mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-17 22:05:08 +00:00
d1ce350015
Add io_ordering.rst under Documentation/driver-api and reference it from the Sphinx TOC Tree present in Documentation/driver-api/index.rst Signed-off-by: Pragat Pandya <pragat.pandya@gmail.com> Link: https://lore.kernel.org/r/20200303050301.5412-3-pragat.pandya@gmail.com Signed-off-by: Jonathan Corbet <corbet@lwn.net>
52 lines
2.0 KiB
ReStructuredText
52 lines
2.0 KiB
ReStructuredText
==============================================
|
|
Ordering I/O writes to memory-mapped addresses
|
|
==============================================
|
|
|
|
On some platforms, so-called memory-mapped I/O is weakly ordered. On such
|
|
platforms, driver writers are responsible for ensuring that I/O writes to
|
|
memory-mapped addresses on their device arrive in the order intended. This is
|
|
typically done by reading a 'safe' device or bridge register, causing the I/O
|
|
chipset to flush pending writes to the device before any reads are posted. A
|
|
driver would usually use this technique immediately prior to the exit of a
|
|
critical section of code protected by spinlocks. This would ensure that
|
|
subsequent writes to I/O space arrived only after all prior writes (much like a
|
|
memory barrier op, mb(), only with respect to I/O).
|
|
|
|
A more concrete example from a hypothetical device driver::
|
|
|
|
...
|
|
CPU A: spin_lock_irqsave(&dev_lock, flags)
|
|
CPU A: val = readl(my_status);
|
|
CPU A: ...
|
|
CPU A: writel(newval, ring_ptr);
|
|
CPU A: spin_unlock_irqrestore(&dev_lock, flags)
|
|
...
|
|
CPU B: spin_lock_irqsave(&dev_lock, flags)
|
|
CPU B: val = readl(my_status);
|
|
CPU B: ...
|
|
CPU B: writel(newval2, ring_ptr);
|
|
CPU B: spin_unlock_irqrestore(&dev_lock, flags)
|
|
...
|
|
|
|
In the case above, the device may receive newval2 before it receives newval,
|
|
which could cause problems. Fixing it is easy enough though::
|
|
|
|
...
|
|
CPU A: spin_lock_irqsave(&dev_lock, flags)
|
|
CPU A: val = readl(my_status);
|
|
CPU A: ...
|
|
CPU A: writel(newval, ring_ptr);
|
|
CPU A: (void)readl(safe_register); /* maybe a config register? */
|
|
CPU A: spin_unlock_irqrestore(&dev_lock, flags)
|
|
...
|
|
CPU B: spin_lock_irqsave(&dev_lock, flags)
|
|
CPU B: val = readl(my_status);
|
|
CPU B: ...
|
|
CPU B: writel(newval2, ring_ptr);
|
|
CPU B: (void)readl(safe_register); /* maybe a config register? */
|
|
CPU B: spin_unlock_irqrestore(&dev_lock, flags)
|
|
|
|
Here, the reads from safe_register will cause the I/O chipset to flush any
|
|
pending writes before actually posting the read to the chipset, preventing
|
|
possible data corruption.
|