Eric Biggers ed45e20164 fs-verity: rename "file measurement" to "file digest"
I originally chose the name "file measurement" to refer to the fs-verity
file digest to avoid confusion with traditional full-file digests or
with the bare root hash of the Merkle tree.

But the name "file measurement" hasn't caught on, and usually people are
calling it something else, usually the "file digest".  E.g. see
"struct fsverity_digest" and "struct fsverity_formatted_digest", the
libfsverity_compute_digest() and libfsverity_sign_digest() functions in
libfsverity, and the "fsverity digest" command.

Having multiple names for the same thing is always confusing.

So to hopefully avoid confusion in the future, rename
"fs-verity file measurement" to "fs-verity file digest".

This leaves FS_IOC_MEASURE_VERITY as the only reference to "measure" in
the kernel, which makes some amount of sense since the ioctl is actively
"measuring" the file.

I'll be renaming this in fsverity-utils too (though similarly the
'fsverity measure' command, which is a wrapper for
FS_IOC_MEASURE_VERITY, will stay).

Acked-by: Luca Boccassi <luca.boccassi@microsoft.com>
Link: https://lore.kernel.org/r/20201113211918.71883-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-11-16 11:40:12 -08:00

368 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Opening fs-verity files
*
* Copyright 2019 Google LLC
*/
#include "fsverity_private.h"
#include <linux/slab.h>
static struct kmem_cache *fsverity_info_cachep;
/**
* fsverity_init_merkle_tree_params() - initialize Merkle tree parameters
* @params: the parameters struct to initialize
* @inode: the inode for which the Merkle tree is being built
* @hash_algorithm: number of hash algorithm to use
* @log_blocksize: log base 2 of block size to use
* @salt: pointer to salt (optional)
* @salt_size: size of salt, possibly 0
*
* Validate the hash algorithm and block size, then compute the tree topology
* (num levels, num blocks in each level, etc.) and initialize @params.
*
* Return: 0 on success, -errno on failure
*/
int fsverity_init_merkle_tree_params(struct merkle_tree_params *params,
const struct inode *inode,
unsigned int hash_algorithm,
unsigned int log_blocksize,
const u8 *salt, size_t salt_size)
{
struct fsverity_hash_alg *hash_alg;
int err;
u64 blocks;
u64 offset;
int level;
memset(params, 0, sizeof(*params));
hash_alg = fsverity_get_hash_alg(inode, hash_algorithm);
if (IS_ERR(hash_alg))
return PTR_ERR(hash_alg);
params->hash_alg = hash_alg;
params->digest_size = hash_alg->digest_size;
params->hashstate = fsverity_prepare_hash_state(hash_alg, salt,
salt_size);
if (IS_ERR(params->hashstate)) {
err = PTR_ERR(params->hashstate);
params->hashstate = NULL;
fsverity_err(inode, "Error %d preparing hash state", err);
goto out_err;
}
if (log_blocksize != PAGE_SHIFT) {
fsverity_warn(inode, "Unsupported log_blocksize: %u",
log_blocksize);
err = -EINVAL;
goto out_err;
}
params->log_blocksize = log_blocksize;
params->block_size = 1 << log_blocksize;
if (WARN_ON(!is_power_of_2(params->digest_size))) {
err = -EINVAL;
goto out_err;
}
if (params->block_size < 2 * params->digest_size) {
fsverity_warn(inode,
"Merkle tree block size (%u) too small for hash algorithm \"%s\"",
params->block_size, hash_alg->name);
err = -EINVAL;
goto out_err;
}
params->log_arity = params->log_blocksize - ilog2(params->digest_size);
params->hashes_per_block = 1 << params->log_arity;
pr_debug("Merkle tree uses %s with %u-byte blocks (%u hashes/block), salt=%*phN\n",
hash_alg->name, params->block_size, params->hashes_per_block,
(int)salt_size, salt);
/*
* Compute the number of levels in the Merkle tree and create a map from
* level to the starting block of that level. Level 'num_levels - 1' is
* the root and is stored first. Level 0 is the level directly "above"
* the data blocks and is stored last.
*/
/* Compute number of levels and the number of blocks in each level */
blocks = (inode->i_size + params->block_size - 1) >> log_blocksize;
pr_debug("Data is %lld bytes (%llu blocks)\n", inode->i_size, blocks);
while (blocks > 1) {
if (params->num_levels >= FS_VERITY_MAX_LEVELS) {
fsverity_err(inode, "Too many levels in Merkle tree");
err = -EINVAL;
goto out_err;
}
blocks = (blocks + params->hashes_per_block - 1) >>
params->log_arity;
/* temporarily using level_start[] to store blocks in level */
params->level_start[params->num_levels++] = blocks;
}
params->level0_blocks = params->level_start[0];
/* Compute the starting block of each level */
offset = 0;
for (level = (int)params->num_levels - 1; level >= 0; level--) {
blocks = params->level_start[level];
params->level_start[level] = offset;
pr_debug("Level %d is %llu blocks starting at index %llu\n",
level, blocks, offset);
offset += blocks;
}
params->tree_size = offset << log_blocksize;
return 0;
out_err:
kfree(params->hashstate);
memset(params, 0, sizeof(*params));
return err;
}
/*
* Compute the file digest by hashing the fsverity_descriptor excluding the
* signature and with the sig_size field set to 0.
*/
static int compute_file_digest(struct fsverity_hash_alg *hash_alg,
struct fsverity_descriptor *desc,
u8 *file_digest)
{
__le32 sig_size = desc->sig_size;
int err;
desc->sig_size = 0;
err = fsverity_hash_buffer(hash_alg, desc, sizeof(*desc), file_digest);
desc->sig_size = sig_size;
return err;
}
/*
* Validate the given fsverity_descriptor and create a new fsverity_info from
* it. The signature (if present) is also checked.
*/
struct fsverity_info *fsverity_create_info(const struct inode *inode,
void *_desc, size_t desc_size)
{
struct fsverity_descriptor *desc = _desc;
struct fsverity_info *vi;
int err;
if (desc_size < sizeof(*desc)) {
fsverity_err(inode, "Unrecognized descriptor size: %zu bytes",
desc_size);
return ERR_PTR(-EINVAL);
}
if (desc->version != 1) {
fsverity_err(inode, "Unrecognized descriptor version: %u",
desc->version);
return ERR_PTR(-EINVAL);
}
if (memchr_inv(desc->__reserved, 0, sizeof(desc->__reserved))) {
fsverity_err(inode, "Reserved bits set in descriptor");
return ERR_PTR(-EINVAL);
}
if (desc->salt_size > sizeof(desc->salt)) {
fsverity_err(inode, "Invalid salt_size: %u", desc->salt_size);
return ERR_PTR(-EINVAL);
}
if (le64_to_cpu(desc->data_size) != inode->i_size) {
fsverity_err(inode,
"Wrong data_size: %llu (desc) != %lld (inode)",
le64_to_cpu(desc->data_size), inode->i_size);
return ERR_PTR(-EINVAL);
}
vi = kmem_cache_zalloc(fsverity_info_cachep, GFP_KERNEL);
if (!vi)
return ERR_PTR(-ENOMEM);
vi->inode = inode;
err = fsverity_init_merkle_tree_params(&vi->tree_params, inode,
desc->hash_algorithm,
desc->log_blocksize,
desc->salt, desc->salt_size);
if (err) {
fsverity_err(inode,
"Error %d initializing Merkle tree parameters",
err);
goto out;
}
memcpy(vi->root_hash, desc->root_hash, vi->tree_params.digest_size);
err = compute_file_digest(vi->tree_params.hash_alg, desc,
vi->file_digest);
if (err) {
fsverity_err(inode, "Error %d computing file digest", err);
goto out;
}
pr_debug("Computed file digest: %s:%*phN\n",
vi->tree_params.hash_alg->name,
vi->tree_params.digest_size, vi->file_digest);
err = fsverity_verify_signature(vi, desc, desc_size);
out:
if (err) {
fsverity_free_info(vi);
vi = ERR_PTR(err);
}
return vi;
}
void fsverity_set_info(struct inode *inode, struct fsverity_info *vi)
{
/*
* Multiple tasks may race to set ->i_verity_info, so use
* cmpxchg_release(). This pairs with the smp_load_acquire() in
* fsverity_get_info(). I.e., here we publish ->i_verity_info with a
* RELEASE barrier so that other tasks can ACQUIRE it.
*/
if (cmpxchg_release(&inode->i_verity_info, NULL, vi) != NULL) {
/* Lost the race, so free the fsverity_info we allocated. */
fsverity_free_info(vi);
/*
* Afterwards, the caller may access ->i_verity_info directly,
* so make sure to ACQUIRE the winning fsverity_info.
*/
(void)fsverity_get_info(inode);
}
}
void fsverity_free_info(struct fsverity_info *vi)
{
if (!vi)
return;
kfree(vi->tree_params.hashstate);
kmem_cache_free(fsverity_info_cachep, vi);
}
/* Ensure the inode has an ->i_verity_info */
static int ensure_verity_info(struct inode *inode)
{
struct fsverity_info *vi = fsverity_get_info(inode);
struct fsverity_descriptor *desc;
int res;
if (vi)
return 0;
res = inode->i_sb->s_vop->get_verity_descriptor(inode, NULL, 0);
if (res < 0) {
fsverity_err(inode,
"Error %d getting verity descriptor size", res);
return res;
}
if (res > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
fsverity_err(inode, "Verity descriptor is too large (%d bytes)",
res);
return -EMSGSIZE;
}
desc = kmalloc(res, GFP_KERNEL);
if (!desc)
return -ENOMEM;
res = inode->i_sb->s_vop->get_verity_descriptor(inode, desc, res);
if (res < 0) {
fsverity_err(inode, "Error %d reading verity descriptor", res);
goto out_free_desc;
}
vi = fsverity_create_info(inode, desc, res);
if (IS_ERR(vi)) {
res = PTR_ERR(vi);
goto out_free_desc;
}
fsverity_set_info(inode, vi);
res = 0;
out_free_desc:
kfree(desc);
return res;
}
/**
* fsverity_file_open() - prepare to open a verity file
* @inode: the inode being opened
* @filp: the struct file being set up
*
* When opening a verity file, deny the open if it is for writing. Otherwise,
* set up the inode's ->i_verity_info if not already done.
*
* When combined with fscrypt, this must be called after fscrypt_file_open().
* Otherwise, we won't have the key set up to decrypt the verity metadata.
*
* Return: 0 on success, -errno on failure
*/
int fsverity_file_open(struct inode *inode, struct file *filp)
{
if (!IS_VERITY(inode))
return 0;
if (filp->f_mode & FMODE_WRITE) {
pr_debug("Denying opening verity file (ino %lu) for write\n",
inode->i_ino);
return -EPERM;
}
return ensure_verity_info(inode);
}
EXPORT_SYMBOL_GPL(fsverity_file_open);
/**
* fsverity_prepare_setattr() - prepare to change a verity inode's attributes
* @dentry: dentry through which the inode is being changed
* @attr: attributes to change
*
* Verity files are immutable, so deny truncates. This isn't covered by the
* open-time check because sys_truncate() takes a path, not a file descriptor.
*
* Return: 0 on success, -errno on failure
*/
int fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr)
{
if (IS_VERITY(d_inode(dentry)) && (attr->ia_valid & ATTR_SIZE)) {
pr_debug("Denying truncate of verity file (ino %lu)\n",
d_inode(dentry)->i_ino);
return -EPERM;
}
return 0;
}
EXPORT_SYMBOL_GPL(fsverity_prepare_setattr);
/**
* fsverity_cleanup_inode() - free the inode's verity info, if present
* @inode: an inode being evicted
*
* Filesystems must call this on inode eviction to free ->i_verity_info.
*/
void fsverity_cleanup_inode(struct inode *inode)
{
fsverity_free_info(inode->i_verity_info);
inode->i_verity_info = NULL;
}
EXPORT_SYMBOL_GPL(fsverity_cleanup_inode);
int __init fsverity_init_info_cache(void)
{
fsverity_info_cachep = KMEM_CACHE_USERCOPY(fsverity_info,
SLAB_RECLAIM_ACCOUNT,
file_digest);
if (!fsverity_info_cachep)
return -ENOMEM;
return 0;
}
void __init fsverity_exit_info_cache(void)
{
kmem_cache_destroy(fsverity_info_cachep);
fsverity_info_cachep = NULL;
}