linux-next/fs/xfs/xfs_log_recover.c
Nathan Scott 6fdf8ccc09 [XFS] Rework code snippets slightly to remove remaining recent-gcc
warnings.

SGI-PV: 904196
SGI-Modid: xfs-linux-melb:xfs-kern:26364a

Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-06-28 10:13:52 +10:00

4099 lines
111 KiB
C

/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_error.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_imap.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_log_priv.h"
#include "xfs_buf_item.h"
#include "xfs_log_recover.h"
#include "xfs_extfree_item.h"
#include "xfs_trans_priv.h"
#include "xfs_quota.h"
#include "xfs_rw.h"
STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
xlog_recover_item_t *item);
#if defined(DEBUG)
STATIC void xlog_recover_check_summary(xlog_t *);
STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
#else
#define xlog_recover_check_summary(log)
#define xlog_recover_check_ail(mp, lip, gen)
#endif
/*
* Sector aligned buffer routines for buffer create/read/write/access
*/
#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
xfs_buf_t *
xlog_get_bp(
xlog_t *log,
int num_bblks)
{
ASSERT(num_bblks > 0);
if (log->l_sectbb_log) {
if (num_bblks > 1)
num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
}
return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
}
void
xlog_put_bp(
xfs_buf_t *bp)
{
xfs_buf_free(bp);
}
/*
* nbblks should be uint, but oh well. Just want to catch that 32-bit length.
*/
int
xlog_bread(
xlog_t *log,
xfs_daddr_t blk_no,
int nbblks,
xfs_buf_t *bp)
{
int error;
if (log->l_sectbb_log) {
blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
}
ASSERT(nbblks > 0);
ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
ASSERT(bp);
XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
XFS_BUF_READ(bp);
XFS_BUF_BUSY(bp);
XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
xfsbdstrat(log->l_mp, bp);
if ((error = xfs_iowait(bp)))
xfs_ioerror_alert("xlog_bread", log->l_mp,
bp, XFS_BUF_ADDR(bp));
return error;
}
/*
* Write out the buffer at the given block for the given number of blocks.
* The buffer is kept locked across the write and is returned locked.
* This can only be used for synchronous log writes.
*/
STATIC int
xlog_bwrite(
xlog_t *log,
xfs_daddr_t blk_no,
int nbblks,
xfs_buf_t *bp)
{
int error;
if (log->l_sectbb_log) {
blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
}
ASSERT(nbblks > 0);
ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
XFS_BUF_ZEROFLAGS(bp);
XFS_BUF_BUSY(bp);
XFS_BUF_HOLD(bp);
XFS_BUF_PSEMA(bp, PRIBIO);
XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
if ((error = xfs_bwrite(log->l_mp, bp)))
xfs_ioerror_alert("xlog_bwrite", log->l_mp,
bp, XFS_BUF_ADDR(bp));
return error;
}
STATIC xfs_caddr_t
xlog_align(
xlog_t *log,
xfs_daddr_t blk_no,
int nbblks,
xfs_buf_t *bp)
{
xfs_caddr_t ptr;
if (!log->l_sectbb_log)
return XFS_BUF_PTR(bp);
ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
ASSERT(XFS_BUF_SIZE(bp) >=
BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
return ptr;
}
#ifdef DEBUG
/*
* dump debug superblock and log record information
*/
STATIC void
xlog_header_check_dump(
xfs_mount_t *mp,
xlog_rec_header_t *head)
{
int b;
cmn_err(CE_DEBUG, "%s: SB : uuid = ", __FUNCTION__);
for (b = 0; b < 16; b++)
cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
cmn_err(CE_DEBUG, " log : uuid = ");
for (b = 0; b < 16; b++)
cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
}
#else
#define xlog_header_check_dump(mp, head)
#endif
/*
* check log record header for recovery
*/
STATIC int
xlog_header_check_recover(
xfs_mount_t *mp,
xlog_rec_header_t *head)
{
ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
/*
* IRIX doesn't write the h_fmt field and leaves it zeroed
* (XLOG_FMT_UNKNOWN). This stops us from trying to recover
* a dirty log created in IRIX.
*/
if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
xlog_warn(
"XFS: dirty log written in incompatible format - can't recover");
xlog_header_check_dump(mp, head);
XFS_ERROR_REPORT("xlog_header_check_recover(1)",
XFS_ERRLEVEL_HIGH, mp);
return XFS_ERROR(EFSCORRUPTED);
} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
xlog_warn(
"XFS: dirty log entry has mismatched uuid - can't recover");
xlog_header_check_dump(mp, head);
XFS_ERROR_REPORT("xlog_header_check_recover(2)",
XFS_ERRLEVEL_HIGH, mp);
return XFS_ERROR(EFSCORRUPTED);
}
return 0;
}
/*
* read the head block of the log and check the header
*/
STATIC int
xlog_header_check_mount(
xfs_mount_t *mp,
xlog_rec_header_t *head)
{
ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
if (uuid_is_nil(&head->h_fs_uuid)) {
/*
* IRIX doesn't write the h_fs_uuid or h_fmt fields. If
* h_fs_uuid is nil, we assume this log was last mounted
* by IRIX and continue.
*/
xlog_warn("XFS: nil uuid in log - IRIX style log");
} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
xlog_warn("XFS: log has mismatched uuid - can't recover");
xlog_header_check_dump(mp, head);
XFS_ERROR_REPORT("xlog_header_check_mount",
XFS_ERRLEVEL_HIGH, mp);
return XFS_ERROR(EFSCORRUPTED);
}
return 0;
}
STATIC void
xlog_recover_iodone(
struct xfs_buf *bp)
{
xfs_mount_t *mp;
ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
if (XFS_BUF_GETERROR(bp)) {
/*
* We're not going to bother about retrying
* this during recovery. One strike!
*/
mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
xfs_ioerror_alert("xlog_recover_iodone",
mp, bp, XFS_BUF_ADDR(bp));
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
}
XFS_BUF_SET_FSPRIVATE(bp, NULL);
XFS_BUF_CLR_IODONE_FUNC(bp);
xfs_biodone(bp);
}
/*
* This routine finds (to an approximation) the first block in the physical
* log which contains the given cycle. It uses a binary search algorithm.
* Note that the algorithm can not be perfect because the disk will not
* necessarily be perfect.
*/
int
xlog_find_cycle_start(
xlog_t *log,
xfs_buf_t *bp,
xfs_daddr_t first_blk,
xfs_daddr_t *last_blk,
uint cycle)
{
xfs_caddr_t offset;
xfs_daddr_t mid_blk;
uint mid_cycle;
int error;
mid_blk = BLK_AVG(first_blk, *last_blk);
while (mid_blk != first_blk && mid_blk != *last_blk) {
if ((error = xlog_bread(log, mid_blk, 1, bp)))
return error;
offset = xlog_align(log, mid_blk, 1, bp);
mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
if (mid_cycle == cycle) {
*last_blk = mid_blk;
/* last_half_cycle == mid_cycle */
} else {
first_blk = mid_blk;
/* first_half_cycle == mid_cycle */
}
mid_blk = BLK_AVG(first_blk, *last_blk);
}
ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
(mid_blk == *last_blk && mid_blk-1 == first_blk));
return 0;
}
/*
* Check that the range of blocks does not contain the cycle number
* given. The scan needs to occur from front to back and the ptr into the
* region must be updated since a later routine will need to perform another
* test. If the region is completely good, we end up returning the same
* last block number.
*
* Set blkno to -1 if we encounter no errors. This is an invalid block number
* since we don't ever expect logs to get this large.
*/
STATIC int
xlog_find_verify_cycle(
xlog_t *log,
xfs_daddr_t start_blk,
int nbblks,
uint stop_on_cycle_no,
xfs_daddr_t *new_blk)
{
xfs_daddr_t i, j;
uint cycle;
xfs_buf_t *bp;
xfs_daddr_t bufblks;
xfs_caddr_t buf = NULL;
int error = 0;
bufblks = 1 << ffs(nbblks);
while (!(bp = xlog_get_bp(log, bufblks))) {
/* can't get enough memory to do everything in one big buffer */
bufblks >>= 1;
if (bufblks <= log->l_sectbb_log)
return ENOMEM;
}
for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
int bcount;
bcount = min(bufblks, (start_blk + nbblks - i));
if ((error = xlog_bread(log, i, bcount, bp)))
goto out;
buf = xlog_align(log, i, bcount, bp);
for (j = 0; j < bcount; j++) {
cycle = GET_CYCLE(buf, ARCH_CONVERT);
if (cycle == stop_on_cycle_no) {
*new_blk = i+j;
goto out;
}
buf += BBSIZE;
}
}
*new_blk = -1;
out:
xlog_put_bp(bp);
return error;
}
/*
* Potentially backup over partial log record write.
*
* In the typical case, last_blk is the number of the block directly after
* a good log record. Therefore, we subtract one to get the block number
* of the last block in the given buffer. extra_bblks contains the number
* of blocks we would have read on a previous read. This happens when the
* last log record is split over the end of the physical log.
*
* extra_bblks is the number of blocks potentially verified on a previous
* call to this routine.
*/
STATIC int
xlog_find_verify_log_record(
xlog_t *log,
xfs_daddr_t start_blk,
xfs_daddr_t *last_blk,
int extra_bblks)
{
xfs_daddr_t i;
xfs_buf_t *bp;
xfs_caddr_t offset = NULL;
xlog_rec_header_t *head = NULL;
int error = 0;
int smallmem = 0;
int num_blks = *last_blk - start_blk;
int xhdrs;
ASSERT(start_blk != 0 || *last_blk != start_blk);
if (!(bp = xlog_get_bp(log, num_blks))) {
if (!(bp = xlog_get_bp(log, 1)))
return ENOMEM;
smallmem = 1;
} else {
if ((error = xlog_bread(log, start_blk, num_blks, bp)))
goto out;
offset = xlog_align(log, start_blk, num_blks, bp);
offset += ((num_blks - 1) << BBSHIFT);
}
for (i = (*last_blk) - 1; i >= 0; i--) {
if (i < start_blk) {
/* valid log record not found */
xlog_warn(
"XFS: Log inconsistent (didn't find previous header)");
ASSERT(0);
error = XFS_ERROR(EIO);
goto out;
}
if (smallmem) {
if ((error = xlog_bread(log, i, 1, bp)))
goto out;
offset = xlog_align(log, i, 1, bp);
}
head = (xlog_rec_header_t *)offset;
if (XLOG_HEADER_MAGIC_NUM ==
INT_GET(head->h_magicno, ARCH_CONVERT))
break;
if (!smallmem)
offset -= BBSIZE;
}
/*
* We hit the beginning of the physical log & still no header. Return
* to caller. If caller can handle a return of -1, then this routine
* will be called again for the end of the physical log.
*/
if (i == -1) {
error = -1;
goto out;
}
/*
* We have the final block of the good log (the first block
* of the log record _before_ the head. So we check the uuid.
*/
if ((error = xlog_header_check_mount(log->l_mp, head)))
goto out;
/*
* We may have found a log record header before we expected one.
* last_blk will be the 1st block # with a given cycle #. We may end
* up reading an entire log record. In this case, we don't want to
* reset last_blk. Only when last_blk points in the middle of a log
* record do we update last_blk.
*/
if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
uint h_size = INT_GET(head->h_size, ARCH_CONVERT);
xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
if (h_size % XLOG_HEADER_CYCLE_SIZE)
xhdrs++;
} else {
xhdrs = 1;
}
if (*last_blk - i + extra_bblks
!= BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
*last_blk = i;
out:
xlog_put_bp(bp);
return error;
}
/*
* Head is defined to be the point of the log where the next log write
* write could go. This means that incomplete LR writes at the end are
* eliminated when calculating the head. We aren't guaranteed that previous
* LR have complete transactions. We only know that a cycle number of
* current cycle number -1 won't be present in the log if we start writing
* from our current block number.
*
* last_blk contains the block number of the first block with a given
* cycle number.
*
* Return: zero if normal, non-zero if error.
*/
STATIC int
xlog_find_head(
xlog_t *log,
xfs_daddr_t *return_head_blk)
{
xfs_buf_t *bp;
xfs_caddr_t offset;
xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
int num_scan_bblks;
uint first_half_cycle, last_half_cycle;
uint stop_on_cycle;
int error, log_bbnum = log->l_logBBsize;
/* Is the end of the log device zeroed? */
if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
*return_head_blk = first_blk;
/* Is the whole lot zeroed? */
if (!first_blk) {
/* Linux XFS shouldn't generate totally zeroed logs -
* mkfs etc write a dummy unmount record to a fresh
* log so we can store the uuid in there
*/
xlog_warn("XFS: totally zeroed log");
}
return 0;
} else if (error) {
xlog_warn("XFS: empty log check failed");
return error;
}
first_blk = 0; /* get cycle # of 1st block */
bp = xlog_get_bp(log, 1);
if (!bp)
return ENOMEM;
if ((error = xlog_bread(log, 0, 1, bp)))
goto bp_err;
offset = xlog_align(log, 0, 1, bp);
first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
if ((error = xlog_bread(log, last_blk, 1, bp)))
goto bp_err;
offset = xlog_align(log, last_blk, 1, bp);
last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
ASSERT(last_half_cycle != 0);
/*
* If the 1st half cycle number is equal to the last half cycle number,
* then the entire log is stamped with the same cycle number. In this
* case, head_blk can't be set to zero (which makes sense). The below
* math doesn't work out properly with head_blk equal to zero. Instead,
* we set it to log_bbnum which is an invalid block number, but this
* value makes the math correct. If head_blk doesn't changed through
* all the tests below, *head_blk is set to zero at the very end rather
* than log_bbnum. In a sense, log_bbnum and zero are the same block
* in a circular file.
*/
if (first_half_cycle == last_half_cycle) {
/*
* In this case we believe that the entire log should have
* cycle number last_half_cycle. We need to scan backwards
* from the end verifying that there are no holes still
* containing last_half_cycle - 1. If we find such a hole,
* then the start of that hole will be the new head. The
* simple case looks like
* x | x ... | x - 1 | x
* Another case that fits this picture would be
* x | x + 1 | x ... | x
* In this case the head really is somewhere at the end of the
* log, as one of the latest writes at the beginning was
* incomplete.
* One more case is
* x | x + 1 | x ... | x - 1 | x
* This is really the combination of the above two cases, and
* the head has to end up at the start of the x-1 hole at the
* end of the log.
*
* In the 256k log case, we will read from the beginning to the
* end of the log and search for cycle numbers equal to x-1.
* We don't worry about the x+1 blocks that we encounter,
* because we know that they cannot be the head since the log
* started with x.
*/
head_blk = log_bbnum;
stop_on_cycle = last_half_cycle - 1;
} else {
/*
* In this case we want to find the first block with cycle
* number matching last_half_cycle. We expect the log to be
* some variation on
* x + 1 ... | x ...
* The first block with cycle number x (last_half_cycle) will
* be where the new head belongs. First we do a binary search
* for the first occurrence of last_half_cycle. The binary
* search may not be totally accurate, so then we scan back
* from there looking for occurrences of last_half_cycle before
* us. If that backwards scan wraps around the beginning of
* the log, then we look for occurrences of last_half_cycle - 1
* at the end of the log. The cases we're looking for look
* like
* x + 1 ... | x | x + 1 | x ...
* ^ binary search stopped here
* or
* x + 1 ... | x ... | x - 1 | x
* <---------> less than scan distance
*/
stop_on_cycle = last_half_cycle;
if ((error = xlog_find_cycle_start(log, bp, first_blk,
&head_blk, last_half_cycle)))
goto bp_err;
}
/*
* Now validate the answer. Scan back some number of maximum possible
* blocks and make sure each one has the expected cycle number. The
* maximum is determined by the total possible amount of buffering
* in the in-core log. The following number can be made tighter if
* we actually look at the block size of the filesystem.
*/
num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
if (head_blk >= num_scan_bblks) {
/*
* We are guaranteed that the entire check can be performed
* in one buffer.
*/
start_blk = head_blk - num_scan_bblks;
if ((error = xlog_find_verify_cycle(log,
start_blk, num_scan_bblks,
stop_on_cycle, &new_blk)))
goto bp_err;
if (new_blk != -1)
head_blk = new_blk;
} else { /* need to read 2 parts of log */
/*
* We are going to scan backwards in the log in two parts.
* First we scan the physical end of the log. In this part
* of the log, we are looking for blocks with cycle number
* last_half_cycle - 1.
* If we find one, then we know that the log starts there, as
* we've found a hole that didn't get written in going around
* the end of the physical log. The simple case for this is
* x + 1 ... | x ... | x - 1 | x
* <---------> less than scan distance
* If all of the blocks at the end of the log have cycle number
* last_half_cycle, then we check the blocks at the start of
* the log looking for occurrences of last_half_cycle. If we
* find one, then our current estimate for the location of the
* first occurrence of last_half_cycle is wrong and we move
* back to the hole we've found. This case looks like
* x + 1 ... | x | x + 1 | x ...
* ^ binary search stopped here
* Another case we need to handle that only occurs in 256k
* logs is
* x + 1 ... | x ... | x+1 | x ...
* ^ binary search stops here
* In a 256k log, the scan at the end of the log will see the
* x + 1 blocks. We need to skip past those since that is
* certainly not the head of the log. By searching for
* last_half_cycle-1 we accomplish that.
*/
start_blk = log_bbnum - num_scan_bblks + head_blk;
ASSERT(head_blk <= INT_MAX &&
(xfs_daddr_t) num_scan_bblks - head_blk >= 0);
if ((error = xlog_find_verify_cycle(log, start_blk,
num_scan_bblks - (int)head_blk,
(stop_on_cycle - 1), &new_blk)))
goto bp_err;
if (new_blk != -1) {
head_blk = new_blk;
goto bad_blk;
}
/*
* Scan beginning of log now. The last part of the physical
* log is good. This scan needs to verify that it doesn't find
* the last_half_cycle.
*/
start_blk = 0;
ASSERT(head_blk <= INT_MAX);
if ((error = xlog_find_verify_cycle(log,
start_blk, (int)head_blk,
stop_on_cycle, &new_blk)))
goto bp_err;
if (new_blk != -1)
head_blk = new_blk;
}
bad_blk:
/*
* Now we need to make sure head_blk is not pointing to a block in
* the middle of a log record.
*/
num_scan_bblks = XLOG_REC_SHIFT(log);
if (head_blk >= num_scan_bblks) {
start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
/* start ptr at last block ptr before head_blk */
if ((error = xlog_find_verify_log_record(log, start_blk,
&head_blk, 0)) == -1) {
error = XFS_ERROR(EIO);
goto bp_err;
} else if (error)
goto bp_err;
} else {
start_blk = 0;
ASSERT(head_blk <= INT_MAX);
if ((error = xlog_find_verify_log_record(log, start_blk,
&head_blk, 0)) == -1) {
/* We hit the beginning of the log during our search */
start_blk = log_bbnum - num_scan_bblks + head_blk;
new_blk = log_bbnum;
ASSERT(start_blk <= INT_MAX &&
(xfs_daddr_t) log_bbnum-start_blk >= 0);
ASSERT(head_blk <= INT_MAX);
if ((error = xlog_find_verify_log_record(log,
start_blk, &new_blk,
(int)head_blk)) == -1) {
error = XFS_ERROR(EIO);
goto bp_err;
} else if (error)
goto bp_err;
if (new_blk != log_bbnum)
head_blk = new_blk;
} else if (error)
goto bp_err;
}
xlog_put_bp(bp);
if (head_blk == log_bbnum)
*return_head_blk = 0;
else
*return_head_blk = head_blk;
/*
* When returning here, we have a good block number. Bad block
* means that during a previous crash, we didn't have a clean break
* from cycle number N to cycle number N-1. In this case, we need
* to find the first block with cycle number N-1.
*/
return 0;
bp_err:
xlog_put_bp(bp);
if (error)
xlog_warn("XFS: failed to find log head");
return error;
}
/*
* Find the sync block number or the tail of the log.
*
* This will be the block number of the last record to have its
* associated buffers synced to disk. Every log record header has
* a sync lsn embedded in it. LSNs hold block numbers, so it is easy
* to get a sync block number. The only concern is to figure out which
* log record header to believe.
*
* The following algorithm uses the log record header with the largest
* lsn. The entire log record does not need to be valid. We only care
* that the header is valid.
*
* We could speed up search by using current head_blk buffer, but it is not
* available.
*/
int
xlog_find_tail(
xlog_t *log,
xfs_daddr_t *head_blk,
xfs_daddr_t *tail_blk)
{
xlog_rec_header_t *rhead;
xlog_op_header_t *op_head;
xfs_caddr_t offset = NULL;
xfs_buf_t *bp;
int error, i, found;
xfs_daddr_t umount_data_blk;
xfs_daddr_t after_umount_blk;
xfs_lsn_t tail_lsn;
int hblks;
found = 0;
/*
* Find previous log record
*/
if ((error = xlog_find_head(log, head_blk)))
return error;
bp = xlog_get_bp(log, 1);
if (!bp)
return ENOMEM;
if (*head_blk == 0) { /* special case */
if ((error = xlog_bread(log, 0, 1, bp)))
goto bread_err;
offset = xlog_align(log, 0, 1, bp);
if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
*tail_blk = 0;
/* leave all other log inited values alone */
goto exit;
}
}
/*
* Search backwards looking for log record header block
*/
ASSERT(*head_blk < INT_MAX);
for (i = (int)(*head_blk) - 1; i >= 0; i--) {
if ((error = xlog_bread(log, i, 1, bp)))
goto bread_err;
offset = xlog_align(log, i, 1, bp);
if (XLOG_HEADER_MAGIC_NUM ==
INT_GET(*(uint *)offset, ARCH_CONVERT)) {
found = 1;
break;
}
}
/*
* If we haven't found the log record header block, start looking
* again from the end of the physical log. XXXmiken: There should be
* a check here to make sure we didn't search more than N blocks in
* the previous code.
*/
if (!found) {
for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
if ((error = xlog_bread(log, i, 1, bp)))
goto bread_err;
offset = xlog_align(log, i, 1, bp);
if (XLOG_HEADER_MAGIC_NUM ==
INT_GET(*(uint*)offset, ARCH_CONVERT)) {
found = 2;
break;
}
}
}
if (!found) {
xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
ASSERT(0);
return XFS_ERROR(EIO);
}
/* find blk_no of tail of log */
rhead = (xlog_rec_header_t *)offset;
*tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
/*
* Reset log values according to the state of the log when we
* crashed. In the case where head_blk == 0, we bump curr_cycle
* one because the next write starts a new cycle rather than
* continuing the cycle of the last good log record. At this
* point we have guaranteed that all partial log records have been
* accounted for. Therefore, we know that the last good log record
* written was complete and ended exactly on the end boundary
* of the physical log.
*/
log->l_prev_block = i;
log->l_curr_block = (int)*head_blk;
log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
if (found == 2)
log->l_curr_cycle++;
log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
log->l_grant_reserve_cycle = log->l_curr_cycle;
log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
log->l_grant_write_cycle = log->l_curr_cycle;
log->l_grant_write_bytes = BBTOB(log->l_curr_block);
/*
* Look for unmount record. If we find it, then we know there
* was a clean unmount. Since 'i' could be the last block in
* the physical log, we convert to a log block before comparing
* to the head_blk.
*
* Save the current tail lsn to use to pass to
* xlog_clear_stale_blocks() below. We won't want to clear the
* unmount record if there is one, so we pass the lsn of the
* unmount record rather than the block after it.
*/
if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
int h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
int h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
if ((h_version & XLOG_VERSION_2) &&
(h_size > XLOG_HEADER_CYCLE_SIZE)) {
hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
if (h_size % XLOG_HEADER_CYCLE_SIZE)
hblks++;
} else {
hblks = 1;
}
} else {
hblks = 1;
}
after_umount_blk = (i + hblks + (int)
BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
tail_lsn = log->l_tail_lsn;
if (*head_blk == after_umount_blk &&
INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
umount_data_blk = (i + hblks) % log->l_logBBsize;
if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
goto bread_err;
}
offset = xlog_align(log, umount_data_blk, 1, bp);
op_head = (xlog_op_header_t *)offset;
if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
/*
* Set tail and last sync so that newly written
* log records will point recovery to after the
* current unmount record.
*/
ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
after_umount_blk);
ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
after_umount_blk);
*tail_blk = after_umount_blk;
}
}
/*
* Make sure that there are no blocks in front of the head
* with the same cycle number as the head. This can happen
* because we allow multiple outstanding log writes concurrently,
* and the later writes might make it out before earlier ones.
*
* We use the lsn from before modifying it so that we'll never
* overwrite the unmount record after a clean unmount.
*
* Do this only if we are going to recover the filesystem
*
* NOTE: This used to say "if (!readonly)"
* However on Linux, we can & do recover a read-only filesystem.
* We only skip recovery if NORECOVERY is specified on mount,
* in which case we would not be here.
*
* But... if the -device- itself is readonly, just skip this.
* We can't recover this device anyway, so it won't matter.
*/
if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
error = xlog_clear_stale_blocks(log, tail_lsn);
}
bread_err:
exit:
xlog_put_bp(bp);
if (error)
xlog_warn("XFS: failed to locate log tail");
return error;
}
/*
* Is the log zeroed at all?
*
* The last binary search should be changed to perform an X block read
* once X becomes small enough. You can then search linearly through
* the X blocks. This will cut down on the number of reads we need to do.
*
* If the log is partially zeroed, this routine will pass back the blkno
* of the first block with cycle number 0. It won't have a complete LR
* preceding it.
*
* Return:
* 0 => the log is completely written to
* -1 => use *blk_no as the first block of the log
* >0 => error has occurred
*/
int
xlog_find_zeroed(
xlog_t *log,
xfs_daddr_t *blk_no)
{
xfs_buf_t *bp;
xfs_caddr_t offset;
uint first_cycle, last_cycle;
xfs_daddr_t new_blk, last_blk, start_blk;
xfs_daddr_t num_scan_bblks;
int error, log_bbnum = log->l_logBBsize;
*blk_no = 0;
/* check totally zeroed log */
bp = xlog_get_bp(log, 1);
if (!bp)
return ENOMEM;
if ((error = xlog_bread(log, 0, 1, bp)))
goto bp_err;
offset = xlog_align(log, 0, 1, bp);
first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
if (first_cycle == 0) { /* completely zeroed log */
*blk_no = 0;
xlog_put_bp(bp);
return -1;
}
/* check partially zeroed log */
if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
goto bp_err;
offset = xlog_align(log, log_bbnum-1, 1, bp);
last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
if (last_cycle != 0) { /* log completely written to */
xlog_put_bp(bp);
return 0;
} else if (first_cycle != 1) {
/*
* If the cycle of the last block is zero, the cycle of
* the first block must be 1. If it's not, maybe we're
* not looking at a log... Bail out.
*/
xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
return XFS_ERROR(EINVAL);
}
/* we have a partially zeroed log */
last_blk = log_bbnum-1;
if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
goto bp_err;
/*
* Validate the answer. Because there is no way to guarantee that
* the entire log is made up of log records which are the same size,
* we scan over the defined maximum blocks. At this point, the maximum
* is not chosen to mean anything special. XXXmiken
*/
num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
ASSERT(num_scan_bblks <= INT_MAX);
if (last_blk < num_scan_bblks)
num_scan_bblks = last_blk;
start_blk = last_blk - num_scan_bblks;
/*
* We search for any instances of cycle number 0 that occur before
* our current estimate of the head. What we're trying to detect is
* 1 ... | 0 | 1 | 0...
* ^ binary search ends here
*/
if ((error = xlog_find_verify_cycle(log, start_blk,
(int)num_scan_bblks, 0, &new_blk)))
goto bp_err;
if (new_blk != -1)
last_blk = new_blk;
/*
* Potentially backup over partial log record write. We don't need
* to search the end of the log because we know it is zero.
*/
if ((error = xlog_find_verify_log_record(log, start_blk,
&last_blk, 0)) == -1) {
error = XFS_ERROR(EIO);
goto bp_err;
} else if (error)
goto bp_err;
*blk_no = last_blk;
bp_err:
xlog_put_bp(bp);
if (error)
return error;
return -1;
}
/*
* These are simple subroutines used by xlog_clear_stale_blocks() below
* to initialize a buffer full of empty log record headers and write
* them into the log.
*/
STATIC void
xlog_add_record(
xlog_t *log,
xfs_caddr_t buf,
int cycle,
int block,
int tail_cycle,
int tail_block)
{
xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
memset(buf, 0, BBSIZE);
INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
INT_SET(recp->h_version, ARCH_CONVERT,
XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
}
STATIC int
xlog_write_log_records(
xlog_t *log,
int cycle,
int start_block,
int blocks,
int tail_cycle,
int tail_block)
{
xfs_caddr_t offset;
xfs_buf_t *bp;
int balign, ealign;
int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
int end_block = start_block + blocks;
int bufblks;
int error = 0;
int i, j = 0;
bufblks = 1 << ffs(blocks);
while (!(bp = xlog_get_bp(log, bufblks))) {
bufblks >>= 1;
if (bufblks <= log->l_sectbb_log)
return ENOMEM;
}
/* We may need to do a read at the start to fill in part of
* the buffer in the starting sector not covered by the first
* write below.
*/
balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
if (balign != start_block) {
if ((error = xlog_bread(log, start_block, 1, bp))) {
xlog_put_bp(bp);
return error;
}
j = start_block - balign;
}
for (i = start_block; i < end_block; i += bufblks) {
int bcount, endcount;
bcount = min(bufblks, end_block - start_block);
endcount = bcount - j;
/* We may need to do a read at the end to fill in part of
* the buffer in the final sector not covered by the write.
* If this is the same sector as the above read, skip it.
*/
ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
if (j == 0 && (start_block + endcount > ealign)) {
offset = XFS_BUF_PTR(bp);
balign = BBTOB(ealign - start_block);
XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
if ((error = xlog_bread(log, ealign, sectbb, bp)))
break;
XFS_BUF_SET_PTR(bp, offset, bufblks);
}
offset = xlog_align(log, start_block, endcount, bp);
for (; j < endcount; j++) {
xlog_add_record(log, offset, cycle, i+j,
tail_cycle, tail_block);
offset += BBSIZE;
}
error = xlog_bwrite(log, start_block, endcount, bp);
if (error)
break;
start_block += endcount;
j = 0;
}
xlog_put_bp(bp);
return error;
}
/*
* This routine is called to blow away any incomplete log writes out
* in front of the log head. We do this so that we won't become confused
* if we come up, write only a little bit more, and then crash again.
* If we leave the partial log records out there, this situation could
* cause us to think those partial writes are valid blocks since they
* have the current cycle number. We get rid of them by overwriting them
* with empty log records with the old cycle number rather than the
* current one.
*
* The tail lsn is passed in rather than taken from
* the log so that we will not write over the unmount record after a
* clean unmount in a 512 block log. Doing so would leave the log without
* any valid log records in it until a new one was written. If we crashed
* during that time we would not be able to recover.
*/
STATIC int
xlog_clear_stale_blocks(
xlog_t *log,
xfs_lsn_t tail_lsn)
{
int tail_cycle, head_cycle;
int tail_block, head_block;
int tail_distance, max_distance;
int distance;
int error;
tail_cycle = CYCLE_LSN(tail_lsn);
tail_block = BLOCK_LSN(tail_lsn);
head_cycle = log->l_curr_cycle;
head_block = log->l_curr_block;
/*
* Figure out the distance between the new head of the log
* and the tail. We want to write over any blocks beyond the
* head that we may have written just before the crash, but
* we don't want to overwrite the tail of the log.
*/
if (head_cycle == tail_cycle) {
/*
* The tail is behind the head in the physical log,
* so the distance from the head to the tail is the
* distance from the head to the end of the log plus
* the distance from the beginning of the log to the
* tail.
*/
if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
XFS_ERRLEVEL_LOW, log->l_mp);
return XFS_ERROR(EFSCORRUPTED);
}
tail_distance = tail_block + (log->l_logBBsize - head_block);
} else {
/*
* The head is behind the tail in the physical log,
* so the distance from the head to the tail is just
* the tail block minus the head block.
*/
if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
XFS_ERRLEVEL_LOW, log->l_mp);
return XFS_ERROR(EFSCORRUPTED);
}
tail_distance = tail_block - head_block;
}
/*
* If the head is right up against the tail, we can't clear
* anything.
*/
if (tail_distance <= 0) {
ASSERT(tail_distance == 0);
return 0;
}
max_distance = XLOG_TOTAL_REC_SHIFT(log);
/*
* Take the smaller of the maximum amount of outstanding I/O
* we could have and the distance to the tail to clear out.
* We take the smaller so that we don't overwrite the tail and
* we don't waste all day writing from the head to the tail
* for no reason.
*/
max_distance = MIN(max_distance, tail_distance);
if ((head_block + max_distance) <= log->l_logBBsize) {
/*
* We can stomp all the blocks we need to without
* wrapping around the end of the log. Just do it
* in a single write. Use the cycle number of the
* current cycle minus one so that the log will look like:
* n ... | n - 1 ...
*/
error = xlog_write_log_records(log, (head_cycle - 1),
head_block, max_distance, tail_cycle,
tail_block);
if (error)
return error;
} else {
/*
* We need to wrap around the end of the physical log in
* order to clear all the blocks. Do it in two separate
* I/Os. The first write should be from the head to the
* end of the physical log, and it should use the current
* cycle number minus one just like above.
*/
distance = log->l_logBBsize - head_block;
error = xlog_write_log_records(log, (head_cycle - 1),
head_block, distance, tail_cycle,
tail_block);
if (error)
return error;
/*
* Now write the blocks at the start of the physical log.
* This writes the remainder of the blocks we want to clear.
* It uses the current cycle number since we're now on the
* same cycle as the head so that we get:
* n ... n ... | n - 1 ...
* ^^^^^ blocks we're writing
*/
distance = max_distance - (log->l_logBBsize - head_block);
error = xlog_write_log_records(log, head_cycle, 0, distance,
tail_cycle, tail_block);
if (error)
return error;
}
return 0;
}
/******************************************************************************
*
* Log recover routines
*
******************************************************************************
*/
STATIC xlog_recover_t *
xlog_recover_find_tid(
xlog_recover_t *q,
xlog_tid_t tid)
{
xlog_recover_t *p = q;
while (p != NULL) {
if (p->r_log_tid == tid)
break;
p = p->r_next;
}
return p;
}
STATIC void
xlog_recover_put_hashq(
xlog_recover_t **q,
xlog_recover_t *trans)
{
trans->r_next = *q;
*q = trans;
}
STATIC void
xlog_recover_add_item(
xlog_recover_item_t **itemq)
{
xlog_recover_item_t *item;
item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
xlog_recover_insert_item_backq(itemq, item);
}
STATIC int
xlog_recover_add_to_cont_trans(
xlog_recover_t *trans,
xfs_caddr_t dp,
int len)
{
xlog_recover_item_t *item;
xfs_caddr_t ptr, old_ptr;
int old_len;
item = trans->r_itemq;
if (item == 0) {
/* finish copying rest of trans header */
xlog_recover_add_item(&trans->r_itemq);
ptr = (xfs_caddr_t) &trans->r_theader +
sizeof(xfs_trans_header_t) - len;
memcpy(ptr, dp, len); /* d, s, l */
return 0;
}
item = item->ri_prev;
old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
old_len = item->ri_buf[item->ri_cnt-1].i_len;
ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
memcpy(&ptr[old_len], dp, len); /* d, s, l */
item->ri_buf[item->ri_cnt-1].i_len += len;
item->ri_buf[item->ri_cnt-1].i_addr = ptr;
return 0;
}
/*
* The next region to add is the start of a new region. It could be
* a whole region or it could be the first part of a new region. Because
* of this, the assumption here is that the type and size fields of all
* format structures fit into the first 32 bits of the structure.
*
* This works because all regions must be 32 bit aligned. Therefore, we
* either have both fields or we have neither field. In the case we have
* neither field, the data part of the region is zero length. We only have
* a log_op_header and can throw away the header since a new one will appear
* later. If we have at least 4 bytes, then we can determine how many regions
* will appear in the current log item.
*/
STATIC int
xlog_recover_add_to_trans(
xlog_recover_t *trans,
xfs_caddr_t dp,
int len)
{
xfs_inode_log_format_t *in_f; /* any will do */
xlog_recover_item_t *item;
xfs_caddr_t ptr;
if (!len)
return 0;
item = trans->r_itemq;
if (item == 0) {
ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
if (len == sizeof(xfs_trans_header_t))
xlog_recover_add_item(&trans->r_itemq);
memcpy(&trans->r_theader, dp, len); /* d, s, l */
return 0;
}
ptr = kmem_alloc(len, KM_SLEEP);
memcpy(ptr, dp, len);
in_f = (xfs_inode_log_format_t *)ptr;
if (item->ri_prev->ri_total != 0 &&
item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
xlog_recover_add_item(&trans->r_itemq);
}
item = trans->r_itemq;
item = item->ri_prev;
if (item->ri_total == 0) { /* first region to be added */
item->ri_total = in_f->ilf_size;
ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
item->ri_buf = kmem_zalloc((item->ri_total *
sizeof(xfs_log_iovec_t)), KM_SLEEP);
}
ASSERT(item->ri_total > item->ri_cnt);
/* Description region is ri_buf[0] */
item->ri_buf[item->ri_cnt].i_addr = ptr;
item->ri_buf[item->ri_cnt].i_len = len;
item->ri_cnt++;
return 0;
}
STATIC void
xlog_recover_new_tid(
xlog_recover_t **q,
xlog_tid_t tid,
xfs_lsn_t lsn)
{
xlog_recover_t *trans;
trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
trans->r_log_tid = tid;
trans->r_lsn = lsn;
xlog_recover_put_hashq(q, trans);
}
STATIC int
xlog_recover_unlink_tid(
xlog_recover_t **q,
xlog_recover_t *trans)
{
xlog_recover_t *tp;
int found = 0;
ASSERT(trans != 0);
if (trans == *q) {
*q = (*q)->r_next;
} else {
tp = *q;
while (tp != 0) {
if (tp->r_next == trans) {
found = 1;
break;
}
tp = tp->r_next;
}
if (!found) {
xlog_warn(
"XFS: xlog_recover_unlink_tid: trans not found");
ASSERT(0);
return XFS_ERROR(EIO);
}
tp->r_next = tp->r_next->r_next;
}
return 0;
}
STATIC void
xlog_recover_insert_item_backq(
xlog_recover_item_t **q,
xlog_recover_item_t *item)
{
if (*q == 0) {
item->ri_prev = item->ri_next = item;
*q = item;
} else {
item->ri_next = *q;
item->ri_prev = (*q)->ri_prev;
(*q)->ri_prev = item;
item->ri_prev->ri_next = item;
}
}
STATIC void
xlog_recover_insert_item_frontq(
xlog_recover_item_t **q,
xlog_recover_item_t *item)
{
xlog_recover_insert_item_backq(q, item);
*q = item;
}
STATIC int
xlog_recover_reorder_trans(
xlog_t *log,
xlog_recover_t *trans)
{
xlog_recover_item_t *first_item, *itemq, *itemq_next;
xfs_buf_log_format_t *buf_f;
xfs_buf_log_format_v1_t *obuf_f;
ushort flags = 0;
first_item = itemq = trans->r_itemq;
trans->r_itemq = NULL;
do {
itemq_next = itemq->ri_next;
buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
switch (ITEM_TYPE(itemq)) {
case XFS_LI_BUF:
flags = buf_f->blf_flags;
break;
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF:
obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
flags = obuf_f->blf_flags;
break;
}
switch (ITEM_TYPE(itemq)) {
case XFS_LI_BUF:
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF:
if (!(flags & XFS_BLI_CANCEL)) {
xlog_recover_insert_item_frontq(&trans->r_itemq,
itemq);
break;
}
case XFS_LI_INODE:
case XFS_LI_6_1_INODE:
case XFS_LI_5_3_INODE:
case XFS_LI_DQUOT:
case XFS_LI_QUOTAOFF:
case XFS_LI_EFD:
case XFS_LI_EFI:
xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
break;
default:
xlog_warn(
"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
ASSERT(0);
return XFS_ERROR(EIO);
}
itemq = itemq_next;
} while (first_item != itemq);
return 0;
}
/*
* Build up the table of buf cancel records so that we don't replay
* cancelled data in the second pass. For buffer records that are
* not cancel records, there is nothing to do here so we just return.
*
* If we get a cancel record which is already in the table, this indicates
* that the buffer was cancelled multiple times. In order to ensure
* that during pass 2 we keep the record in the table until we reach its
* last occurrence in the log, we keep a reference count in the cancel
* record in the table to tell us how many times we expect to see this
* record during the second pass.
*/
STATIC void
xlog_recover_do_buffer_pass1(
xlog_t *log,
xfs_buf_log_format_t *buf_f)
{
xfs_buf_cancel_t *bcp;
xfs_buf_cancel_t *nextp;
xfs_buf_cancel_t *prevp;
xfs_buf_cancel_t **bucket;
xfs_buf_log_format_v1_t *obuf_f;
xfs_daddr_t blkno = 0;
uint len = 0;
ushort flags = 0;
switch (buf_f->blf_type) {
case XFS_LI_BUF:
blkno = buf_f->blf_blkno;
len = buf_f->blf_len;
flags = buf_f->blf_flags;
break;
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF:
obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
blkno = (xfs_daddr_t) obuf_f->blf_blkno;
len = obuf_f->blf_len;
flags = obuf_f->blf_flags;
break;
}
/*
* If this isn't a cancel buffer item, then just return.
*/
if (!(flags & XFS_BLI_CANCEL))
return;
/*
* Insert an xfs_buf_cancel record into the hash table of
* them. If there is already an identical record, bump
* its reference count.
*/
bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
XLOG_BC_TABLE_SIZE];
/*
* If the hash bucket is empty then just insert a new record into
* the bucket.
*/
if (*bucket == NULL) {
bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
KM_SLEEP);
bcp->bc_blkno = blkno;
bcp->bc_len = len;
bcp->bc_refcount = 1;
bcp->bc_next = NULL;
*bucket = bcp;
return;
}
/*
* The hash bucket is not empty, so search for duplicates of our
* record. If we find one them just bump its refcount. If not
* then add us at the end of the list.
*/
prevp = NULL;
nextp = *bucket;
while (nextp != NULL) {
if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
nextp->bc_refcount++;
return;
}
prevp = nextp;
nextp = nextp->bc_next;
}
ASSERT(prevp != NULL);
bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
KM_SLEEP);
bcp->bc_blkno = blkno;
bcp->bc_len = len;
bcp->bc_refcount = 1;
bcp->bc_next = NULL;
prevp->bc_next = bcp;
}
/*
* Check to see whether the buffer being recovered has a corresponding
* entry in the buffer cancel record table. If it does then return 1
* so that it will be cancelled, otherwise return 0. If the buffer is
* actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
* the refcount on the entry in the table and remove it from the table
* if this is the last reference.
*
* We remove the cancel record from the table when we encounter its
* last occurrence in the log so that if the same buffer is re-used
* again after its last cancellation we actually replay the changes
* made at that point.
*/
STATIC int
xlog_check_buffer_cancelled(
xlog_t *log,
xfs_daddr_t blkno,
uint len,
ushort flags)
{
xfs_buf_cancel_t *bcp;
xfs_buf_cancel_t *prevp;
xfs_buf_cancel_t **bucket;
if (log->l_buf_cancel_table == NULL) {
/*
* There is nothing in the table built in pass one,
* so this buffer must not be cancelled.
*/
ASSERT(!(flags & XFS_BLI_CANCEL));
return 0;
}
bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
XLOG_BC_TABLE_SIZE];
bcp = *bucket;
if (bcp == NULL) {
/*
* There is no corresponding entry in the table built
* in pass one, so this buffer has not been cancelled.
*/
ASSERT(!(flags & XFS_BLI_CANCEL));
return 0;
}
/*
* Search for an entry in the buffer cancel table that
* matches our buffer.
*/
prevp = NULL;
while (bcp != NULL) {
if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
/*
* We've go a match, so return 1 so that the
* recovery of this buffer is cancelled.
* If this buffer is actually a buffer cancel
* log item, then decrement the refcount on the
* one in the table and remove it if this is the
* last reference.
*/
if (flags & XFS_BLI_CANCEL) {
bcp->bc_refcount--;
if (bcp->bc_refcount == 0) {
if (prevp == NULL) {
*bucket = bcp->bc_next;
} else {
prevp->bc_next = bcp->bc_next;
}
kmem_free(bcp,
sizeof(xfs_buf_cancel_t));
}
}
return 1;
}
prevp = bcp;
bcp = bcp->bc_next;
}
/*
* We didn't find a corresponding entry in the table, so
* return 0 so that the buffer is NOT cancelled.
*/
ASSERT(!(flags & XFS_BLI_CANCEL));
return 0;
}
STATIC int
xlog_recover_do_buffer_pass2(
xlog_t *log,
xfs_buf_log_format_t *buf_f)
{
xfs_buf_log_format_v1_t *obuf_f;
xfs_daddr_t blkno = 0;
ushort flags = 0;
uint len = 0;
switch (buf_f->blf_type) {
case XFS_LI_BUF:
blkno = buf_f->blf_blkno;
flags = buf_f->blf_flags;
len = buf_f->blf_len;
break;
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF:
obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
blkno = (xfs_daddr_t) obuf_f->blf_blkno;
flags = obuf_f->blf_flags;
len = (xfs_daddr_t) obuf_f->blf_len;
break;
}
return xlog_check_buffer_cancelled(log, blkno, len, flags);
}
/*
* Perform recovery for a buffer full of inodes. In these buffers,
* the only data which should be recovered is that which corresponds
* to the di_next_unlinked pointers in the on disk inode structures.
* The rest of the data for the inodes is always logged through the
* inodes themselves rather than the inode buffer and is recovered
* in xlog_recover_do_inode_trans().
*
* The only time when buffers full of inodes are fully recovered is
* when the buffer is full of newly allocated inodes. In this case
* the buffer will not be marked as an inode buffer and so will be
* sent to xlog_recover_do_reg_buffer() below during recovery.
*/
STATIC int
xlog_recover_do_inode_buffer(
xfs_mount_t *mp,
xlog_recover_item_t *item,
xfs_buf_t *bp,
xfs_buf_log_format_t *buf_f)
{
int i;
int item_index;
int bit;
int nbits;
int reg_buf_offset;
int reg_buf_bytes;
int next_unlinked_offset;
int inodes_per_buf;
xfs_agino_t *logged_nextp;
xfs_agino_t *buffer_nextp;
xfs_buf_log_format_v1_t *obuf_f;
unsigned int *data_map = NULL;
unsigned int map_size = 0;
switch (buf_f->blf_type) {
case XFS_LI_BUF:
data_map = buf_f->blf_data_map;
map_size = buf_f->blf_map_size;
break;
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF:
obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
data_map = obuf_f->blf_data_map;
map_size = obuf_f->blf_map_size;
break;
}
/*
* Set the variables corresponding to the current region to
* 0 so that we'll initialize them on the first pass through
* the loop.
*/
reg_buf_offset = 0;
reg_buf_bytes = 0;
bit = 0;
nbits = 0;
item_index = 0;
inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
for (i = 0; i < inodes_per_buf; i++) {
next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
offsetof(xfs_dinode_t, di_next_unlinked);
while (next_unlinked_offset >=
(reg_buf_offset + reg_buf_bytes)) {
/*
* The next di_next_unlinked field is beyond
* the current logged region. Find the next
* logged region that contains or is beyond
* the current di_next_unlinked field.
*/
bit += nbits;
bit = xfs_next_bit(data_map, map_size, bit);
/*
* If there are no more logged regions in the
* buffer, then we're done.
*/
if (bit == -1) {
return 0;
}
nbits = xfs_contig_bits(data_map, map_size,
bit);
ASSERT(nbits > 0);
reg_buf_offset = bit << XFS_BLI_SHIFT;
reg_buf_bytes = nbits << XFS_BLI_SHIFT;
item_index++;
}
/*
* If the current logged region starts after the current
* di_next_unlinked field, then move on to the next
* di_next_unlinked field.
*/
if (next_unlinked_offset < reg_buf_offset) {
continue;
}
ASSERT(item->ri_buf[item_index].i_addr != NULL);
ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
/*
* The current logged region contains a copy of the
* current di_next_unlinked field. Extract its value
* and copy it to the buffer copy.
*/
logged_nextp = (xfs_agino_t *)
((char *)(item->ri_buf[item_index].i_addr) +
(next_unlinked_offset - reg_buf_offset));
if (unlikely(*logged_nextp == 0)) {
xfs_fs_cmn_err(CE_ALERT, mp,
"bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
item, bp);
XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
XFS_ERRLEVEL_LOW, mp);
return XFS_ERROR(EFSCORRUPTED);
}
buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
next_unlinked_offset);
*buffer_nextp = *logged_nextp;
}
return 0;
}
/*
* Perform a 'normal' buffer recovery. Each logged region of the
* buffer should be copied over the corresponding region in the
* given buffer. The bitmap in the buf log format structure indicates
* where to place the logged data.
*/
/*ARGSUSED*/
STATIC void
xlog_recover_do_reg_buffer(
xfs_mount_t *mp,
xlog_recover_item_t *item,
xfs_buf_t *bp,
xfs_buf_log_format_t *buf_f)
{
int i;
int bit;
int nbits;
xfs_buf_log_format_v1_t *obuf_f;
unsigned int *data_map = NULL;
unsigned int map_size = 0;
int error;
switch (buf_f->blf_type) {
case XFS_LI_BUF:
data_map = buf_f->blf_data_map;
map_size = buf_f->blf_map_size;
break;
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF:
obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
data_map = obuf_f->blf_data_map;
map_size = obuf_f->blf_map_size;
break;
}
bit = 0;
i = 1; /* 0 is the buf format structure */
while (1) {
bit = xfs_next_bit(data_map, map_size, bit);
if (bit == -1)
break;
nbits = xfs_contig_bits(data_map, map_size, bit);
ASSERT(nbits > 0);
ASSERT(item->ri_buf[i].i_addr != 0);
ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
ASSERT(XFS_BUF_COUNT(bp) >=
((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
/*
* Do a sanity check if this is a dquot buffer. Just checking
* the first dquot in the buffer should do. XXXThis is
* probably a good thing to do for other buf types also.
*/
error = 0;
if (buf_f->blf_flags &
(XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
item->ri_buf[i].i_addr,
-1, 0, XFS_QMOPT_DOWARN,
"dquot_buf_recover");
}
if (!error)
memcpy(xfs_buf_offset(bp,
(uint)bit << XFS_BLI_SHIFT), /* dest */
item->ri_buf[i].i_addr, /* source */
nbits<<XFS_BLI_SHIFT); /* length */
i++;
bit += nbits;
}
/* Shouldn't be any more regions */
ASSERT(i == item->ri_total);
}
/*
* Do some primitive error checking on ondisk dquot data structures.
*/
int
xfs_qm_dqcheck(
xfs_disk_dquot_t *ddq,
xfs_dqid_t id,
uint type, /* used only when IO_dorepair is true */
uint flags,
char *str)
{
xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
int errs = 0;
/*
* We can encounter an uninitialized dquot buffer for 2 reasons:
* 1. If we crash while deleting the quotainode(s), and those blks got
* used for user data. This is because we take the path of regular
* file deletion; however, the size field of quotainodes is never
* updated, so all the tricks that we play in itruncate_finish
* don't quite matter.
*
* 2. We don't play the quota buffers when there's a quotaoff logitem.
* But the allocation will be replayed so we'll end up with an
* uninitialized quota block.
*
* This is all fine; things are still consistent, and we haven't lost
* any quota information. Just don't complain about bad dquot blks.
*/
if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
if (flags & XFS_QMOPT_DOWARN)
cmn_err(CE_ALERT,
"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
errs++;
}
if (ddq->d_version != XFS_DQUOT_VERSION) {
if (flags & XFS_QMOPT_DOWARN)
cmn_err(CE_ALERT,
"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
str, id, ddq->d_version, XFS_DQUOT_VERSION);
errs++;
}
if (ddq->d_flags != XFS_DQ_USER &&
ddq->d_flags != XFS_DQ_PROJ &&
ddq->d_flags != XFS_DQ_GROUP) {
if (flags & XFS_QMOPT_DOWARN)
cmn_err(CE_ALERT,
"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
str, id, ddq->d_flags);
errs++;
}
if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
if (flags & XFS_QMOPT_DOWARN)
cmn_err(CE_ALERT,
"%s : ondisk-dquot 0x%p, ID mismatch: "
"0x%x expected, found id 0x%x",
str, ddq, id, be32_to_cpu(ddq->d_id));
errs++;
}
if (!errs && ddq->d_id) {
if (ddq->d_blk_softlimit &&
be64_to_cpu(ddq->d_bcount) >=
be64_to_cpu(ddq->d_blk_softlimit)) {
if (!ddq->d_btimer) {
if (flags & XFS_QMOPT_DOWARN)
cmn_err(CE_ALERT,
"%s : Dquot ID 0x%x (0x%p) "
"BLK TIMER NOT STARTED",
str, (int)be32_to_cpu(ddq->d_id), ddq);
errs++;
}
}
if (ddq->d_ino_softlimit &&
be64_to_cpu(ddq->d_icount) >=
be64_to_cpu(ddq->d_ino_softlimit)) {
if (!ddq->d_itimer) {
if (flags & XFS_QMOPT_DOWARN)
cmn_err(CE_ALERT,
"%s : Dquot ID 0x%x (0x%p) "
"INODE TIMER NOT STARTED",
str, (int)be32_to_cpu(ddq->d_id), ddq);
errs++;
}
}
if (ddq->d_rtb_softlimit &&
be64_to_cpu(ddq->d_rtbcount) >=
be64_to_cpu(ddq->d_rtb_softlimit)) {
if (!ddq->d_rtbtimer) {
if (flags & XFS_QMOPT_DOWARN)
cmn_err(CE_ALERT,
"%s : Dquot ID 0x%x (0x%p) "
"RTBLK TIMER NOT STARTED",
str, (int)be32_to_cpu(ddq->d_id), ddq);
errs++;
}
}
}
if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
return errs;
if (flags & XFS_QMOPT_DOWARN)
cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
/*
* Typically, a repair is only requested by quotacheck.
*/
ASSERT(id != -1);
ASSERT(flags & XFS_QMOPT_DQREPAIR);
memset(d, 0, sizeof(xfs_dqblk_t));
d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
d->dd_diskdq.d_flags = type;
d->dd_diskdq.d_id = cpu_to_be32(id);
return errs;
}
/*
* Perform a dquot buffer recovery.
* Simple algorithm: if we have found a QUOTAOFF logitem of the same type
* (ie. USR or GRP), then just toss this buffer away; don't recover it.
* Else, treat it as a regular buffer and do recovery.
*/
STATIC void
xlog_recover_do_dquot_buffer(
xfs_mount_t *mp,
xlog_t *log,
xlog_recover_item_t *item,
xfs_buf_t *bp,
xfs_buf_log_format_t *buf_f)
{
uint type;
/*
* Filesystems are required to send in quota flags at mount time.
*/
if (mp->m_qflags == 0) {
return;
}
type = 0;
if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
type |= XFS_DQ_USER;
if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
type |= XFS_DQ_PROJ;
if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
type |= XFS_DQ_GROUP;
/*
* This type of quotas was turned off, so ignore this buffer
*/
if (log->l_quotaoffs_flag & type)
return;
xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
}
/*
* This routine replays a modification made to a buffer at runtime.
* There are actually two types of buffer, regular and inode, which
* are handled differently. Inode buffers are handled differently
* in that we only recover a specific set of data from them, namely
* the inode di_next_unlinked fields. This is because all other inode
* data is actually logged via inode records and any data we replay
* here which overlaps that may be stale.
*
* When meta-data buffers are freed at run time we log a buffer item
* with the XFS_BLI_CANCEL bit set to indicate that previous copies
* of the buffer in the log should not be replayed at recovery time.
* This is so that if the blocks covered by the buffer are reused for
* file data before we crash we don't end up replaying old, freed
* meta-data into a user's file.
*
* To handle the cancellation of buffer log items, we make two passes
* over the log during recovery. During the first we build a table of
* those buffers which have been cancelled, and during the second we
* only replay those buffers which do not have corresponding cancel
* records in the table. See xlog_recover_do_buffer_pass[1,2] above
* for more details on the implementation of the table of cancel records.
*/
STATIC int
xlog_recover_do_buffer_trans(
xlog_t *log,
xlog_recover_item_t *item,
int pass)
{
xfs_buf_log_format_t *buf_f;
xfs_buf_log_format_v1_t *obuf_f;
xfs_mount_t *mp;
xfs_buf_t *bp;
int error;
int cancel;
xfs_daddr_t blkno;
int len;
ushort flags;
buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
if (pass == XLOG_RECOVER_PASS1) {
/*
* In this pass we're only looking for buf items
* with the XFS_BLI_CANCEL bit set.
*/
xlog_recover_do_buffer_pass1(log, buf_f);
return 0;
} else {
/*
* In this pass we want to recover all the buffers
* which have not been cancelled and are not
* cancellation buffers themselves. The routine
* we call here will tell us whether or not to
* continue with the replay of this buffer.
*/
cancel = xlog_recover_do_buffer_pass2(log, buf_f);
if (cancel) {
return 0;
}
}
switch (buf_f->blf_type) {
case XFS_LI_BUF:
blkno = buf_f->blf_blkno;
len = buf_f->blf_len;
flags = buf_f->blf_flags;
break;
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF:
obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
blkno = obuf_f->blf_blkno;
len = obuf_f->blf_len;
flags = obuf_f->blf_flags;
break;
default:
xfs_fs_cmn_err(CE_ALERT, log->l_mp,
"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
buf_f->blf_type, log->l_mp->m_logname ?
log->l_mp->m_logname : "internal");
XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
XFS_ERRLEVEL_LOW, log->l_mp);
return XFS_ERROR(EFSCORRUPTED);
}
mp = log->l_mp;
if (flags & XFS_BLI_INODE_BUF) {
bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
XFS_BUF_LOCK);
} else {
bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
}
if (XFS_BUF_ISERROR(bp)) {
xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
bp, blkno);
error = XFS_BUF_GETERROR(bp);
xfs_buf_relse(bp);
return error;
}
error = 0;
if (flags & XFS_BLI_INODE_BUF) {
error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
} else if (flags &
(XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
} else {
xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
}
if (error)
return XFS_ERROR(error);
/*
* Perform delayed write on the buffer. Asynchronous writes will be
* slower when taking into account all the buffers to be flushed.
*
* Also make sure that only inode buffers with good sizes stay in
* the buffer cache. The kernel moves inodes in buffers of 1 block
* or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
* buffers in the log can be a different size if the log was generated
* by an older kernel using unclustered inode buffers or a newer kernel
* running with a different inode cluster size. Regardless, if the
* the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
* for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
* the buffer out of the buffer cache so that the buffer won't
* overlap with future reads of those inodes.
*/
if (XFS_DINODE_MAGIC ==
INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
(XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
XFS_BUF_STALE(bp);
error = xfs_bwrite(mp, bp);
} else {
ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
XFS_BUF_SET_FSPRIVATE(bp, mp);
XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
xfs_bdwrite(mp, bp);
}
return (error);
}
STATIC int
xlog_recover_do_inode_trans(
xlog_t *log,
xlog_recover_item_t *item,
int pass)
{
xfs_inode_log_format_t *in_f;
xfs_mount_t *mp;
xfs_buf_t *bp;
xfs_imap_t imap;
xfs_dinode_t *dip;
xfs_ino_t ino;
int len;
xfs_caddr_t src;
xfs_caddr_t dest;
int error;
int attr_index;
uint fields;
xfs_dinode_core_t *dicp;
int need_free = 0;
if (pass == XLOG_RECOVER_PASS1) {
return 0;
}
if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
} else {
in_f = (xfs_inode_log_format_t *)kmem_alloc(
sizeof(xfs_inode_log_format_t), KM_SLEEP);
need_free = 1;
error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
if (error)
goto error;
}
ino = in_f->ilf_ino;
mp = log->l_mp;
if (ITEM_TYPE(item) == XFS_LI_INODE) {
imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
imap.im_len = in_f->ilf_len;
imap.im_boffset = in_f->ilf_boffset;
} else {
/*
* It's an old inode format record. We don't know where
* its cluster is located on disk, and we can't allow
* xfs_imap() to figure it out because the inode btrees
* are not ready to be used. Therefore do not pass the
* XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
* us only the single block in which the inode lives
* rather than its cluster, so we must make sure to
* invalidate the buffer when we write it out below.
*/
imap.im_blkno = 0;
xfs_imap(log->l_mp, NULL, ino, &imap, 0);
}
/*
* Inode buffers can be freed, look out for it,
* and do not replay the inode.
*/
if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
error = 0;
goto error;
}
bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
XFS_BUF_LOCK);
if (XFS_BUF_ISERROR(bp)) {
xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
bp, imap.im_blkno);
error = XFS_BUF_GETERROR(bp);
xfs_buf_relse(bp);
goto error;
}
error = 0;
ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
/*
* Make sure the place we're flushing out to really looks
* like an inode!
*/
if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
xfs_buf_relse(bp);
xfs_fs_cmn_err(CE_ALERT, mp,
"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
dip, bp, ino);
XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
XFS_ERRLEVEL_LOW, mp);
error = EFSCORRUPTED;
goto error;
}
dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
xfs_buf_relse(bp);
xfs_fs_cmn_err(CE_ALERT, mp,
"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
item, ino);
XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
XFS_ERRLEVEL_LOW, mp);
error = EFSCORRUPTED;
goto error;
}
/* Skip replay when the on disk inode is newer than the log one */
if (dicp->di_flushiter <
INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
/*
* Deal with the wrap case, DI_MAX_FLUSH is less
* than smaller numbers
*/
if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
== DI_MAX_FLUSH) &&
(dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
/* do nothing */
} else {
xfs_buf_relse(bp);
error = 0;
goto error;
}
}
/* Take the opportunity to reset the flush iteration count */
dicp->di_flushiter = 0;
if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
(dicp->di_format != XFS_DINODE_FMT_BTREE)) {
XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
XFS_ERRLEVEL_LOW, mp, dicp);
xfs_buf_relse(bp);
xfs_fs_cmn_err(CE_ALERT, mp,
"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
item, dip, bp, ino);
error = EFSCORRUPTED;
goto error;
}
} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
(dicp->di_format != XFS_DINODE_FMT_BTREE) &&
(dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
XFS_ERRLEVEL_LOW, mp, dicp);
xfs_buf_relse(bp);
xfs_fs_cmn_err(CE_ALERT, mp,
"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
item, dip, bp, ino);
error = EFSCORRUPTED;
goto error;
}
}
if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
XFS_ERRLEVEL_LOW, mp, dicp);
xfs_buf_relse(bp);
xfs_fs_cmn_err(CE_ALERT, mp,
"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
item, dip, bp, ino,
dicp->di_nextents + dicp->di_anextents,
dicp->di_nblocks);
error = EFSCORRUPTED;
goto error;
}
if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
XFS_ERRLEVEL_LOW, mp, dicp);
xfs_buf_relse(bp);
xfs_fs_cmn_err(CE_ALERT, mp,
"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
item, dip, bp, ino, dicp->di_forkoff);
error = EFSCORRUPTED;
goto error;
}
if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
XFS_ERRLEVEL_LOW, mp, dicp);
xfs_buf_relse(bp);
xfs_fs_cmn_err(CE_ALERT, mp,
"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
item->ri_buf[1].i_len, item);
error = EFSCORRUPTED;
goto error;
}
/* The core is in in-core format */
xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
(xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
/* the rest is in on-disk format */
if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
}
fields = in_f->ilf_fields;
switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
case XFS_ILOG_DEV:
INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
break;
case XFS_ILOG_UUID:
dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
break;
}
if (in_f->ilf_size == 2)
goto write_inode_buffer;
len = item->ri_buf[2].i_len;
src = item->ri_buf[2].i_addr;
ASSERT(in_f->ilf_size <= 4);
ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
ASSERT(!(fields & XFS_ILOG_DFORK) ||
(len == in_f->ilf_dsize));
switch (fields & XFS_ILOG_DFORK) {
case XFS_ILOG_DDATA:
case XFS_ILOG_DEXT:
memcpy(&dip->di_u, src, len);
break;
case XFS_ILOG_DBROOT:
xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
&(dip->di_u.di_bmbt),
XFS_DFORK_DSIZE(dip, mp));
break;
default:
/*
* There are no data fork flags set.
*/
ASSERT((fields & XFS_ILOG_DFORK) == 0);
break;
}
/*
* If we logged any attribute data, recover it. There may or
* may not have been any other non-core data logged in this
* transaction.
*/
if (in_f->ilf_fields & XFS_ILOG_AFORK) {
if (in_f->ilf_fields & XFS_ILOG_DFORK) {
attr_index = 3;
} else {
attr_index = 2;
}
len = item->ri_buf[attr_index].i_len;
src = item->ri_buf[attr_index].i_addr;
ASSERT(len == in_f->ilf_asize);
switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
case XFS_ILOG_ADATA:
case XFS_ILOG_AEXT:
dest = XFS_DFORK_APTR(dip);
ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
memcpy(dest, src, len);
break;
case XFS_ILOG_ABROOT:
dest = XFS_DFORK_APTR(dip);
xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
(xfs_bmdr_block_t*)dest,
XFS_DFORK_ASIZE(dip, mp));
break;
default:
xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
ASSERT(0);
xfs_buf_relse(bp);
error = EIO;
goto error;
}
}
write_inode_buffer:
if (ITEM_TYPE(item) == XFS_LI_INODE) {
ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
XFS_BUF_SET_FSPRIVATE(bp, mp);
XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
xfs_bdwrite(mp, bp);
} else {
XFS_BUF_STALE(bp);
error = xfs_bwrite(mp, bp);
}
error:
if (need_free)
kmem_free(in_f, sizeof(*in_f));
return XFS_ERROR(error);
}
/*
* Recover QUOTAOFF records. We simply make a note of it in the xlog_t
* structure, so that we know not to do any dquot item or dquot buffer recovery,
* of that type.
*/
STATIC int
xlog_recover_do_quotaoff_trans(
xlog_t *log,
xlog_recover_item_t *item,
int pass)
{
xfs_qoff_logformat_t *qoff_f;
if (pass == XLOG_RECOVER_PASS2) {
return (0);
}
qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
ASSERT(qoff_f);
/*
* The logitem format's flag tells us if this was user quotaoff,
* group/project quotaoff or both.
*/
if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
log->l_quotaoffs_flag |= XFS_DQ_USER;
if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
log->l_quotaoffs_flag |= XFS_DQ_PROJ;
if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
log->l_quotaoffs_flag |= XFS_DQ_GROUP;
return (0);
}
/*
* Recover a dquot record
*/
STATIC int
xlog_recover_do_dquot_trans(
xlog_t *log,
xlog_recover_item_t *item,
int pass)
{
xfs_mount_t *mp;
xfs_buf_t *bp;
struct xfs_disk_dquot *ddq, *recddq;
int error;
xfs_dq_logformat_t *dq_f;
uint type;
if (pass == XLOG_RECOVER_PASS1) {
return 0;
}
mp = log->l_mp;
/*
* Filesystems are required to send in quota flags at mount time.
*/
if (mp->m_qflags == 0)
return (0);
recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
ASSERT(recddq);
/*
* This type of quotas was turned off, so ignore this record.
*/
type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
(XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
ASSERT(type);
if (log->l_quotaoffs_flag & type)
return (0);
/*
* At this point we know that quota was _not_ turned off.
* Since the mount flags are not indicating to us otherwise, this
* must mean that quota is on, and the dquot needs to be replayed.
* Remember that we may not have fully recovered the superblock yet,
* so we can't do the usual trick of looking at the SB quota bits.
*
* The other possibility, of course, is that the quota subsystem was
* removed since the last mount - ENOSYS.
*/
dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
ASSERT(dq_f);
if ((error = xfs_qm_dqcheck(recddq,
dq_f->qlf_id,
0, XFS_QMOPT_DOWARN,
"xlog_recover_do_dquot_trans (log copy)"))) {
return XFS_ERROR(EIO);
}
ASSERT(dq_f->qlf_len == 1);
error = xfs_read_buf(mp, mp->m_ddev_targp,
dq_f->qlf_blkno,
XFS_FSB_TO_BB(mp, dq_f->qlf_len),
0, &bp);
if (error) {
xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
bp, dq_f->qlf_blkno);
return error;
}
ASSERT(bp);
ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
/*
* At least the magic num portion should be on disk because this
* was among a chunk of dquots created earlier, and we did some
* minimal initialization then.
*/
if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
"xlog_recover_do_dquot_trans")) {
xfs_buf_relse(bp);
return XFS_ERROR(EIO);
}
memcpy(ddq, recddq, item->ri_buf[1].i_len);
ASSERT(dq_f->qlf_size == 2);
ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
XFS_BUF_SET_FSPRIVATE(bp, mp);
XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
xfs_bdwrite(mp, bp);
return (0);
}
/*
* This routine is called to create an in-core extent free intent
* item from the efi format structure which was logged on disk.
* It allocates an in-core efi, copies the extents from the format
* structure into it, and adds the efi to the AIL with the given
* LSN.
*/
STATIC int
xlog_recover_do_efi_trans(
xlog_t *log,
xlog_recover_item_t *item,
xfs_lsn_t lsn,
int pass)
{
int error;
xfs_mount_t *mp;
xfs_efi_log_item_t *efip;
xfs_efi_log_format_t *efi_formatp;
SPLDECL(s);
if (pass == XLOG_RECOVER_PASS1) {
return 0;
}
efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
mp = log->l_mp;
efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
&(efip->efi_format)))) {
xfs_efi_item_free(efip);
return error;
}
efip->efi_next_extent = efi_formatp->efi_nextents;
efip->efi_flags |= XFS_EFI_COMMITTED;
AIL_LOCK(mp,s);
/*
* xfs_trans_update_ail() drops the AIL lock.
*/
xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
return 0;
}
/*
* This routine is called when an efd format structure is found in
* a committed transaction in the log. It's purpose is to cancel
* the corresponding efi if it was still in the log. To do this
* it searches the AIL for the efi with an id equal to that in the
* efd format structure. If we find it, we remove the efi from the
* AIL and free it.
*/
STATIC void
xlog_recover_do_efd_trans(
xlog_t *log,
xlog_recover_item_t *item,
int pass)
{
xfs_mount_t *mp;
xfs_efd_log_format_t *efd_formatp;
xfs_efi_log_item_t *efip = NULL;
xfs_log_item_t *lip;
int gen;
__uint64_t efi_id;
SPLDECL(s);
if (pass == XLOG_RECOVER_PASS1) {
return;
}
efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
(item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
efi_id = efd_formatp->efd_efi_id;
/*
* Search for the efi with the id in the efd format structure
* in the AIL.
*/
mp = log->l_mp;
AIL_LOCK(mp,s);
lip = xfs_trans_first_ail(mp, &gen);
while (lip != NULL) {
if (lip->li_type == XFS_LI_EFI) {
efip = (xfs_efi_log_item_t *)lip;
if (efip->efi_format.efi_id == efi_id) {
/*
* xfs_trans_delete_ail() drops the
* AIL lock.
*/
xfs_trans_delete_ail(mp, lip, s);
break;
}
}
lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
}
/*
* If we found it, then free it up. If it wasn't there, it
* must have been overwritten in the log. Oh well.
*/
if (lip != NULL) {
xfs_efi_item_free(efip);
} else {
AIL_UNLOCK(mp, s);
}
}
/*
* Perform the transaction
*
* If the transaction modifies a buffer or inode, do it now. Otherwise,
* EFIs and EFDs get queued up by adding entries into the AIL for them.
*/
STATIC int
xlog_recover_do_trans(
xlog_t *log,
xlog_recover_t *trans,
int pass)
{
int error = 0;
xlog_recover_item_t *item, *first_item;
if ((error = xlog_recover_reorder_trans(log, trans)))
return error;
first_item = item = trans->r_itemq;
do {
/*
* we don't need to worry about the block number being
* truncated in > 1 TB buffers because in user-land,
* we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
* the blknos will get through the user-mode buffer
* cache properly. The only bad case is o32 kernels
* where xfs_daddr_t is 32-bits but mount will warn us
* off a > 1 TB filesystem before we get here.
*/
if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
(ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
(ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
if ((error = xlog_recover_do_buffer_trans(log, item,
pass)))
break;
} else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
if ((error = xlog_recover_do_inode_trans(log, item,
pass)))
break;
} else if (ITEM_TYPE(item) == XFS_LI_EFI) {
if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
pass)))
break;
} else if (ITEM_TYPE(item) == XFS_LI_EFD) {
xlog_recover_do_efd_trans(log, item, pass);
} else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
if ((error = xlog_recover_do_dquot_trans(log, item,
pass)))
break;
} else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
if ((error = xlog_recover_do_quotaoff_trans(log, item,
pass)))
break;
} else {
xlog_warn("XFS: xlog_recover_do_trans");
ASSERT(0);
error = XFS_ERROR(EIO);
break;
}
item = item->ri_next;
} while (first_item != item);
return error;
}
/*
* Free up any resources allocated by the transaction
*
* Remember that EFIs, EFDs, and IUNLINKs are handled later.
*/
STATIC void
xlog_recover_free_trans(
xlog_recover_t *trans)
{
xlog_recover_item_t *first_item, *item, *free_item;
int i;
item = first_item = trans->r_itemq;
do {
free_item = item;
item = item->ri_next;
/* Free the regions in the item. */
for (i = 0; i < free_item->ri_cnt; i++) {
kmem_free(free_item->ri_buf[i].i_addr,
free_item->ri_buf[i].i_len);
}
/* Free the item itself */
kmem_free(free_item->ri_buf,
(free_item->ri_total * sizeof(xfs_log_iovec_t)));
kmem_free(free_item, sizeof(xlog_recover_item_t));
} while (first_item != item);
/* Free the transaction recover structure */
kmem_free(trans, sizeof(xlog_recover_t));
}
STATIC int
xlog_recover_commit_trans(
xlog_t *log,
xlog_recover_t **q,
xlog_recover_t *trans,
int pass)
{
int error;
if ((error = xlog_recover_unlink_tid(q, trans)))
return error;
if ((error = xlog_recover_do_trans(log, trans, pass)))
return error;
xlog_recover_free_trans(trans); /* no error */
return 0;
}
STATIC int
xlog_recover_unmount_trans(
xlog_recover_t *trans)
{
/* Do nothing now */
xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
return 0;
}
/*
* There are two valid states of the r_state field. 0 indicates that the
* transaction structure is in a normal state. We have either seen the
* start of the transaction or the last operation we added was not a partial
* operation. If the last operation we added to the transaction was a
* partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
*
* NOTE: skip LRs with 0 data length.
*/
STATIC int
xlog_recover_process_data(
xlog_t *log,
xlog_recover_t *rhash[],
xlog_rec_header_t *rhead,
xfs_caddr_t dp,
int pass)
{
xfs_caddr_t lp;
int num_logops;
xlog_op_header_t *ohead;
xlog_recover_t *trans;
xlog_tid_t tid;
int error;
unsigned long hash;
uint flags;
lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
/* check the log format matches our own - else we can't recover */
if (xlog_header_check_recover(log->l_mp, rhead))
return (XFS_ERROR(EIO));
while ((dp < lp) && num_logops) {
ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
ohead = (xlog_op_header_t *)dp;
dp += sizeof(xlog_op_header_t);
if (ohead->oh_clientid != XFS_TRANSACTION &&
ohead->oh_clientid != XFS_LOG) {
xlog_warn(
"XFS: xlog_recover_process_data: bad clientid");
ASSERT(0);
return (XFS_ERROR(EIO));
}
tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
hash = XLOG_RHASH(tid);
trans = xlog_recover_find_tid(rhash[hash], tid);
if (trans == NULL) { /* not found; add new tid */
if (ohead->oh_flags & XLOG_START_TRANS)
xlog_recover_new_tid(&rhash[hash], tid,
INT_GET(rhead->h_lsn, ARCH_CONVERT));
} else {
ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
flags = ohead->oh_flags & ~XLOG_END_TRANS;
if (flags & XLOG_WAS_CONT_TRANS)
flags &= ~XLOG_CONTINUE_TRANS;
switch (flags) {
case XLOG_COMMIT_TRANS:
error = xlog_recover_commit_trans(log,
&rhash[hash], trans, pass);
break;
case XLOG_UNMOUNT_TRANS:
error = xlog_recover_unmount_trans(trans);
break;
case XLOG_WAS_CONT_TRANS:
error = xlog_recover_add_to_cont_trans(trans,
dp, INT_GET(ohead->oh_len,
ARCH_CONVERT));
break;
case XLOG_START_TRANS:
xlog_warn(
"XFS: xlog_recover_process_data: bad transaction");
ASSERT(0);
error = XFS_ERROR(EIO);
break;
case 0:
case XLOG_CONTINUE_TRANS:
error = xlog_recover_add_to_trans(trans,
dp, INT_GET(ohead->oh_len,
ARCH_CONVERT));
break;
default:
xlog_warn(
"XFS: xlog_recover_process_data: bad flag");
ASSERT(0);
error = XFS_ERROR(EIO);
break;
}
if (error)
return error;
}
dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
num_logops--;
}
return 0;
}
/*
* Process an extent free intent item that was recovered from
* the log. We need to free the extents that it describes.
*/
STATIC void
xlog_recover_process_efi(
xfs_mount_t *mp,
xfs_efi_log_item_t *efip)
{
xfs_efd_log_item_t *efdp;
xfs_trans_t *tp;
int i;
xfs_extent_t *extp;
xfs_fsblock_t startblock_fsb;
ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
/*
* First check the validity of the extents described by the
* EFI. If any are bad, then assume that all are bad and
* just toss the EFI.
*/
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
extp = &(efip->efi_format.efi_extents[i]);
startblock_fsb = XFS_BB_TO_FSB(mp,
XFS_FSB_TO_DADDR(mp, extp->ext_start));
if ((startblock_fsb == 0) ||
(extp->ext_len == 0) ||
(startblock_fsb >= mp->m_sb.sb_dblocks) ||
(extp->ext_len >= mp->m_sb.sb_agblocks)) {
/*
* This will pull the EFI from the AIL and
* free the memory associated with it.
*/
xfs_efi_release(efip, efip->efi_format.efi_nextents);
return;
}
}
tp = xfs_trans_alloc(mp, 0);
xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
extp = &(efip->efi_format.efi_extents[i]);
xfs_free_extent(tp, extp->ext_start, extp->ext_len);
xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
extp->ext_len);
}
efip->efi_flags |= XFS_EFI_RECOVERED;
xfs_trans_commit(tp, 0, NULL);
}
/*
* Verify that once we've encountered something other than an EFI
* in the AIL that there are no more EFIs in the AIL.
*/
#if defined(DEBUG)
STATIC void
xlog_recover_check_ail(
xfs_mount_t *mp,
xfs_log_item_t *lip,
int gen)
{
int orig_gen = gen;
do {
ASSERT(lip->li_type != XFS_LI_EFI);
lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
/*
* The check will be bogus if we restart from the
* beginning of the AIL, so ASSERT that we don't.
* We never should since we're holding the AIL lock
* the entire time.
*/
ASSERT(gen == orig_gen);
} while (lip != NULL);
}
#endif /* DEBUG */
/*
* When this is called, all of the EFIs which did not have
* corresponding EFDs should be in the AIL. What we do now
* is free the extents associated with each one.
*
* Since we process the EFIs in normal transactions, they
* will be removed at some point after the commit. This prevents
* us from just walking down the list processing each one.
* We'll use a flag in the EFI to skip those that we've already
* processed and use the AIL iteration mechanism's generation
* count to try to speed this up at least a bit.
*
* When we start, we know that the EFIs are the only things in
* the AIL. As we process them, however, other items are added
* to the AIL. Since everything added to the AIL must come after
* everything already in the AIL, we stop processing as soon as
* we see something other than an EFI in the AIL.
*/
STATIC void
xlog_recover_process_efis(
xlog_t *log)
{
xfs_log_item_t *lip;
xfs_efi_log_item_t *efip;
int gen;
xfs_mount_t *mp;
SPLDECL(s);
mp = log->l_mp;
AIL_LOCK(mp,s);
lip = xfs_trans_first_ail(mp, &gen);
while (lip != NULL) {
/*
* We're done when we see something other than an EFI.
*/
if (lip->li_type != XFS_LI_EFI) {
xlog_recover_check_ail(mp, lip, gen);
break;
}
/*
* Skip EFIs that we've already processed.
*/
efip = (xfs_efi_log_item_t *)lip;
if (efip->efi_flags & XFS_EFI_RECOVERED) {
lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
continue;
}
AIL_UNLOCK(mp, s);
xlog_recover_process_efi(mp, efip);
AIL_LOCK(mp,s);
lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
}
AIL_UNLOCK(mp, s);
}
/*
* This routine performs a transaction to null out a bad inode pointer
* in an agi unlinked inode hash bucket.
*/
STATIC void
xlog_recover_clear_agi_bucket(
xfs_mount_t *mp,
xfs_agnumber_t agno,
int bucket)
{
xfs_trans_t *tp;
xfs_agi_t *agi;
xfs_buf_t *agibp;
int offset;
int error;
tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0, &agibp);
if (error) {
xfs_trans_cancel(tp, XFS_TRANS_ABORT);
return;
}
agi = XFS_BUF_TO_AGI(agibp);
if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
xfs_trans_cancel(tp, XFS_TRANS_ABORT);
return;
}
agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
offset = offsetof(xfs_agi_t, agi_unlinked) +
(sizeof(xfs_agino_t) * bucket);
xfs_trans_log_buf(tp, agibp, offset,
(offset + sizeof(xfs_agino_t) - 1));
(void) xfs_trans_commit(tp, 0, NULL);
}
/*
* xlog_iunlink_recover
*
* This is called during recovery to process any inodes which
* we unlinked but not freed when the system crashed. These
* inodes will be on the lists in the AGI blocks. What we do
* here is scan all the AGIs and fully truncate and free any
* inodes found on the lists. Each inode is removed from the
* lists when it has been fully truncated and is freed. The
* freeing of the inode and its removal from the list must be
* atomic.
*/
void
xlog_recover_process_iunlinks(
xlog_t *log)
{
xfs_mount_t *mp;
xfs_agnumber_t agno;
xfs_agi_t *agi;
xfs_buf_t *agibp;
xfs_buf_t *ibp;
xfs_dinode_t *dip;
xfs_inode_t *ip;
xfs_agino_t agino;
xfs_ino_t ino;
int bucket;
int error;
uint mp_dmevmask;
mp = log->l_mp;
/*
* Prevent any DMAPI event from being sent while in this function.
*/
mp_dmevmask = mp->m_dmevmask;
mp->m_dmevmask = 0;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
/*
* Find the agi for this ag.
*/
agibp = xfs_buf_read(mp->m_ddev_targp,
XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0);
if (XFS_BUF_ISERROR(agibp)) {
xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
log->l_mp, agibp,
XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
}
agi = XFS_BUF_TO_AGI(agibp);
ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
agino = be32_to_cpu(agi->agi_unlinked[bucket]);
while (agino != NULLAGINO) {
/*
* Release the agi buffer so that it can
* be acquired in the normal course of the
* transaction to truncate and free the inode.
*/
xfs_buf_relse(agibp);
ino = XFS_AGINO_TO_INO(mp, agno, agino);
error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
ASSERT(error || (ip != NULL));
if (!error) {
/*
* Get the on disk inode to find the
* next inode in the bucket.
*/
error = xfs_itobp(mp, NULL, ip, &dip,
&ibp, 0, 0);
ASSERT(error || (dip != NULL));
}
if (!error) {
ASSERT(ip->i_d.di_nlink == 0);
/* setup for the next pass */
agino = INT_GET(dip->di_next_unlinked,
ARCH_CONVERT);
xfs_buf_relse(ibp);
/*
* Prevent any DMAPI event from
* being sent when the
* reference on the inode is
* dropped.
*/
ip->i_d.di_dmevmask = 0;
/*
* If this is a new inode, handle
* it specially. Otherwise,
* just drop our reference to the
* inode. If there are no
* other references, this will
* send the inode to
* xfs_inactive() which will
* truncate the file and free
* the inode.
*/
if (ip->i_d.di_mode == 0)
xfs_iput_new(ip, 0);
else
VN_RELE(XFS_ITOV(ip));
} else {
/*
* We can't read in the inode
* this bucket points to, or
* this inode is messed up. Just
* ditch this bucket of inodes. We
* will lose some inodes and space,
* but at least we won't hang. Call
* xlog_recover_clear_agi_bucket()
* to perform a transaction to clear
* the inode pointer in the bucket.
*/
xlog_recover_clear_agi_bucket(mp, agno,
bucket);
agino = NULLAGINO;
}
/*
* Reacquire the agibuffer and continue around
* the loop.
*/
agibp = xfs_buf_read(mp->m_ddev_targp,
XFS_AG_DADDR(mp, agno,
XFS_AGI_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0);
if (XFS_BUF_ISERROR(agibp)) {
xfs_ioerror_alert(
"xlog_recover_process_iunlinks(#2)",
log->l_mp, agibp,
XFS_AG_DADDR(mp, agno,
XFS_AGI_DADDR(mp)));
}
agi = XFS_BUF_TO_AGI(agibp);
ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
agi->agi_magicnum));
}
}
/*
* Release the buffer for the current agi so we can
* go on to the next one.
*/
xfs_buf_relse(agibp);
}
mp->m_dmevmask = mp_dmevmask;
}
#ifdef DEBUG
STATIC void
xlog_pack_data_checksum(
xlog_t *log,
xlog_in_core_t *iclog,
int size)
{
int i;
uint *up;
uint chksum = 0;
up = (uint *)iclog->ic_datap;
/* divide length by 4 to get # words */
for (i = 0; i < (size >> 2); i++) {
chksum ^= INT_GET(*up, ARCH_CONVERT);
up++;
}
INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
}
#else
#define xlog_pack_data_checksum(log, iclog, size)
#endif
/*
* Stamp cycle number in every block
*/
void
xlog_pack_data(
xlog_t *log,
xlog_in_core_t *iclog,
int roundoff)
{
int i, j, k;
int size = iclog->ic_offset + roundoff;
uint cycle_lsn;
xfs_caddr_t dp;
xlog_in_core_2_t *xhdr;
xlog_pack_data_checksum(log, iclog, size);
cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
dp = iclog->ic_datap;
for (i = 0; i < BTOBB(size) &&
i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
*(uint *)dp = cycle_lsn;
dp += BBSIZE;
}
if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
for ( ; i < BTOBB(size); i++) {
j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
*(uint *)dp = cycle_lsn;
dp += BBSIZE;
}
for (i = 1; i < log->l_iclog_heads; i++) {
xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
}
}
}
#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
STATIC void
xlog_unpack_data_checksum(
xlog_rec_header_t *rhead,
xfs_caddr_t dp,
xlog_t *log)
{
uint *up = (uint *)dp;
uint chksum = 0;
int i;
/* divide length by 4 to get # words */
for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
chksum ^= INT_GET(*up, ARCH_CONVERT);
up++;
}
if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
if (rhead->h_chksum ||
((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
cmn_err(CE_DEBUG,
"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
cmn_err(CE_DEBUG,
"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
cmn_err(CE_DEBUG,
"XFS: LogR this is a LogV2 filesystem\n");
}
log->l_flags |= XLOG_CHKSUM_MISMATCH;
}
}
}
#else
#define xlog_unpack_data_checksum(rhead, dp, log)
#endif
STATIC void
xlog_unpack_data(
xlog_rec_header_t *rhead,
xfs_caddr_t dp,
xlog_t *log)
{
int i, j, k;
xlog_in_core_2_t *xhdr;
for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
*(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
dp += BBSIZE;
}
if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
xhdr = (xlog_in_core_2_t *)rhead;
for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
*(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
dp += BBSIZE;
}
}
xlog_unpack_data_checksum(rhead, dp, log);
}
STATIC int
xlog_valid_rec_header(
xlog_t *log,
xlog_rec_header_t *rhead,
xfs_daddr_t blkno)
{
int hlen;
if (unlikely(
(INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
XLOG_HEADER_MAGIC_NUM))) {
XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
XFS_ERRLEVEL_LOW, log->l_mp);
return XFS_ERROR(EFSCORRUPTED);
}
if (unlikely(
(!rhead->h_version ||
(INT_GET(rhead->h_version, ARCH_CONVERT) &
(~XLOG_VERSION_OKBITS)) != 0))) {
xlog_warn("XFS: %s: unrecognised log version (%d).",
__FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
return XFS_ERROR(EIO);
}
/* LR body must have data or it wouldn't have been written */
hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
XFS_ERRLEVEL_LOW, log->l_mp);
return XFS_ERROR(EFSCORRUPTED);
}
if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
XFS_ERRLEVEL_LOW, log->l_mp);
return XFS_ERROR(EFSCORRUPTED);
}
return 0;
}
/*
* Read the log from tail to head and process the log records found.
* Handle the two cases where the tail and head are in the same cycle
* and where the active portion of the log wraps around the end of
* the physical log separately. The pass parameter is passed through
* to the routines called to process the data and is not looked at
* here.
*/
STATIC int
xlog_do_recovery_pass(
xlog_t *log,
xfs_daddr_t head_blk,
xfs_daddr_t tail_blk,
int pass)
{
xlog_rec_header_t *rhead;
xfs_daddr_t blk_no;
xfs_caddr_t bufaddr, offset;
xfs_buf_t *hbp, *dbp;
int error = 0, h_size;
int bblks, split_bblks;
int hblks, split_hblks, wrapped_hblks;
xlog_recover_t *rhash[XLOG_RHASH_SIZE];
ASSERT(head_blk != tail_blk);
/*
* Read the header of the tail block and get the iclog buffer size from
* h_size. Use this to tell how many sectors make up the log header.
*/
if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
/*
* When using variable length iclogs, read first sector of
* iclog header and extract the header size from it. Get a
* new hbp that is the correct size.
*/
hbp = xlog_get_bp(log, 1);
if (!hbp)
return ENOMEM;
if ((error = xlog_bread(log, tail_blk, 1, hbp)))
goto bread_err1;
offset = xlog_align(log, tail_blk, 1, hbp);
rhead = (xlog_rec_header_t *)offset;
error = xlog_valid_rec_header(log, rhead, tail_blk);
if (error)
goto bread_err1;
h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
if ((INT_GET(rhead->h_version, ARCH_CONVERT)
& XLOG_VERSION_2) &&
(h_size > XLOG_HEADER_CYCLE_SIZE)) {
hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
if (h_size % XLOG_HEADER_CYCLE_SIZE)
hblks++;
xlog_put_bp(hbp);
hbp = xlog_get_bp(log, hblks);
} else {
hblks = 1;
}
} else {
ASSERT(log->l_sectbb_log == 0);
hblks = 1;
hbp = xlog_get_bp(log, 1);
h_size = XLOG_BIG_RECORD_BSIZE;
}
if (!hbp)
return ENOMEM;
dbp = xlog_get_bp(log, BTOBB(h_size));
if (!dbp) {
xlog_put_bp(hbp);
return ENOMEM;
}
memset(rhash, 0, sizeof(rhash));
if (tail_blk <= head_blk) {
for (blk_no = tail_blk; blk_no < head_blk; ) {
if ((error = xlog_bread(log, blk_no, hblks, hbp)))
goto bread_err2;
offset = xlog_align(log, blk_no, hblks, hbp);
rhead = (xlog_rec_header_t *)offset;
error = xlog_valid_rec_header(log, rhead, blk_no);
if (error)
goto bread_err2;
/* blocks in data section */
bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
error = xlog_bread(log, blk_no + hblks, bblks, dbp);
if (error)
goto bread_err2;
offset = xlog_align(log, blk_no + hblks, bblks, dbp);
xlog_unpack_data(rhead, offset, log);
if ((error = xlog_recover_process_data(log,
rhash, rhead, offset, pass)))
goto bread_err2;
blk_no += bblks + hblks;
}
} else {
/*
* Perform recovery around the end of the physical log.
* When the head is not on the same cycle number as the tail,
* we can't do a sequential recovery as above.
*/
blk_no = tail_blk;
while (blk_no < log->l_logBBsize) {
/*
* Check for header wrapping around physical end-of-log
*/
offset = NULL;
split_hblks = 0;
wrapped_hblks = 0;
if (blk_no + hblks <= log->l_logBBsize) {
/* Read header in one read */
error = xlog_bread(log, blk_no, hblks, hbp);
if (error)
goto bread_err2;
offset = xlog_align(log, blk_no, hblks, hbp);
} else {
/* This LR is split across physical log end */
if (blk_no != log->l_logBBsize) {
/* some data before physical log end */
ASSERT(blk_no <= INT_MAX);
split_hblks = log->l_logBBsize - (int)blk_no;
ASSERT(split_hblks > 0);
if ((error = xlog_bread(log, blk_no,
split_hblks, hbp)))
goto bread_err2;
offset = xlog_align(log, blk_no,
split_hblks, hbp);
}
/*
* Note: this black magic still works with
* large sector sizes (non-512) only because:
* - we increased the buffer size originally
* by 1 sector giving us enough extra space
* for the second read;
* - the log start is guaranteed to be sector
* aligned;
* - we read the log end (LR header start)
* _first_, then the log start (LR header end)
* - order is important.
*/
bufaddr = XFS_BUF_PTR(hbp);
XFS_BUF_SET_PTR(hbp,
bufaddr + BBTOB(split_hblks),
BBTOB(hblks - split_hblks));
wrapped_hblks = hblks - split_hblks;
error = xlog_bread(log, 0, wrapped_hblks, hbp);
if (error)
goto bread_err2;
XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
if (!offset)
offset = xlog_align(log, 0,
wrapped_hblks, hbp);
}
rhead = (xlog_rec_header_t *)offset;
error = xlog_valid_rec_header(log, rhead,
split_hblks ? blk_no : 0);
if (error)
goto bread_err2;
bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
blk_no += hblks;
/* Read in data for log record */
if (blk_no + bblks <= log->l_logBBsize) {
error = xlog_bread(log, blk_no, bblks, dbp);
if (error)
goto bread_err2;
offset = xlog_align(log, blk_no, bblks, dbp);
} else {
/* This log record is split across the
* physical end of log */
offset = NULL;
split_bblks = 0;
if (blk_no != log->l_logBBsize) {
/* some data is before the physical
* end of log */
ASSERT(!wrapped_hblks);
ASSERT(blk_no <= INT_MAX);
split_bblks =
log->l_logBBsize - (int)blk_no;
ASSERT(split_bblks > 0);
if ((error = xlog_bread(log, blk_no,
split_bblks, dbp)))
goto bread_err2;
offset = xlog_align(log, blk_no,
split_bblks, dbp);
}
/*
* Note: this black magic still works with
* large sector sizes (non-512) only because:
* - we increased the buffer size originally
* by 1 sector giving us enough extra space
* for the second read;
* - the log start is guaranteed to be sector
* aligned;
* - we read the log end (LR header start)
* _first_, then the log start (LR header end)
* - order is important.
*/
bufaddr = XFS_BUF_PTR(dbp);
XFS_BUF_SET_PTR(dbp,
bufaddr + BBTOB(split_bblks),
BBTOB(bblks - split_bblks));
if ((error = xlog_bread(log, wrapped_hblks,
bblks - split_bblks, dbp)))
goto bread_err2;
XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
if (!offset)
offset = xlog_align(log, wrapped_hblks,
bblks - split_bblks, dbp);
}
xlog_unpack_data(rhead, offset, log);
if ((error = xlog_recover_process_data(log, rhash,
rhead, offset, pass)))
goto bread_err2;
blk_no += bblks;
}
ASSERT(blk_no >= log->l_logBBsize);
blk_no -= log->l_logBBsize;
/* read first part of physical log */
while (blk_no < head_blk) {
if ((error = xlog_bread(log, blk_no, hblks, hbp)))
goto bread_err2;
offset = xlog_align(log, blk_no, hblks, hbp);
rhead = (xlog_rec_header_t *)offset;
error = xlog_valid_rec_header(log, rhead, blk_no);
if (error)
goto bread_err2;
bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
goto bread_err2;
offset = xlog_align(log, blk_no+hblks, bblks, dbp);
xlog_unpack_data(rhead, offset, log);
if ((error = xlog_recover_process_data(log, rhash,
rhead, offset, pass)))
goto bread_err2;
blk_no += bblks + hblks;
}
}
bread_err2:
xlog_put_bp(dbp);
bread_err1:
xlog_put_bp(hbp);
return error;
}
/*
* Do the recovery of the log. We actually do this in two phases.
* The two passes are necessary in order to implement the function
* of cancelling a record written into the log. The first pass
* determines those things which have been cancelled, and the
* second pass replays log items normally except for those which
* have been cancelled. The handling of the replay and cancellations
* takes place in the log item type specific routines.
*
* The table of items which have cancel records in the log is allocated
* and freed at this level, since only here do we know when all of
* the log recovery has been completed.
*/
STATIC int
xlog_do_log_recovery(
xlog_t *log,
xfs_daddr_t head_blk,
xfs_daddr_t tail_blk)
{
int error;
ASSERT(head_blk != tail_blk);
/*
* First do a pass to find all of the cancelled buf log items.
* Store them in the buf_cancel_table for use in the second pass.
*/
log->l_buf_cancel_table =
(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
sizeof(xfs_buf_cancel_t*),
KM_SLEEP);
error = xlog_do_recovery_pass(log, head_blk, tail_blk,
XLOG_RECOVER_PASS1);
if (error != 0) {
kmem_free(log->l_buf_cancel_table,
XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
log->l_buf_cancel_table = NULL;
return error;
}
/*
* Then do a second pass to actually recover the items in the log.
* When it is complete free the table of buf cancel items.
*/
error = xlog_do_recovery_pass(log, head_blk, tail_blk,
XLOG_RECOVER_PASS2);
#ifdef DEBUG
if (!error) {
int i;
for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
ASSERT(log->l_buf_cancel_table[i] == NULL);
}
#endif /* DEBUG */
kmem_free(log->l_buf_cancel_table,
XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
log->l_buf_cancel_table = NULL;
return error;
}
/*
* Do the actual recovery
*/
STATIC int
xlog_do_recover(
xlog_t *log,
xfs_daddr_t head_blk,
xfs_daddr_t tail_blk)
{
int error;
xfs_buf_t *bp;
xfs_sb_t *sbp;
/*
* First replay the images in the log.
*/
error = xlog_do_log_recovery(log, head_blk, tail_blk);
if (error) {
return error;
}
XFS_bflush(log->l_mp->m_ddev_targp);
/*
* If IO errors happened during recovery, bail out.
*/
if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
return (EIO);
}
/*
* We now update the tail_lsn since much of the recovery has completed
* and there may be space available to use. If there were no extent
* or iunlinks, we can free up the entire log and set the tail_lsn to
* be the last_sync_lsn. This was set in xlog_find_tail to be the
* lsn of the last known good LR on disk. If there are extent frees
* or iunlinks they will have some entries in the AIL; so we look at
* the AIL to determine how to set the tail_lsn.
*/
xlog_assign_tail_lsn(log->l_mp);
/*
* Now that we've finished replaying all buffer and inode
* updates, re-read in the superblock.
*/
bp = xfs_getsb(log->l_mp, 0);
XFS_BUF_UNDONE(bp);
XFS_BUF_READ(bp);
xfsbdstrat(log->l_mp, bp);
if ((error = xfs_iowait(bp))) {
xfs_ioerror_alert("xlog_do_recover",
log->l_mp, bp, XFS_BUF_ADDR(bp));
ASSERT(0);
xfs_buf_relse(bp);
return error;
}
/* Convert superblock from on-disk format */
sbp = &log->l_mp->m_sb;
xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
ASSERT(XFS_SB_GOOD_VERSION(sbp));
xfs_buf_relse(bp);
xlog_recover_check_summary(log);
/* Normal transactions can now occur */
log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
return 0;
}
/*
* Perform recovery and re-initialize some log variables in xlog_find_tail.
*
* Return error or zero.
*/
int
xlog_recover(
xlog_t *log)
{
xfs_daddr_t head_blk, tail_blk;
int error;
/* find the tail of the log */
if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
return error;
if (tail_blk != head_blk) {
/* There used to be a comment here:
*
* disallow recovery on read-only mounts. note -- mount
* checks for ENOSPC and turns it into an intelligent
* error message.
* ...but this is no longer true. Now, unless you specify
* NORECOVERY (in which case this function would never be
* called), we just go ahead and recover. We do this all
* under the vfs layer, so we can get away with it unless
* the device itself is read-only, in which case we fail.
*/
if ((error = xfs_dev_is_read_only(log->l_mp,
"recovery required"))) {
return error;
}
cmn_err(CE_NOTE,
"Starting XFS recovery on filesystem: %s (logdev: %s)",
log->l_mp->m_fsname, log->l_mp->m_logname ?
log->l_mp->m_logname : "internal");
error = xlog_do_recover(log, head_blk, tail_blk);
log->l_flags |= XLOG_RECOVERY_NEEDED;
}
return error;
}
/*
* In the first part of recovery we replay inodes and buffers and build
* up the list of extent free items which need to be processed. Here
* we process the extent free items and clean up the on disk unlinked
* inode lists. This is separated from the first part of recovery so
* that the root and real-time bitmap inodes can be read in from disk in
* between the two stages. This is necessary so that we can free space
* in the real-time portion of the file system.
*/
int
xlog_recover_finish(
xlog_t *log,
int mfsi_flags)
{
/*
* Now we're ready to do the transactions needed for the
* rest of recovery. Start with completing all the extent
* free intent records and then process the unlinked inode
* lists. At this point, we essentially run in normal mode
* except that we're still performing recovery actions
* rather than accepting new requests.
*/
if (log->l_flags & XLOG_RECOVERY_NEEDED) {
xlog_recover_process_efis(log);
/*
* Sync the log to get all the EFIs out of the AIL.
* This isn't absolutely necessary, but it helps in
* case the unlink transactions would have problems
* pushing the EFIs out of the way.
*/
xfs_log_force(log->l_mp, (xfs_lsn_t)0,
(XFS_LOG_FORCE | XFS_LOG_SYNC));
if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
xlog_recover_process_iunlinks(log);
}
xlog_recover_check_summary(log);
cmn_err(CE_NOTE,
"Ending XFS recovery on filesystem: %s (logdev: %s)",
log->l_mp->m_fsname, log->l_mp->m_logname ?
log->l_mp->m_logname : "internal");
log->l_flags &= ~XLOG_RECOVERY_NEEDED;
} else {
cmn_err(CE_DEBUG,
"!Ending clean XFS mount for filesystem: %s\n",
log->l_mp->m_fsname);
}
return 0;
}
#if defined(DEBUG)
/*
* Read all of the agf and agi counters and check that they
* are consistent with the superblock counters.
*/
void
xlog_recover_check_summary(
xlog_t *log)
{
xfs_mount_t *mp;
xfs_agf_t *agfp;
xfs_agi_t *agip;
xfs_buf_t *agfbp;
xfs_buf_t *agibp;
xfs_daddr_t agfdaddr;
xfs_daddr_t agidaddr;
xfs_buf_t *sbbp;
#ifdef XFS_LOUD_RECOVERY
xfs_sb_t *sbp;
#endif
xfs_agnumber_t agno;
__uint64_t freeblks;
__uint64_t itotal;
__uint64_t ifree;
mp = log->l_mp;
freeblks = 0LL;
itotal = 0LL;
ifree = 0LL;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
XFS_FSS_TO_BB(mp, 1), 0);
if (XFS_BUF_ISERROR(agfbp)) {
xfs_ioerror_alert("xlog_recover_check_summary(agf)",
mp, agfbp, agfdaddr);
}
agfp = XFS_BUF_TO_AGF(agfbp);
ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
freeblks += be32_to_cpu(agfp->agf_freeblks) +
be32_to_cpu(agfp->agf_flcount);
xfs_buf_relse(agfbp);
agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
XFS_FSS_TO_BB(mp, 1), 0);
if (XFS_BUF_ISERROR(agibp)) {
xfs_ioerror_alert("xlog_recover_check_summary(agi)",
mp, agibp, agidaddr);
}
agip = XFS_BUF_TO_AGI(agibp);
ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
itotal += be32_to_cpu(agip->agi_count);
ifree += be32_to_cpu(agip->agi_freecount);
xfs_buf_relse(agibp);
}
sbbp = xfs_getsb(mp, 0);
#ifdef XFS_LOUD_RECOVERY
sbp = &mp->m_sb;
xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
cmn_err(CE_NOTE,
"xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
sbp->sb_icount, itotal);
cmn_err(CE_NOTE,
"xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
sbp->sb_ifree, ifree);
cmn_err(CE_NOTE,
"xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
sbp->sb_fdblocks, freeblks);
#if 0
/*
* This is turned off until I account for the allocation
* btree blocks which live in free space.
*/
ASSERT(sbp->sb_icount == itotal);
ASSERT(sbp->sb_ifree == ifree);
ASSERT(sbp->sb_fdblocks == freeblks);
#endif
#endif
xfs_buf_relse(sbbp);
}
#endif /* DEBUG */