Aneesh Kumar K.V f384796c40 powerpc/mm: Add support for handling > 512TB address in SLB miss
For addresses above 512TB we allocate additional mmu contexts. To make
it all easy, addresses above 512TB are handled with IR/DR=1 and with
stack frame setup.

The mmu_context_t is also updated to track the new extended_ids. To
support upto 4PB we need a total 8 contexts.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[mpe: Minor formatting tweaks and comment wording, switch BUG to WARN
      in get_ea_context().]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-03-31 00:10:38 +11:00

451 lines
13 KiB
C

/*
* PowerPC64 SLB support.
*
* Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
* Based on earlier code written by:
* Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
* Copyright (c) 2001 Dave Engebretsen
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/paca.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/smp.h>
#include <linux/compiler.h>
#include <linux/context_tracking.h>
#include <linux/mm_types.h>
#include <asm/udbg.h>
#include <asm/code-patching.h>
enum slb_index {
LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
VMALLOC_INDEX = 1, /* Kernel virtual map (0xd000000000000000) */
KSTACK_INDEX = 2, /* Kernel stack map */
};
extern void slb_allocate(unsigned long ea);
#define slb_esid_mask(ssize) \
(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
enum slb_index index)
{
return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
}
static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
unsigned long flags)
{
return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
}
static inline void slb_shadow_update(unsigned long ea, int ssize,
unsigned long flags,
enum slb_index index)
{
struct slb_shadow *p = get_slb_shadow();
/*
* Clear the ESID first so the entry is not valid while we are
* updating it. No write barriers are needed here, provided
* we only update the current CPU's SLB shadow buffer.
*/
p->save_area[index].esid = 0;
p->save_area[index].vsid = cpu_to_be64(mk_vsid_data(ea, ssize, flags));
p->save_area[index].esid = cpu_to_be64(mk_esid_data(ea, ssize, index));
}
static inline void slb_shadow_clear(enum slb_index index)
{
get_slb_shadow()->save_area[index].esid = 0;
}
static inline void create_shadowed_slbe(unsigned long ea, int ssize,
unsigned long flags,
enum slb_index index)
{
/*
* Updating the shadow buffer before writing the SLB ensures
* we don't get a stale entry here if we get preempted by PHYP
* between these two statements.
*/
slb_shadow_update(ea, ssize, flags, index);
asm volatile("slbmte %0,%1" :
: "r" (mk_vsid_data(ea, ssize, flags)),
"r" (mk_esid_data(ea, ssize, index))
: "memory" );
}
static void __slb_flush_and_rebolt(void)
{
/* If you change this make sure you change SLB_NUM_BOLTED
* and PR KVM appropriately too. */
unsigned long linear_llp, vmalloc_llp, lflags, vflags;
unsigned long ksp_esid_data, ksp_vsid_data;
linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
lflags = SLB_VSID_KERNEL | linear_llp;
vflags = SLB_VSID_KERNEL | vmalloc_llp;
ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
ksp_esid_data &= ~SLB_ESID_V;
ksp_vsid_data = 0;
slb_shadow_clear(KSTACK_INDEX);
} else {
/* Update stack entry; others don't change */
slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
ksp_vsid_data =
be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
}
/* We need to do this all in asm, so we're sure we don't touch
* the stack between the slbia and rebolting it. */
asm volatile("isync\n"
"slbia\n"
/* Slot 1 - first VMALLOC segment */
"slbmte %0,%1\n"
/* Slot 2 - kernel stack */
"slbmte %2,%3\n"
"isync"
:: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
"r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, VMALLOC_INDEX)),
"r"(ksp_vsid_data),
"r"(ksp_esid_data)
: "memory");
}
void slb_flush_and_rebolt(void)
{
WARN_ON(!irqs_disabled());
/*
* We can't take a PMU exception in the following code, so hard
* disable interrupts.
*/
hard_irq_disable();
__slb_flush_and_rebolt();
get_paca()->slb_cache_ptr = 0;
}
void slb_vmalloc_update(void)
{
unsigned long vflags;
vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
slb_flush_and_rebolt();
}
/* Helper function to compare esids. There are four cases to handle.
* 1. The system is not 1T segment size capable. Use the GET_ESID compare.
* 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
* 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
* 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
*/
static inline int esids_match(unsigned long addr1, unsigned long addr2)
{
int esid_1t_count;
/* System is not 1T segment size capable. */
if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
return (GET_ESID(addr1) == GET_ESID(addr2));
esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
((addr2 >> SID_SHIFT_1T) != 0));
/* both addresses are < 1T */
if (esid_1t_count == 0)
return (GET_ESID(addr1) == GET_ESID(addr2));
/* One address < 1T, the other > 1T. Not a match */
if (esid_1t_count == 1)
return 0;
/* Both addresses are > 1T. */
return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
}
/* Flush all user entries from the segment table of the current processor. */
void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
{
unsigned long offset;
unsigned long slbie_data = 0;
unsigned long pc = KSTK_EIP(tsk);
unsigned long stack = KSTK_ESP(tsk);
unsigned long exec_base;
/*
* We need interrupts hard-disabled here, not just soft-disabled,
* so that a PMU interrupt can't occur, which might try to access
* user memory (to get a stack trace) and possible cause an SLB miss
* which would update the slb_cache/slb_cache_ptr fields in the PACA.
*/
hard_irq_disable();
offset = get_paca()->slb_cache_ptr;
if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
offset <= SLB_CACHE_ENTRIES) {
int i;
asm volatile("isync" : : : "memory");
for (i = 0; i < offset; i++) {
slbie_data = (unsigned long)get_paca()->slb_cache[i]
<< SID_SHIFT; /* EA */
slbie_data |= user_segment_size(slbie_data)
<< SLBIE_SSIZE_SHIFT;
slbie_data |= SLBIE_C; /* C set for user addresses */
asm volatile("slbie %0" : : "r" (slbie_data));
}
asm volatile("isync" : : : "memory");
} else {
__slb_flush_and_rebolt();
}
/* Workaround POWER5 < DD2.1 issue */
if (offset == 1 || offset > SLB_CACHE_ENTRIES)
asm volatile("slbie %0" : : "r" (slbie_data));
get_paca()->slb_cache_ptr = 0;
copy_mm_to_paca(mm);
/*
* preload some userspace segments into the SLB.
* Almost all 32 and 64bit PowerPC executables are linked at
* 0x10000000 so it makes sense to preload this segment.
*/
exec_base = 0x10000000;
if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
is_kernel_addr(exec_base))
return;
slb_allocate(pc);
if (!esids_match(pc, stack))
slb_allocate(stack);
if (!esids_match(pc, exec_base) &&
!esids_match(stack, exec_base))
slb_allocate(exec_base);
}
static inline void patch_slb_encoding(unsigned int *insn_addr,
unsigned int immed)
{
/*
* This function patches either an li or a cmpldi instruction with
* a new immediate value. This relies on the fact that both li
* (which is actually addi) and cmpldi both take a 16-bit immediate
* value, and it is situated in the same location in the instruction,
* ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
* The signedness of the immediate operand differs between the two
* instructions however this code is only ever patching a small value,
* much less than 1 << 15, so we can get away with it.
* To patch the value we read the existing instruction, clear the
* immediate value, and or in our new value, then write the instruction
* back.
*/
unsigned int insn = (*insn_addr & 0xffff0000) | immed;
patch_instruction(insn_addr, insn);
}
extern u32 slb_miss_kernel_load_linear[];
extern u32 slb_miss_kernel_load_io[];
extern u32 slb_compare_rr_to_size[];
extern u32 slb_miss_kernel_load_vmemmap[];
void slb_set_size(u16 size)
{
if (mmu_slb_size == size)
return;
mmu_slb_size = size;
patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
}
void slb_initialize(void)
{
unsigned long linear_llp, vmalloc_llp, io_llp;
unsigned long lflags, vflags;
static int slb_encoding_inited;
#ifdef CONFIG_SPARSEMEM_VMEMMAP
unsigned long vmemmap_llp;
#endif
/* Prepare our SLB miss handler based on our page size */
linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
io_llp = mmu_psize_defs[mmu_io_psize].sllp;
vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
#ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
#endif
if (!slb_encoding_inited) {
slb_encoding_inited = 1;
patch_slb_encoding(slb_miss_kernel_load_linear,
SLB_VSID_KERNEL | linear_llp);
patch_slb_encoding(slb_miss_kernel_load_io,
SLB_VSID_KERNEL | io_llp);
patch_slb_encoding(slb_compare_rr_to_size,
mmu_slb_size);
pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
pr_devel("SLB: io LLP = %04lx\n", io_llp);
#ifdef CONFIG_SPARSEMEM_VMEMMAP
patch_slb_encoding(slb_miss_kernel_load_vmemmap,
SLB_VSID_KERNEL | vmemmap_llp);
pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
#endif
}
get_paca()->stab_rr = SLB_NUM_BOLTED;
lflags = SLB_VSID_KERNEL | linear_llp;
vflags = SLB_VSID_KERNEL | vmalloc_llp;
/* Invalidate the entire SLB (even entry 0) & all the ERATS */
asm volatile("isync":::"memory");
asm volatile("slbmte %0,%0"::"r" (0) : "memory");
asm volatile("isync; slbia; isync":::"memory");
create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
/* For the boot cpu, we're running on the stack in init_thread_union,
* which is in the first segment of the linear mapping, and also
* get_paca()->kstack hasn't been initialized yet.
* For secondary cpus, we need to bolt the kernel stack entry now.
*/
slb_shadow_clear(KSTACK_INDEX);
if (raw_smp_processor_id() != boot_cpuid &&
(get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
create_shadowed_slbe(get_paca()->kstack,
mmu_kernel_ssize, lflags, KSTACK_INDEX);
asm volatile("isync":::"memory");
}
static void insert_slb_entry(unsigned long vsid, unsigned long ea,
int bpsize, int ssize)
{
unsigned long flags, vsid_data, esid_data;
enum slb_index index;
int slb_cache_index;
/*
* We are irq disabled, hence should be safe to access PACA.
*/
index = get_paca()->stab_rr;
/*
* simple round-robin replacement of slb starting at SLB_NUM_BOLTED.
*/
if (index < (mmu_slb_size - 1))
index++;
else
index = SLB_NUM_BOLTED;
get_paca()->stab_rr = index;
flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
vsid_data = (vsid << slb_vsid_shift(ssize)) | flags |
((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
esid_data = mk_esid_data(ea, ssize, index);
asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)
: "memory");
/*
* Now update slb cache entries
*/
slb_cache_index = get_paca()->slb_cache_ptr;
if (slb_cache_index < SLB_CACHE_ENTRIES) {
/*
* We have space in slb cache for optimized switch_slb().
* Top 36 bits from esid_data as per ISA
*/
get_paca()->slb_cache[slb_cache_index++] = esid_data >> 28;
get_paca()->slb_cache_ptr++;
} else {
/*
* Our cache is full and the current cache content strictly
* doesn't indicate the active SLB conents. Bump the ptr
* so that switch_slb() will ignore the cache.
*/
get_paca()->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
}
}
static void handle_multi_context_slb_miss(int context_id, unsigned long ea)
{
struct mm_struct *mm = current->mm;
unsigned long vsid;
int bpsize;
/*
* We are always above 1TB, hence use high user segment size.
*/
vsid = get_vsid(context_id, ea, mmu_highuser_ssize);
bpsize = get_slice_psize(mm, ea);
insert_slb_entry(vsid, ea, bpsize, mmu_highuser_ssize);
}
void slb_miss_large_addr(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
unsigned long ea = regs->dar;
int context;
if (REGION_ID(ea) != USER_REGION_ID)
goto slb_bad_addr;
/*
* Are we beyound what the page table layout supports ?
*/
if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
goto slb_bad_addr;
/* Lower address should have been handled by asm code */
if (ea < (1UL << MAX_EA_BITS_PER_CONTEXT))
goto slb_bad_addr;
/*
* consider this as bad access if we take a SLB miss
* on an address above addr limit.
*/
if (ea >= current->mm->context.slb_addr_limit)
goto slb_bad_addr;
context = get_ea_context(&current->mm->context, ea);
if (!context)
goto slb_bad_addr;
handle_multi_context_slb_miss(context, ea);
exception_exit(prev_state);
return;
slb_bad_addr:
if (user_mode(regs))
_exception(SIGSEGV, regs, SEGV_BNDERR, ea);
else
bad_page_fault(regs, ea, SIGSEGV);
exception_exit(prev_state);
}