mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-10 07:50:04 +00:00
b20a35035f
Centralize the page migration functions in anticipation of additional tinkering. Creates a new file mm/migrate.c 1. Extract buffer_migrate_page() from fs/buffer.c 2. Extract central migration code from vmscan.c 3. Extract some components from mempolicy.c 4. Export pageout() and remove_from_swap() from vmscan.c 5. Make it possible to configure NUMA systems without page migration and non-NUMA systems with page migration. I had to so some #ifdeffing in mempolicy.c that may need a cleanup. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
656 lines
15 KiB
C
656 lines
15 KiB
C
/*
|
|
* Memory Migration functionality - linux/mm/migration.c
|
|
*
|
|
* Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
|
|
*
|
|
* Page migration was first developed in the context of the memory hotplug
|
|
* project. The main authors of the migration code are:
|
|
*
|
|
* IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
|
|
* Hirokazu Takahashi <taka@valinux.co.jp>
|
|
* Dave Hansen <haveblue@us.ibm.com>
|
|
* Christoph Lameter <clameter@sgi.com>
|
|
*/
|
|
|
|
#include <linux/migrate.h>
|
|
#include <linux/module.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/buffer_head.h> /* for try_to_release_page(),
|
|
buffer_heads_over_limit */
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/swapops.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#include "internal.h"
|
|
|
|
/* The maximum number of pages to take off the LRU for migration */
|
|
#define MIGRATE_CHUNK_SIZE 256
|
|
|
|
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
|
|
|
|
/*
|
|
* Isolate one page from the LRU lists. If successful put it onto
|
|
* the indicated list with elevated page count.
|
|
*
|
|
* Result:
|
|
* -EBUSY: page not on LRU list
|
|
* 0: page removed from LRU list and added to the specified list.
|
|
*/
|
|
int isolate_lru_page(struct page *page, struct list_head *pagelist)
|
|
{
|
|
int ret = -EBUSY;
|
|
|
|
if (PageLRU(page)) {
|
|
struct zone *zone = page_zone(page);
|
|
|
|
spin_lock_irq(&zone->lru_lock);
|
|
if (PageLRU(page)) {
|
|
ret = 0;
|
|
get_page(page);
|
|
ClearPageLRU(page);
|
|
if (PageActive(page))
|
|
del_page_from_active_list(zone, page);
|
|
else
|
|
del_page_from_inactive_list(zone, page);
|
|
list_add_tail(&page->lru, pagelist);
|
|
}
|
|
spin_unlock_irq(&zone->lru_lock);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* migrate_prep() needs to be called after we have compiled the list of pages
|
|
* to be migrated using isolate_lru_page() but before we begin a series of calls
|
|
* to migrate_pages().
|
|
*/
|
|
int migrate_prep(void)
|
|
{
|
|
/* Must have swap device for migration */
|
|
if (nr_swap_pages <= 0)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* Clear the LRU lists so pages can be isolated.
|
|
* Note that pages may be moved off the LRU after we have
|
|
* drained them. Those pages will fail to migrate like other
|
|
* pages that may be busy.
|
|
*/
|
|
lru_add_drain_all();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void move_to_lru(struct page *page)
|
|
{
|
|
list_del(&page->lru);
|
|
if (PageActive(page)) {
|
|
/*
|
|
* lru_cache_add_active checks that
|
|
* the PG_active bit is off.
|
|
*/
|
|
ClearPageActive(page);
|
|
lru_cache_add_active(page);
|
|
} else {
|
|
lru_cache_add(page);
|
|
}
|
|
put_page(page);
|
|
}
|
|
|
|
/*
|
|
* Add isolated pages on the list back to the LRU.
|
|
*
|
|
* returns the number of pages put back.
|
|
*/
|
|
int putback_lru_pages(struct list_head *l)
|
|
{
|
|
struct page *page;
|
|
struct page *page2;
|
|
int count = 0;
|
|
|
|
list_for_each_entry_safe(page, page2, l, lru) {
|
|
move_to_lru(page);
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Non migratable page
|
|
*/
|
|
int fail_migrate_page(struct page *newpage, struct page *page)
|
|
{
|
|
return -EIO;
|
|
}
|
|
EXPORT_SYMBOL(fail_migrate_page);
|
|
|
|
/*
|
|
* swapout a single page
|
|
* page is locked upon entry, unlocked on exit
|
|
*/
|
|
static int swap_page(struct page *page)
|
|
{
|
|
struct address_space *mapping = page_mapping(page);
|
|
|
|
if (page_mapped(page) && mapping)
|
|
if (try_to_unmap(page, 1) != SWAP_SUCCESS)
|
|
goto unlock_retry;
|
|
|
|
if (PageDirty(page)) {
|
|
/* Page is dirty, try to write it out here */
|
|
switch(pageout(page, mapping)) {
|
|
case PAGE_KEEP:
|
|
case PAGE_ACTIVATE:
|
|
goto unlock_retry;
|
|
|
|
case PAGE_SUCCESS:
|
|
goto retry;
|
|
|
|
case PAGE_CLEAN:
|
|
; /* try to free the page below */
|
|
}
|
|
}
|
|
|
|
if (PagePrivate(page)) {
|
|
if (!try_to_release_page(page, GFP_KERNEL) ||
|
|
(!mapping && page_count(page) == 1))
|
|
goto unlock_retry;
|
|
}
|
|
|
|
if (remove_mapping(mapping, page)) {
|
|
/* Success */
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
unlock_retry:
|
|
unlock_page(page);
|
|
|
|
retry:
|
|
return -EAGAIN;
|
|
}
|
|
EXPORT_SYMBOL(swap_page);
|
|
|
|
/*
|
|
* Remove references for a page and establish the new page with the correct
|
|
* basic settings to be able to stop accesses to the page.
|
|
*/
|
|
int migrate_page_remove_references(struct page *newpage,
|
|
struct page *page, int nr_refs)
|
|
{
|
|
struct address_space *mapping = page_mapping(page);
|
|
struct page **radix_pointer;
|
|
|
|
/*
|
|
* Avoid doing any of the following work if the page count
|
|
* indicates that the page is in use or truncate has removed
|
|
* the page.
|
|
*/
|
|
if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* Establish swap ptes for anonymous pages or destroy pte
|
|
* maps for files.
|
|
*
|
|
* In order to reestablish file backed mappings the fault handlers
|
|
* will take the radix tree_lock which may then be used to stop
|
|
* processses from accessing this page until the new page is ready.
|
|
*
|
|
* A process accessing via a swap pte (an anonymous page) will take a
|
|
* page_lock on the old page which will block the process until the
|
|
* migration attempt is complete. At that time the PageSwapCache bit
|
|
* will be examined. If the page was migrated then the PageSwapCache
|
|
* bit will be clear and the operation to retrieve the page will be
|
|
* retried which will find the new page in the radix tree. Then a new
|
|
* direct mapping may be generated based on the radix tree contents.
|
|
*
|
|
* If the page was not migrated then the PageSwapCache bit
|
|
* is still set and the operation may continue.
|
|
*/
|
|
if (try_to_unmap(page, 1) == SWAP_FAIL)
|
|
/* A vma has VM_LOCKED set -> permanent failure */
|
|
return -EPERM;
|
|
|
|
/*
|
|
* Give up if we were unable to remove all mappings.
|
|
*/
|
|
if (page_mapcount(page))
|
|
return -EAGAIN;
|
|
|
|
write_lock_irq(&mapping->tree_lock);
|
|
|
|
radix_pointer = (struct page **)radix_tree_lookup_slot(
|
|
&mapping->page_tree,
|
|
page_index(page));
|
|
|
|
if (!page_mapping(page) || page_count(page) != nr_refs ||
|
|
*radix_pointer != page) {
|
|
write_unlock_irq(&mapping->tree_lock);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Now we know that no one else is looking at the page.
|
|
*
|
|
* Certain minimal information about a page must be available
|
|
* in order for other subsystems to properly handle the page if they
|
|
* find it through the radix tree update before we are finished
|
|
* copying the page.
|
|
*/
|
|
get_page(newpage);
|
|
newpage->index = page->index;
|
|
newpage->mapping = page->mapping;
|
|
if (PageSwapCache(page)) {
|
|
SetPageSwapCache(newpage);
|
|
set_page_private(newpage, page_private(page));
|
|
}
|
|
|
|
*radix_pointer = newpage;
|
|
__put_page(page);
|
|
write_unlock_irq(&mapping->tree_lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(migrate_page_remove_references);
|
|
|
|
/*
|
|
* Copy the page to its new location
|
|
*/
|
|
void migrate_page_copy(struct page *newpage, struct page *page)
|
|
{
|
|
copy_highpage(newpage, page);
|
|
|
|
if (PageError(page))
|
|
SetPageError(newpage);
|
|
if (PageReferenced(page))
|
|
SetPageReferenced(newpage);
|
|
if (PageUptodate(page))
|
|
SetPageUptodate(newpage);
|
|
if (PageActive(page))
|
|
SetPageActive(newpage);
|
|
if (PageChecked(page))
|
|
SetPageChecked(newpage);
|
|
if (PageMappedToDisk(page))
|
|
SetPageMappedToDisk(newpage);
|
|
|
|
if (PageDirty(page)) {
|
|
clear_page_dirty_for_io(page);
|
|
set_page_dirty(newpage);
|
|
}
|
|
|
|
ClearPageSwapCache(page);
|
|
ClearPageActive(page);
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
page->mapping = NULL;
|
|
|
|
/*
|
|
* If any waiters have accumulated on the new page then
|
|
* wake them up.
|
|
*/
|
|
if (PageWriteback(newpage))
|
|
end_page_writeback(newpage);
|
|
}
|
|
EXPORT_SYMBOL(migrate_page_copy);
|
|
|
|
/*
|
|
* Common logic to directly migrate a single page suitable for
|
|
* pages that do not use PagePrivate.
|
|
*
|
|
* Pages are locked upon entry and exit.
|
|
*/
|
|
int migrate_page(struct page *newpage, struct page *page)
|
|
{
|
|
int rc;
|
|
|
|
BUG_ON(PageWriteback(page)); /* Writeback must be complete */
|
|
|
|
rc = migrate_page_remove_references(newpage, page, 2);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
migrate_page_copy(newpage, page);
|
|
|
|
/*
|
|
* Remove auxiliary swap entries and replace
|
|
* them with real ptes.
|
|
*
|
|
* Note that a real pte entry will allow processes that are not
|
|
* waiting on the page lock to use the new page via the page tables
|
|
* before the new page is unlocked.
|
|
*/
|
|
remove_from_swap(newpage);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(migrate_page);
|
|
|
|
/*
|
|
* migrate_pages
|
|
*
|
|
* Two lists are passed to this function. The first list
|
|
* contains the pages isolated from the LRU to be migrated.
|
|
* The second list contains new pages that the pages isolated
|
|
* can be moved to. If the second list is NULL then all
|
|
* pages are swapped out.
|
|
*
|
|
* The function returns after 10 attempts or if no pages
|
|
* are movable anymore because to has become empty
|
|
* or no retryable pages exist anymore.
|
|
*
|
|
* Return: Number of pages not migrated when "to" ran empty.
|
|
*/
|
|
int migrate_pages(struct list_head *from, struct list_head *to,
|
|
struct list_head *moved, struct list_head *failed)
|
|
{
|
|
int retry;
|
|
int nr_failed = 0;
|
|
int pass = 0;
|
|
struct page *page;
|
|
struct page *page2;
|
|
int swapwrite = current->flags & PF_SWAPWRITE;
|
|
int rc;
|
|
|
|
if (!swapwrite)
|
|
current->flags |= PF_SWAPWRITE;
|
|
|
|
redo:
|
|
retry = 0;
|
|
|
|
list_for_each_entry_safe(page, page2, from, lru) {
|
|
struct page *newpage = NULL;
|
|
struct address_space *mapping;
|
|
|
|
cond_resched();
|
|
|
|
rc = 0;
|
|
if (page_count(page) == 1)
|
|
/* page was freed from under us. So we are done. */
|
|
goto next;
|
|
|
|
if (to && list_empty(to))
|
|
break;
|
|
|
|
/*
|
|
* Skip locked pages during the first two passes to give the
|
|
* functions holding the lock time to release the page. Later we
|
|
* use lock_page() to have a higher chance of acquiring the
|
|
* lock.
|
|
*/
|
|
rc = -EAGAIN;
|
|
if (pass > 2)
|
|
lock_page(page);
|
|
else
|
|
if (TestSetPageLocked(page))
|
|
goto next;
|
|
|
|
/*
|
|
* Only wait on writeback if we have already done a pass where
|
|
* we we may have triggered writeouts for lots of pages.
|
|
*/
|
|
if (pass > 0) {
|
|
wait_on_page_writeback(page);
|
|
} else {
|
|
if (PageWriteback(page))
|
|
goto unlock_page;
|
|
}
|
|
|
|
/*
|
|
* Anonymous pages must have swap cache references otherwise
|
|
* the information contained in the page maps cannot be
|
|
* preserved.
|
|
*/
|
|
if (PageAnon(page) && !PageSwapCache(page)) {
|
|
if (!add_to_swap(page, GFP_KERNEL)) {
|
|
rc = -ENOMEM;
|
|
goto unlock_page;
|
|
}
|
|
}
|
|
|
|
if (!to) {
|
|
rc = swap_page(page);
|
|
goto next;
|
|
}
|
|
|
|
newpage = lru_to_page(to);
|
|
lock_page(newpage);
|
|
|
|
/*
|
|
* Pages are properly locked and writeback is complete.
|
|
* Try to migrate the page.
|
|
*/
|
|
mapping = page_mapping(page);
|
|
if (!mapping)
|
|
goto unlock_both;
|
|
|
|
if (mapping->a_ops->migratepage) {
|
|
/*
|
|
* Most pages have a mapping and most filesystems
|
|
* should provide a migration function. Anonymous
|
|
* pages are part of swap space which also has its
|
|
* own migration function. This is the most common
|
|
* path for page migration.
|
|
*/
|
|
rc = mapping->a_ops->migratepage(newpage, page);
|
|
goto unlock_both;
|
|
}
|
|
|
|
/*
|
|
* Default handling if a filesystem does not provide
|
|
* a migration function. We can only migrate clean
|
|
* pages so try to write out any dirty pages first.
|
|
*/
|
|
if (PageDirty(page)) {
|
|
switch (pageout(page, mapping)) {
|
|
case PAGE_KEEP:
|
|
case PAGE_ACTIVATE:
|
|
goto unlock_both;
|
|
|
|
case PAGE_SUCCESS:
|
|
unlock_page(newpage);
|
|
goto next;
|
|
|
|
case PAGE_CLEAN:
|
|
; /* try to migrate the page below */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Buffers are managed in a filesystem specific way.
|
|
* We must have no buffers or drop them.
|
|
*/
|
|
if (!page_has_buffers(page) ||
|
|
try_to_release_page(page, GFP_KERNEL)) {
|
|
rc = migrate_page(newpage, page);
|
|
goto unlock_both;
|
|
}
|
|
|
|
/*
|
|
* On early passes with mapped pages simply
|
|
* retry. There may be a lock held for some
|
|
* buffers that may go away. Later
|
|
* swap them out.
|
|
*/
|
|
if (pass > 4) {
|
|
/*
|
|
* Persistently unable to drop buffers..... As a
|
|
* measure of last resort we fall back to
|
|
* swap_page().
|
|
*/
|
|
unlock_page(newpage);
|
|
newpage = NULL;
|
|
rc = swap_page(page);
|
|
goto next;
|
|
}
|
|
|
|
unlock_both:
|
|
unlock_page(newpage);
|
|
|
|
unlock_page:
|
|
unlock_page(page);
|
|
|
|
next:
|
|
if (rc == -EAGAIN) {
|
|
retry++;
|
|
} else if (rc) {
|
|
/* Permanent failure */
|
|
list_move(&page->lru, failed);
|
|
nr_failed++;
|
|
} else {
|
|
if (newpage) {
|
|
/* Successful migration. Return page to LRU */
|
|
move_to_lru(newpage);
|
|
}
|
|
list_move(&page->lru, moved);
|
|
}
|
|
}
|
|
if (retry && pass++ < 10)
|
|
goto redo;
|
|
|
|
if (!swapwrite)
|
|
current->flags &= ~PF_SWAPWRITE;
|
|
|
|
return nr_failed + retry;
|
|
}
|
|
|
|
/*
|
|
* Migration function for pages with buffers. This function can only be used
|
|
* if the underlying filesystem guarantees that no other references to "page"
|
|
* exist.
|
|
*/
|
|
int buffer_migrate_page(struct page *newpage, struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct buffer_head *bh, *head;
|
|
int rc;
|
|
|
|
if (!mapping)
|
|
return -EAGAIN;
|
|
|
|
if (!page_has_buffers(page))
|
|
return migrate_page(newpage, page);
|
|
|
|
head = page_buffers(page);
|
|
|
|
rc = migrate_page_remove_references(newpage, page, 3);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
bh = head;
|
|
do {
|
|
get_bh(bh);
|
|
lock_buffer(bh);
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
ClearPagePrivate(page);
|
|
set_page_private(newpage, page_private(page));
|
|
set_page_private(page, 0);
|
|
put_page(page);
|
|
get_page(newpage);
|
|
|
|
bh = head;
|
|
do {
|
|
set_bh_page(bh, newpage, bh_offset(bh));
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
SetPagePrivate(newpage);
|
|
|
|
migrate_page_copy(newpage, page);
|
|
|
|
bh = head;
|
|
do {
|
|
unlock_buffer(bh);
|
|
put_bh(bh);
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(buffer_migrate_page);
|
|
|
|
/*
|
|
* Migrate the list 'pagelist' of pages to a certain destination.
|
|
*
|
|
* Specify destination with either non-NULL vma or dest_node >= 0
|
|
* Return the number of pages not migrated or error code
|
|
*/
|
|
int migrate_pages_to(struct list_head *pagelist,
|
|
struct vm_area_struct *vma, int dest)
|
|
{
|
|
LIST_HEAD(newlist);
|
|
LIST_HEAD(moved);
|
|
LIST_HEAD(failed);
|
|
int err = 0;
|
|
unsigned long offset = 0;
|
|
int nr_pages;
|
|
struct page *page;
|
|
struct list_head *p;
|
|
|
|
redo:
|
|
nr_pages = 0;
|
|
list_for_each(p, pagelist) {
|
|
if (vma) {
|
|
/*
|
|
* The address passed to alloc_page_vma is used to
|
|
* generate the proper interleave behavior. We fake
|
|
* the address here by an increasing offset in order
|
|
* to get the proper distribution of pages.
|
|
*
|
|
* No decision has been made as to which page
|
|
* a certain old page is moved to so we cannot
|
|
* specify the correct address.
|
|
*/
|
|
page = alloc_page_vma(GFP_HIGHUSER, vma,
|
|
offset + vma->vm_start);
|
|
offset += PAGE_SIZE;
|
|
}
|
|
else
|
|
page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
|
|
|
|
if (!page) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
list_add_tail(&page->lru, &newlist);
|
|
nr_pages++;
|
|
if (nr_pages > MIGRATE_CHUNK_SIZE)
|
|
break;
|
|
}
|
|
err = migrate_pages(pagelist, &newlist, &moved, &failed);
|
|
|
|
putback_lru_pages(&moved); /* Call release pages instead ?? */
|
|
|
|
if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
|
|
goto redo;
|
|
out:
|
|
/* Return leftover allocated pages */
|
|
while (!list_empty(&newlist)) {
|
|
page = list_entry(newlist.next, struct page, lru);
|
|
list_del(&page->lru);
|
|
__free_page(page);
|
|
}
|
|
list_splice(&failed, pagelist);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* Calculate number of leftover pages */
|
|
nr_pages = 0;
|
|
list_for_each(p, pagelist)
|
|
nr_pages++;
|
|
return nr_pages;
|
|
}
|