAL);
tuning_step = reg / params->tun_step_divider;
if (unlikely(tuning_step > XENON_TUNING_STEP_MASK)) {
dev_warn(mmc_dev(host->mmc),
"HS200 TUNING_STEP %d is larger than MAX value\n",
tuning_step);
tuning_step = XENON_TUNING_STEP_MASK;
}
/* Set TUNING_STEP for later tuning */
reg = sdhci_readl(host, XENON_SLOT_OP_STATUS_CTRL);
reg &= ~(XENON_TUN_CONSECUTIVE_TIMES_MASK <<
XENON_TUN_CONSECUTIVE_TIMES_SHIFT);
reg |= (params->nr_tun_times << XENON_TUN_CONSECUTIVE_TIMES_SHIFT);
reg &= ~(XENON_TUNING_STEP_MASK << XENON_TUNING_STEP_SHIFT);
reg |= (tuning_step << XENON_TUNING_STEP_SHIFT);
sdhci_writel(host, reg, XENON_SLOT_OP_STATUS_CTRL);
return 0;
}
static void xenon_emmc_phy_disable_strobe(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
u32 reg;
/* Disable both SDHC Data Strobe and Enhanced Strobe */
reg = sdhci_readl(host, XENON_SLOT_EMMC_CTRL);
reg &= ~(XENON_ENABLE_DATA_STROBE | XENON_ENABLE_RESP_STROBE);
sdhci_writel(host, reg, XENON_SLOT_EMMC_CTRL);
/* Clear Strobe line Pull down or Pull up */
if (priv->phy_type == EMMC_5_0_PHY) {
reg = sdhci_readl(host, XENON_EMMC_5_0_PHY_PAD_CONTROL);
reg &= ~(XENON_EMMC5_FC_QSP_PD | XENON_EMMC5_FC_QSP_PU);
sdhci_writel(host, reg, XENON_EMMC_5_0_PHY_PAD_CONTROL);
} else {
reg = sdhci_readl(host, XENON_EMMC_PHY_PAD_CONTROL1);
reg &= ~(XENON_EMMC5_1_FC_QSP_PD | XENON_EMMC5_1_FC_QSP_PU);
sdhci_writel(host, reg, XENON_EMMC_PHY_PAD_CONTROL1);
}
}
/* Set HS400 Data Strobe and Enhanced Strobe */
static void xenon_emmc_phy_strobe_delay_adj(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
u32 reg;
if (WARN_ON(host->timing != MMC_TIMING_MMC_HS400))
return;
if (host->clock <= MMC_HIGH_52_MAX_DTR)
return;
dev_dbg(mmc_dev(host->mmc), "starts HS400 strobe delay adjustment\n");
xenon_emmc_phy_enable_dll(host);
/* Enable SDHC Data Strobe */
reg = sdhci_readl(host, XENON_SLOT_EMMC_CTRL);
reg |= XENON_ENABLE_DATA_STROBE;
/*
* Enable SDHC Enhanced Strobe if supported
* Xenon Enhanced Strobe should be enabled only when
* 1. card is in HS400 mode and
* 2. SDCLK is higher than 52MHz
* 3. DLL is enabled
*/
if (host->mmc->ios.enhanced_strobe)
reg |= XENON_ENABLE_RESP_STROBE;
sdhci_writel(host, reg, XENON_SLOT_EMMC_CTRL);
/* Set Data Strobe Pull down */
if (priv->phy_type == EMMC_5_0_PHY) {
reg = sdhci_readl(host, XENON_EMMC_5_0_PHY_PAD_CONTROL);
reg |= XENON_EMMC5_FC_QSP_PD;
reg &= ~XENON_EMMC5_FC_QSP_PU;
sdhci_writel(host, reg, XENON_EMMC_5_0_PHY_PAD_CONTROL);
} else {
reg = sdhci_readl(host, XENON_EMMC_PHY_PAD_CONTROL1);
reg |= XENON_EMMC5_1_FC_QSP_PD;
reg &= ~XENON_EMMC5_1_FC_QSP_PU;
sdhci_writel(host, reg, XENON_EMMC_PHY_PAD_CONTROL1);
}
}
/*
* If eMMC PHY Slow Mode is required in lower speed mode (SDCLK < 55MHz)
* in SDR mode, enable Slow Mode to bypass eMMC PHY.
* SDIO slower SDR mode also requires Slow Mode.
*
* If Slow Mode is enabled, return true.
* Otherwise, return false.
*/
static bool xenon_emmc_phy_slow_mode(struct sdhci_host *host,
unsigned char timing)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs;
u32 reg;
int ret;
if (host->clock > MMC_HIGH_52_MAX_DTR)
return false;
reg = sdhci_readl(host, phy_regs->timing_adj);
/* When in slower SDR mode, enable Slow Mode for SDIO
* or when Slow Mode flag is set
*/
switch (timing) {
case MMC_TIMING_LEGACY:
/*
* If Slow Mode is required, enable Slow Mode by default
* in early init phase to avoid any potential issue.
*/
if (params->slow_mode) {
reg |= XENON_TIMING_ADJUST_SLOW_MODE;
ret = true;
} else {
reg &= ~XENON_TIMING_ADJUST_SLOW_MODE;
ret = false;
}
break;
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_SDR12:
case MMC_TIMING_SD_HS:
case MMC_TIMING_MMC_HS:
if ((priv->init_card_type == MMC_TYPE_SDIO) ||
params->slow_mode) {
reg |= XENON_TIMING_ADJUST_SLOW_MODE;
ret = true;
break;
}
fallthrough;
default:
reg &= ~XENON_TIMING_ADJUST_SLOW_MODE;
ret = false;
}
sdhci_writel(host, reg, phy_regs->timing_adj);
return ret;
}
/*
* Set-up eMMC 5.0/5.1 PHY.
* Specific configuration depends on the current speed mode in use.
*/
static void xenon_emmc_phy_set(struct sdhci_host *host,
unsigned char timing)
{
u32 reg;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs;
dev_dbg(mmc_dev(host->mmc), "eMMC PHY setting starts\n");
/* Setup pad, set bit[28] and bits[26:24] */
reg = sdhci_readl(host, phy_regs->pad_ctrl);
reg |= (XENON_FC_DQ_RECEN | XENON_FC_CMD_RECEN |
XENON_FC_QSP_RECEN | XENON_OEN_QSN);
/* All FC_XX_RECEIVCE should be set as CMOS Type */
reg |= XENON_FC_ALL_CMOS_RECEIVER;
sdhci_writel(host, reg, phy_regs->pad_ctrl);
/* Set CMD and DQ Pull Up */
if (priv->phy_type == EMMC_5_0_PHY) {
reg = sdhci_readl(host, XENON_EMMC_5_0_PHY_PAD_CONTROL);
reg |= (XENON_EMMC5_FC_CMD_PU | XENON_EMMC5_FC_DQ_PU);
reg &= ~(XENON_EMMC5_FC_CMD_PD | XENON_EMMC5_FC_DQ_PD);
sdhci_writel(host, reg, XENON_EMMC_5_0_PHY_PAD_CONTROL);
} else {
reg = sdhci_readl(host, XENON_EMMC_PHY_PAD_CONTROL1);
reg |= (XENON_EMMC5_1_FC_CMD_PU | XENON_EMMC5_1_FC_DQ_PU);
reg &= ~(XENON_EMMC5_1_FC_CMD_PD | XENON_EMMC5_1_FC_DQ_PD);
sdhci_writel(host, reg, XENON_EMMC_PHY_PAD_CONTROL1);
}
if (timing == MMC_TIMING_LEGACY) {
xenon_emmc_phy_slow_mode(host, timing);
goto phy_init;
}
/*
* If SDIO card, set SDIO Mode
* Otherwise, clear SDIO Mode
*/
reg = sdhci_readl(host, phy_regs->timing_adj);
if (priv->init_card_type == MMC_TYPE_SDIO)
reg |= XENON_TIMING_ADJUST_SDIO_MODE;
else
reg &= ~XENON_TIMING_ADJUST_SDIO_MODE;
sdhci_writel(host, reg, phy_regs->timing_adj);
if (xenon_emmc_phy_slow_mode(host, timing))
goto phy_init;
/*
* Set preferred ZNR and ZPR value
* The ZNR and ZPR value vary between different boards.
* Define them both in sdhci-xenon-emmc-phy.h.
*/
reg = sdhci_readl(host, phy_regs->pad_ctrl2);
reg &= ~((XENON_ZNR_MASK << XENON_ZNR_SHIFT) | XENON_ZPR_MASK);
reg |= ((params->znr << XENON_ZNR_SHIFT) | params->zpr);
sdhci_writel(host, reg, phy_regs->pad_ctrl2);
/*
* When setting EMMC_PHY_FUNC_CONTROL register,
* SD clock should be disabled
*/
reg = sdhci_readl(host, SDHCI_CLOCK_CONTROL);
reg &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL);
reg = sdhci_readl(host, phy_regs->func_ctrl);
switch (timing) {
case MMC_TIMING_MMC_HS400:
reg |= (XENON_DQ_DDR_MODE_MASK << XENON_DQ_DDR_MODE_SHIFT) |
XENON_CMD_DDR_MODE;
reg &= ~XENON_DQ_ASYNC_MODE;
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
reg |= (XENON_DQ_DDR_MODE_MASK << XENON_DQ_DDR_MODE_SHIFT) |
XENON_CMD_DDR_MODE | XENON_DQ_ASYNC_MODE;
break;
default:
reg &= ~((XENON_DQ_DDR_MODE_MASK << XENON_DQ_DDR_MODE_SHIFT) |
XENON_CMD_DDR_MODE);
reg |= XENON_DQ_ASYNC_MODE;
}
sdhci_writel(host, reg, phy_regs->func_ctrl);
/* Enable bus clock */
reg = sdhci_readl(host, SDHCI_CLOCK_CONTROL);
reg |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL);
if (timing == MMC_TIMING_MMC_HS400)
/* Hardware team recommend a value for HS400 */
sdhci_writel(host, phy_regs->logic_timing_val,
phy_regs->logic_timing_adj);
else
xenon_emmc_phy_disable_strobe(host);
phy_init:
xenon_emmc_phy_init(host);
dev_dbg(mmc_dev(host->mmc), "eMMC PHY setting completes\n");
}
static int get_dt_pad_ctrl_data(struct sdhci_host *host,
struct device_node *np,
struct xenon_emmc_phy_params *params)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
int ret = 0;
const char *name;
struct resource iomem;
if (priv->hw_version == XENON_A3700)
params->pad_ctrl.set_soc_pad = armada_3700_soc_pad_voltage_set;
else
return 0;
if (of_address_to_resource(np, 1, &iomem)) {
dev_err(mmc_dev(host->mmc), "Unable to find SoC PAD ctrl register address for %pOFn\n",
np);
return -EINVAL;
}
params->pad_ctrl.reg = devm_ioremap_resource(mmc_dev(host->mmc),
&iomem);
if (IS_ERR(params->pad_ctrl.reg))
return PTR_ERR(params->pad_ctrl.reg);
ret = of_property_read_string(np, "marvell,pad-type", &name);
if (ret) {
dev_err(mmc_dev(host->mmc), "Unable to determine SoC PHY PAD ctrl type\n");
return ret;
}
if (!strcmp(name, "sd")) {
params->pad_ctrl.pad_type = SOC_PAD_SD;
} else if (!strcmp(name, "fixed-1-8v")) {
params->pad_ctrl.pad_type = SOC_PAD_FIXED_1_8V;
} else {
dev_err(mmc_dev(host->mmc), "Unsupported SoC PHY PAD ctrl type %s\n",
name);
return -EINVAL;
}
return ret;
}
static int xenon_emmc_phy_parse_params(struct sdhci_host *host,
struct device *dev,
struct xenon_emmc_phy_params *params)
{
u32 value;
params->slow_mode = false;
if (device_property_read_bool(dev, "marvell,xenon-phy-slow-mode"))
params->slow_mode = true;
params->znr = XENON_ZNR_DEF_VALUE;
if (!device_property_read_u32(dev, "marvell,xenon-phy-znr", &value))
params->znr = value & XENON_ZNR_MASK;
params->zpr = XENON_ZPR_DEF_VALUE;
if (!device_property_read_u32(dev, "marvell,xenon-phy-zpr", &value))
params->zpr = value & XENON_ZPR_MASK;
params->nr_tun_times = XENON_TUN_CONSECUTIVE_TIMES;
if (!device_property_read_u32(dev, "marvell,xenon-phy-nr-success-tun",
&value))
params->nr_tun_times = value & XENON_TUN_CONSECUTIVE_TIMES_MASK;
params->tun_step_divider = XENON_TUNING_STEP_DIVIDER;
if (!device_property_read_u32(dev, "marvell,xenon-phy-tun-step-divider",
&value))
params->tun_step_divider = value & 0xFF;
if (dev->of_node)
return get_dt_pad_ctrl_data(host, dev->of_node, params);
return 0;
}
/* Set SoC PHY Voltage PAD */
void xenon_soc_pad_ctrl(struct sdhci_host *host,
unsigned char signal_voltage)
{
xenon_emmc_phy_set_soc_pad(host, signal_voltage);
}
/*
* Setting PHY when card is working in High Speed Mode.
* HS400 set Data Strobe and Enhanced Strobe if it is supported.
* HS200/SDR104 set tuning config to prepare for tuning.
*/
static int xenon_hs_delay_adj(struct sdhci_host *host)
{
int ret = 0;
if (WARN_ON(host->clock <= XENON_DEFAULT_SDCLK_FREQ))
return -EINVAL;
switch (host->timing) {
case MMC_TIMING_MMC_HS400:
xenon_emmc_phy_strobe_delay_adj(host);
return 0;
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_UHS_SDR104:
return xenon_emmc_phy_config_tuning(host);
case MMC_TIMING_MMC_DDR52:
case MMC_TIMING_UHS_DDR50:
/*
* DDR Mode requires driver to scan Sampling Fixed Delay Line,
* to find out a perfect operation sampling point.
* It is hard to implement such a scan in host driver
* since initiating commands by host driver is not safe.
* Thus so far just keep PHY Sampling Fixed Delay in
* default value of DDR mode.
*
* If any timing issue occurs in DDR mode on Marvell products,
* please contact maintainer for internal support in Marvell.
*/
dev_warn_once(mmc_dev(host->mmc), "Timing issue might occur in DDR mode\n");
return 0;
}
return ret;
}
/*
* Adjust PHY setting.
* PHY setting should be adjusted when SDCLK frequency, Bus Width
* or Speed Mode is changed.
* Additional config are required when card is working in High Speed mode,
* after leaving Legacy Mode.
*/
int xenon_phy_adj(struct sdhci_host *host, struct mmc_ios *ios)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
int ret = 0;
if (!host->clock) {
priv->clock = 0;
return 0;
}
/*
* The timing, frequency or bus width is changed,
* better to set eMMC PHY based on current setting
* and adjust Xenon SDHC delay.
*/
if ((host->clock == priv->clock) &&
(ios->bus_width == priv->bus_width) &&
(ios->timing == priv->timing))
return 0;
xenon_emmc_phy_set(host, ios->timing);
/* Update the record */
priv->bus_width = ios->bus_width;
priv->timing = ios->timing;
priv->clock = host->clock;
/* Legacy mode is a special case */
if (ios->timing == MMC_TIMING_LEGACY)
return 0;
if (host->clock > XENON_DEFAULT_SDCLK_FREQ)
ret = xenon_hs_delay_adj(host);
return ret;
}
static int xenon_add_phy(struct device *dev, struct sdhci_host *host,
const char *phy_name)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
int ret;
priv->phy_type = match_string(phy_types, NR_PHY_TYPES, phy_name);
if (priv->phy_type < 0) {
dev_err(mmc_dev(host->mmc),
"Unable to determine PHY name %s. Use default eMMC 5.1 PHY\n",
phy_name);
priv->phy_type = EMMC_5_1_PHY;
}
ret = xenon_alloc_emmc_phy(host);
if (ret)
return ret;
return xenon_emmc_phy_parse_params(host, dev, priv->phy_params);
}
int xenon_phy_parse_params(struct device *dev, struct sdhci_host *host)
{
const char *phy_type = NULL;
if (!device_property_read_string(dev, "marvell,xenon-phy-type", &phy_type))
return xenon_add_phy(dev, host, phy_type);
return xenon_add_phy(dev, host, "emmc 5.1 phy");
}