linux-next/kernel/cpuset.c
Christoph Lameter 89fa30242f [PATCH] NUMA: Add zone_to_nid function
There are many places where we need to determine the node of a zone.
Currently we use a difficult to read sequence of pointer dereferencing.
Put that into an inline function and use throughout VM.  Maybe we can find
a way to optimize the lookup in the future.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 08:48:52 -07:00

2552 lines
73 KiB
C

/*
* kernel/cpuset.c
*
* Processor and Memory placement constraints for sets of tasks.
*
* Copyright (C) 2003 BULL SA.
* Copyright (C) 2004-2006 Silicon Graphics, Inc.
*
* Portions derived from Patrick Mochel's sysfs code.
* sysfs is Copyright (c) 2001-3 Patrick Mochel
*
* 2003-10-10 Written by Simon Derr.
* 2003-10-22 Updates by Stephen Hemminger.
* 2004 May-July Rework by Paul Jackson.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
#include <linux/mempolicy.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/security.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>
#include <asm/uaccess.h>
#include <asm/atomic.h>
#include <linux/mutex.h>
#define CPUSET_SUPER_MAGIC 0x27e0eb
/*
* Tracks how many cpusets are currently defined in system.
* When there is only one cpuset (the root cpuset) we can
* short circuit some hooks.
*/
int number_of_cpusets __read_mostly;
/* See "Frequency meter" comments, below. */
struct fmeter {
int cnt; /* unprocessed events count */
int val; /* most recent output value */
time_t time; /* clock (secs) when val computed */
spinlock_t lock; /* guards read or write of above */
};
struct cpuset {
unsigned long flags; /* "unsigned long" so bitops work */
cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
/*
* Count is atomic so can incr (fork) or decr (exit) without a lock.
*/
atomic_t count; /* count tasks using this cpuset */
/*
* We link our 'sibling' struct into our parents 'children'.
* Our children link their 'sibling' into our 'children'.
*/
struct list_head sibling; /* my parents children */
struct list_head children; /* my children */
struct cpuset *parent; /* my parent */
struct dentry *dentry; /* cpuset fs entry */
/*
* Copy of global cpuset_mems_generation as of the most
* recent time this cpuset changed its mems_allowed.
*/
int mems_generation;
struct fmeter fmeter; /* memory_pressure filter */
};
/* bits in struct cpuset flags field */
typedef enum {
CS_CPU_EXCLUSIVE,
CS_MEM_EXCLUSIVE,
CS_MEMORY_MIGRATE,
CS_REMOVED,
CS_NOTIFY_ON_RELEASE,
CS_SPREAD_PAGE,
CS_SPREAD_SLAB,
} cpuset_flagbits_t;
/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
}
static inline int is_mem_exclusive(const struct cpuset *cs)
{
return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
}
static inline int is_removed(const struct cpuset *cs)
{
return test_bit(CS_REMOVED, &cs->flags);
}
static inline int notify_on_release(const struct cpuset *cs)
{
return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
}
static inline int is_memory_migrate(const struct cpuset *cs)
{
return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
}
static inline int is_spread_page(const struct cpuset *cs)
{
return test_bit(CS_SPREAD_PAGE, &cs->flags);
}
static inline int is_spread_slab(const struct cpuset *cs)
{
return test_bit(CS_SPREAD_SLAB, &cs->flags);
}
/*
* Increment this integer everytime any cpuset changes its
* mems_allowed value. Users of cpusets can track this generation
* number, and avoid having to lock and reload mems_allowed unless
* the cpuset they're using changes generation.
*
* A single, global generation is needed because attach_task() could
* reattach a task to a different cpuset, which must not have its
* generation numbers aliased with those of that tasks previous cpuset.
*
* Generations are needed for mems_allowed because one task cannot
* modify anothers memory placement. So we must enable every task,
* on every visit to __alloc_pages(), to efficiently check whether
* its current->cpuset->mems_allowed has changed, requiring an update
* of its current->mems_allowed.
*
* Since cpuset_mems_generation is guarded by manage_mutex,
* there is no need to mark it atomic.
*/
static int cpuset_mems_generation;
static struct cpuset top_cpuset = {
.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
.cpus_allowed = CPU_MASK_ALL,
.mems_allowed = NODE_MASK_ALL,
.count = ATOMIC_INIT(0),
.sibling = LIST_HEAD_INIT(top_cpuset.sibling),
.children = LIST_HEAD_INIT(top_cpuset.children),
};
static struct vfsmount *cpuset_mount;
static struct super_block *cpuset_sb;
/*
* We have two global cpuset mutexes below. They can nest.
* It is ok to first take manage_mutex, then nest callback_mutex. We also
* require taking task_lock() when dereferencing a tasks cpuset pointer.
* See "The task_lock() exception", at the end of this comment.
*
* A task must hold both mutexes to modify cpusets. If a task
* holds manage_mutex, then it blocks others wanting that mutex,
* ensuring that it is the only task able to also acquire callback_mutex
* and be able to modify cpusets. It can perform various checks on
* the cpuset structure first, knowing nothing will change. It can
* also allocate memory while just holding manage_mutex. While it is
* performing these checks, various callback routines can briefly
* acquire callback_mutex to query cpusets. Once it is ready to make
* the changes, it takes callback_mutex, blocking everyone else.
*
* Calls to the kernel memory allocator can not be made while holding
* callback_mutex, as that would risk double tripping on callback_mutex
* from one of the callbacks into the cpuset code from within
* __alloc_pages().
*
* If a task is only holding callback_mutex, then it has read-only
* access to cpusets.
*
* The task_struct fields mems_allowed and mems_generation may only
* be accessed in the context of that task, so require no locks.
*
* Any task can increment and decrement the count field without lock.
* So in general, code holding manage_mutex or callback_mutex can't rely
* on the count field not changing. However, if the count goes to
* zero, then only attach_task(), which holds both mutexes, can
* increment it again. Because a count of zero means that no tasks
* are currently attached, therefore there is no way a task attached
* to that cpuset can fork (the other way to increment the count).
* So code holding manage_mutex or callback_mutex can safely assume that
* if the count is zero, it will stay zero. Similarly, if a task
* holds manage_mutex or callback_mutex on a cpuset with zero count, it
* knows that the cpuset won't be removed, as cpuset_rmdir() needs
* both of those mutexes.
*
* The cpuset_common_file_write handler for operations that modify
* the cpuset hierarchy holds manage_mutex across the entire operation,
* single threading all such cpuset modifications across the system.
*
* The cpuset_common_file_read() handlers only hold callback_mutex across
* small pieces of code, such as when reading out possibly multi-word
* cpumasks and nodemasks.
*
* The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
* (usually) take either mutex. These are the two most performance
* critical pieces of code here. The exception occurs on cpuset_exit(),
* when a task in a notify_on_release cpuset exits. Then manage_mutex
* is taken, and if the cpuset count is zero, a usermode call made
* to /sbin/cpuset_release_agent with the name of the cpuset (path
* relative to the root of cpuset file system) as the argument.
*
* A cpuset can only be deleted if both its 'count' of using tasks
* is zero, and its list of 'children' cpusets is empty. Since all
* tasks in the system use _some_ cpuset, and since there is always at
* least one task in the system (init, pid == 1), therefore, top_cpuset
* always has either children cpusets and/or using tasks. So we don't
* need a special hack to ensure that top_cpuset cannot be deleted.
*
* The above "Tale of Two Semaphores" would be complete, but for:
*
* The task_lock() exception
*
* The need for this exception arises from the action of attach_task(),
* which overwrites one tasks cpuset pointer with another. It does
* so using both mutexes, however there are several performance
* critical places that need to reference task->cpuset without the
* expense of grabbing a system global mutex. Therefore except as
* noted below, when dereferencing or, as in attach_task(), modifying
* a tasks cpuset pointer we use task_lock(), which acts on a spinlock
* (task->alloc_lock) already in the task_struct routinely used for
* such matters.
*
* P.S. One more locking exception. RCU is used to guard the
* update of a tasks cpuset pointer by attach_task() and the
* access of task->cpuset->mems_generation via that pointer in
* the routine cpuset_update_task_memory_state().
*/
static DEFINE_MUTEX(manage_mutex);
static DEFINE_MUTEX(callback_mutex);
/*
* A couple of forward declarations required, due to cyclic reference loop:
* cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
* -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
*/
static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
static struct backing_dev_info cpuset_backing_dev_info = {
.ra_pages = 0, /* No readahead */
.capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};
static struct inode *cpuset_new_inode(mode_t mode)
{
struct inode *inode = new_inode(cpuset_sb);
if (inode) {
inode->i_mode = mode;
inode->i_uid = current->fsuid;
inode->i_gid = current->fsgid;
inode->i_blksize = PAGE_CACHE_SIZE;
inode->i_blocks = 0;
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
}
return inode;
}
static void cpuset_diput(struct dentry *dentry, struct inode *inode)
{
/* is dentry a directory ? if so, kfree() associated cpuset */
if (S_ISDIR(inode->i_mode)) {
struct cpuset *cs = dentry->d_fsdata;
BUG_ON(!(is_removed(cs)));
kfree(cs);
}
iput(inode);
}
static struct dentry_operations cpuset_dops = {
.d_iput = cpuset_diput,
};
static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
{
struct dentry *d = lookup_one_len(name, parent, strlen(name));
if (!IS_ERR(d))
d->d_op = &cpuset_dops;
return d;
}
static void remove_dir(struct dentry *d)
{
struct dentry *parent = dget(d->d_parent);
d_delete(d);
simple_rmdir(parent->d_inode, d);
dput(parent);
}
/*
* NOTE : the dentry must have been dget()'ed
*/
static void cpuset_d_remove_dir(struct dentry *dentry)
{
struct list_head *node;
spin_lock(&dcache_lock);
node = dentry->d_subdirs.next;
while (node != &dentry->d_subdirs) {
struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
list_del_init(node);
if (d->d_inode) {
d = dget_locked(d);
spin_unlock(&dcache_lock);
d_delete(d);
simple_unlink(dentry->d_inode, d);
dput(d);
spin_lock(&dcache_lock);
}
node = dentry->d_subdirs.next;
}
list_del_init(&dentry->d_u.d_child);
spin_unlock(&dcache_lock);
remove_dir(dentry);
}
static struct super_operations cpuset_ops = {
.statfs = simple_statfs,
.drop_inode = generic_delete_inode,
};
static int cpuset_fill_super(struct super_block *sb, void *unused_data,
int unused_silent)
{
struct inode *inode;
struct dentry *root;
sb->s_blocksize = PAGE_CACHE_SIZE;
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
sb->s_magic = CPUSET_SUPER_MAGIC;
sb->s_op = &cpuset_ops;
cpuset_sb = sb;
inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
if (inode) {
inode->i_op = &simple_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
/* directories start off with i_nlink == 2 (for "." entry) */
inode->i_nlink++;
} else {
return -ENOMEM;
}
root = d_alloc_root(inode);
if (!root) {
iput(inode);
return -ENOMEM;
}
sb->s_root = root;
return 0;
}
static int cpuset_get_sb(struct file_system_type *fs_type,
int flags, const char *unused_dev_name,
void *data, struct vfsmount *mnt)
{
return get_sb_single(fs_type, flags, data, cpuset_fill_super, mnt);
}
static struct file_system_type cpuset_fs_type = {
.name = "cpuset",
.get_sb = cpuset_get_sb,
.kill_sb = kill_litter_super,
};
/* struct cftype:
*
* The files in the cpuset filesystem mostly have a very simple read/write
* handling, some common function will take care of it. Nevertheless some cases
* (read tasks) are special and therefore I define this structure for every
* kind of file.
*
*
* When reading/writing to a file:
* - the cpuset to use in file->f_dentry->d_parent->d_fsdata
* - the 'cftype' of the file is file->f_dentry->d_fsdata
*/
struct cftype {
char *name;
int private;
int (*open) (struct inode *inode, struct file *file);
ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos);
int (*write) (struct file *file, const char __user *buf, size_t nbytes,
loff_t *ppos);
int (*release) (struct inode *inode, struct file *file);
};
static inline struct cpuset *__d_cs(struct dentry *dentry)
{
return dentry->d_fsdata;
}
static inline struct cftype *__d_cft(struct dentry *dentry)
{
return dentry->d_fsdata;
}
/*
* Call with manage_mutex held. Writes path of cpuset into buf.
* Returns 0 on success, -errno on error.
*/
static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
{
char *start;
start = buf + buflen;
*--start = '\0';
for (;;) {
int len = cs->dentry->d_name.len;
if ((start -= len) < buf)
return -ENAMETOOLONG;
memcpy(start, cs->dentry->d_name.name, len);
cs = cs->parent;
if (!cs)
break;
if (!cs->parent)
continue;
if (--start < buf)
return -ENAMETOOLONG;
*start = '/';
}
memmove(buf, start, buf + buflen - start);
return 0;
}
/*
* Notify userspace when a cpuset is released, by running
* /sbin/cpuset_release_agent with the name of the cpuset (path
* relative to the root of cpuset file system) as the argument.
*
* Most likely, this user command will try to rmdir this cpuset.
*
* This races with the possibility that some other task will be
* attached to this cpuset before it is removed, or that some other
* user task will 'mkdir' a child cpuset of this cpuset. That's ok.
* The presumed 'rmdir' will fail quietly if this cpuset is no longer
* unused, and this cpuset will be reprieved from its death sentence,
* to continue to serve a useful existence. Next time it's released,
* we will get notified again, if it still has 'notify_on_release' set.
*
* The final arg to call_usermodehelper() is 0, which means don't
* wait. The separate /sbin/cpuset_release_agent task is forked by
* call_usermodehelper(), then control in this thread returns here,
* without waiting for the release agent task. We don't bother to
* wait because the caller of this routine has no use for the exit
* status of the /sbin/cpuset_release_agent task, so no sense holding
* our caller up for that.
*
* When we had only one cpuset mutex, we had to call this
* without holding it, to avoid deadlock when call_usermodehelper()
* allocated memory. With two locks, we could now call this while
* holding manage_mutex, but we still don't, so as to minimize
* the time manage_mutex is held.
*/
static void cpuset_release_agent(const char *pathbuf)
{
char *argv[3], *envp[3];
int i;
if (!pathbuf)
return;
i = 0;
argv[i++] = "/sbin/cpuset_release_agent";
argv[i++] = (char *)pathbuf;
argv[i] = NULL;
i = 0;
/* minimal command environment */
envp[i++] = "HOME=/";
envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
envp[i] = NULL;
call_usermodehelper(argv[0], argv, envp, 0);
kfree(pathbuf);
}
/*
* Either cs->count of using tasks transitioned to zero, or the
* cs->children list of child cpusets just became empty. If this
* cs is notify_on_release() and now both the user count is zero and
* the list of children is empty, prepare cpuset path in a kmalloc'd
* buffer, to be returned via ppathbuf, so that the caller can invoke
* cpuset_release_agent() with it later on, once manage_mutex is dropped.
* Call here with manage_mutex held.
*
* This check_for_release() routine is responsible for kmalloc'ing
* pathbuf. The above cpuset_release_agent() is responsible for
* kfree'ing pathbuf. The caller of these routines is responsible
* for providing a pathbuf pointer, initialized to NULL, then
* calling check_for_release() with manage_mutex held and the address
* of the pathbuf pointer, then dropping manage_mutex, then calling
* cpuset_release_agent() with pathbuf, as set by check_for_release().
*/
static void check_for_release(struct cpuset *cs, char **ppathbuf)
{
if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
list_empty(&cs->children)) {
char *buf;
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!buf)
return;
if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
kfree(buf);
else
*ppathbuf = buf;
}
}
/*
* Return in *pmask the portion of a cpusets's cpus_allowed that
* are online. If none are online, walk up the cpuset hierarchy
* until we find one that does have some online cpus. If we get
* all the way to the top and still haven't found any online cpus,
* return cpu_online_map. Or if passed a NULL cs from an exit'ing
* task, return cpu_online_map.
*
* One way or another, we guarantee to return some non-empty subset
* of cpu_online_map.
*
* Call with callback_mutex held.
*/
static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
cs = cs->parent;
if (cs)
cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
else
*pmask = cpu_online_map;
BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}
/*
* Return in *pmask the portion of a cpusets's mems_allowed that
* are online. If none are online, walk up the cpuset hierarchy
* until we find one that does have some online mems. If we get
* all the way to the top and still haven't found any online mems,
* return node_online_map.
*
* One way or another, we guarantee to return some non-empty subset
* of node_online_map.
*
* Call with callback_mutex held.
*/
static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
cs = cs->parent;
if (cs)
nodes_and(*pmask, cs->mems_allowed, node_online_map);
else
*pmask = node_online_map;
BUG_ON(!nodes_intersects(*pmask, node_online_map));
}
/**
* cpuset_update_task_memory_state - update task memory placement
*
* If the current tasks cpusets mems_allowed changed behind our
* backs, update current->mems_allowed, mems_generation and task NUMA
* mempolicy to the new value.
*
* Task mempolicy is updated by rebinding it relative to the
* current->cpuset if a task has its memory placement changed.
* Do not call this routine if in_interrupt().
*
* Call without callback_mutex or task_lock() held. May be
* called with or without manage_mutex held. Thanks in part to
* 'the_top_cpuset_hack', the tasks cpuset pointer will never
* be NULL. This routine also might acquire callback_mutex and
* current->mm->mmap_sem during call.
*
* Reading current->cpuset->mems_generation doesn't need task_lock
* to guard the current->cpuset derefence, because it is guarded
* from concurrent freeing of current->cpuset by attach_task(),
* using RCU.
*
* The rcu_dereference() is technically probably not needed,
* as I don't actually mind if I see a new cpuset pointer but
* an old value of mems_generation. However this really only
* matters on alpha systems using cpusets heavily. If I dropped
* that rcu_dereference(), it would save them a memory barrier.
* For all other arch's, rcu_dereference is a no-op anyway, and for
* alpha systems not using cpusets, another planned optimization,
* avoiding the rcu critical section for tasks in the root cpuset
* which is statically allocated, so can't vanish, will make this
* irrelevant. Better to use RCU as intended, than to engage in
* some cute trick to save a memory barrier that is impossible to
* test, for alpha systems using cpusets heavily, which might not
* even exist.
*
* This routine is needed to update the per-task mems_allowed data,
* within the tasks context, when it is trying to allocate memory
* (in various mm/mempolicy.c routines) and notices that some other
* task has been modifying its cpuset.
*/
void cpuset_update_task_memory_state(void)
{
int my_cpusets_mem_gen;
struct task_struct *tsk = current;
struct cpuset *cs;
if (tsk->cpuset == &top_cpuset) {
/* Don't need rcu for top_cpuset. It's never freed. */
my_cpusets_mem_gen = top_cpuset.mems_generation;
} else {
rcu_read_lock();
cs = rcu_dereference(tsk->cpuset);
my_cpusets_mem_gen = cs->mems_generation;
rcu_read_unlock();
}
if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
mutex_lock(&callback_mutex);
task_lock(tsk);
cs = tsk->cpuset; /* Maybe changed when task not locked */
guarantee_online_mems(cs, &tsk->mems_allowed);
tsk->cpuset_mems_generation = cs->mems_generation;
if (is_spread_page(cs))
tsk->flags |= PF_SPREAD_PAGE;
else
tsk->flags &= ~PF_SPREAD_PAGE;
if (is_spread_slab(cs))
tsk->flags |= PF_SPREAD_SLAB;
else
tsk->flags &= ~PF_SPREAD_SLAB;
task_unlock(tsk);
mutex_unlock(&callback_mutex);
mpol_rebind_task(tsk, &tsk->mems_allowed);
}
}
/*
* is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
*
* One cpuset is a subset of another if all its allowed CPUs and
* Memory Nodes are a subset of the other, and its exclusive flags
* are only set if the other's are set. Call holding manage_mutex.
*/
static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
nodes_subset(p->mems_allowed, q->mems_allowed) &&
is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
is_mem_exclusive(p) <= is_mem_exclusive(q);
}
/*
* validate_change() - Used to validate that any proposed cpuset change
* follows the structural rules for cpusets.
*
* If we replaced the flag and mask values of the current cpuset
* (cur) with those values in the trial cpuset (trial), would
* our various subset and exclusive rules still be valid? Presumes
* manage_mutex held.
*
* 'cur' is the address of an actual, in-use cpuset. Operations
* such as list traversal that depend on the actual address of the
* cpuset in the list must use cur below, not trial.
*
* 'trial' is the address of bulk structure copy of cur, with
* perhaps one or more of the fields cpus_allowed, mems_allowed,
* or flags changed to new, trial values.
*
* Return 0 if valid, -errno if not.
*/
static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
struct cpuset *c, *par;
/* Each of our child cpusets must be a subset of us */
list_for_each_entry(c, &cur->children, sibling) {
if (!is_cpuset_subset(c, trial))
return -EBUSY;
}
/* Remaining checks don't apply to root cpuset */
if ((par = cur->parent) == NULL)
return 0;
/* We must be a subset of our parent cpuset */
if (!is_cpuset_subset(trial, par))
return -EACCES;
/* If either I or some sibling (!= me) is exclusive, we can't overlap */
list_for_each_entry(c, &par->children, sibling) {
if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
c != cur &&
cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
return -EINVAL;
if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
c != cur &&
nodes_intersects(trial->mems_allowed, c->mems_allowed))
return -EINVAL;
}
return 0;
}
/*
* For a given cpuset cur, partition the system as follows
* a. All cpus in the parent cpuset's cpus_allowed that are not part of any
* exclusive child cpusets
* b. All cpus in the current cpuset's cpus_allowed that are not part of any
* exclusive child cpusets
* Build these two partitions by calling partition_sched_domains
*
* Call with manage_mutex held. May nest a call to the
* lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
* Must not be called holding callback_mutex, because we must
* not call lock_cpu_hotplug() while holding callback_mutex.
*/
static void update_cpu_domains(struct cpuset *cur)
{
struct cpuset *c, *par = cur->parent;
cpumask_t pspan, cspan;
if (par == NULL || cpus_empty(cur->cpus_allowed))
return;
/*
* Get all cpus from parent's cpus_allowed not part of exclusive
* children
*/
pspan = par->cpus_allowed;
list_for_each_entry(c, &par->children, sibling) {
if (is_cpu_exclusive(c))
cpus_andnot(pspan, pspan, c->cpus_allowed);
}
if (!is_cpu_exclusive(cur)) {
cpus_or(pspan, pspan, cur->cpus_allowed);
if (cpus_equal(pspan, cur->cpus_allowed))
return;
cspan = CPU_MASK_NONE;
} else {
if (cpus_empty(pspan))
return;
cspan = cur->cpus_allowed;
/*
* Get all cpus from current cpuset's cpus_allowed not part
* of exclusive children
*/
list_for_each_entry(c, &cur->children, sibling) {
if (is_cpu_exclusive(c))
cpus_andnot(cspan, cspan, c->cpus_allowed);
}
}
lock_cpu_hotplug();
partition_sched_domains(&pspan, &cspan);
unlock_cpu_hotplug();
}
/*
* Call with manage_mutex held. May take callback_mutex during call.
*/
static int update_cpumask(struct cpuset *cs, char *buf)
{
struct cpuset trialcs;
int retval, cpus_unchanged;
/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
if (cs == &top_cpuset)
return -EACCES;
trialcs = *cs;
retval = cpulist_parse(buf, trialcs.cpus_allowed);
if (retval < 0)
return retval;
cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
if (cpus_empty(trialcs.cpus_allowed))
return -ENOSPC;
retval = validate_change(cs, &trialcs);
if (retval < 0)
return retval;
cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
mutex_lock(&callback_mutex);
cs->cpus_allowed = trialcs.cpus_allowed;
mutex_unlock(&callback_mutex);
if (is_cpu_exclusive(cs) && !cpus_unchanged)
update_cpu_domains(cs);
return 0;
}
/*
* cpuset_migrate_mm
*
* Migrate memory region from one set of nodes to another.
*
* Temporarilly set tasks mems_allowed to target nodes of migration,
* so that the migration code can allocate pages on these nodes.
*
* Call holding manage_mutex, so our current->cpuset won't change
* during this call, as manage_mutex holds off any attach_task()
* calls. Therefore we don't need to take task_lock around the
* call to guarantee_online_mems(), as we know no one is changing
* our tasks cpuset.
*
* Hold callback_mutex around the two modifications of our tasks
* mems_allowed to synchronize with cpuset_mems_allowed().
*
* While the mm_struct we are migrating is typically from some
* other task, the task_struct mems_allowed that we are hacking
* is for our current task, which must allocate new pages for that
* migrating memory region.
*
* We call cpuset_update_task_memory_state() before hacking
* our tasks mems_allowed, so that we are assured of being in
* sync with our tasks cpuset, and in particular, callbacks to
* cpuset_update_task_memory_state() from nested page allocations
* won't see any mismatch of our cpuset and task mems_generation
* values, so won't overwrite our hacked tasks mems_allowed
* nodemask.
*/
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
const nodemask_t *to)
{
struct task_struct *tsk = current;
cpuset_update_task_memory_state();
mutex_lock(&callback_mutex);
tsk->mems_allowed = *to;
mutex_unlock(&callback_mutex);
do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
mutex_lock(&callback_mutex);
guarantee_online_mems(tsk->cpuset, &tsk->mems_allowed);
mutex_unlock(&callback_mutex);
}
/*
* Handle user request to change the 'mems' memory placement
* of a cpuset. Needs to validate the request, update the
* cpusets mems_allowed and mems_generation, and for each
* task in the cpuset, rebind any vma mempolicies and if
* the cpuset is marked 'memory_migrate', migrate the tasks
* pages to the new memory.
*
* Call with manage_mutex held. May take callback_mutex during call.
* Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
* lock each such tasks mm->mmap_sem, scan its vma's and rebind
* their mempolicies to the cpusets new mems_allowed.
*/
static int update_nodemask(struct cpuset *cs, char *buf)
{
struct cpuset trialcs;
nodemask_t oldmem;
struct task_struct *g, *p;
struct mm_struct **mmarray;
int i, n, ntasks;
int migrate;
int fudge;
int retval;
trialcs = *cs;
retval = nodelist_parse(buf, trialcs.mems_allowed);
if (retval < 0)
goto done;
nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
oldmem = cs->mems_allowed;
if (nodes_equal(oldmem, trialcs.mems_allowed)) {
retval = 0; /* Too easy - nothing to do */
goto done;
}
if (nodes_empty(trialcs.mems_allowed)) {
retval = -ENOSPC;
goto done;
}
retval = validate_change(cs, &trialcs);
if (retval < 0)
goto done;
mutex_lock(&callback_mutex);
cs->mems_allowed = trialcs.mems_allowed;
cs->mems_generation = cpuset_mems_generation++;
mutex_unlock(&callback_mutex);
set_cpuset_being_rebound(cs); /* causes mpol_copy() rebind */
fudge = 10; /* spare mmarray[] slots */
fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
retval = -ENOMEM;
/*
* Allocate mmarray[] to hold mm reference for each task
* in cpuset cs. Can't kmalloc GFP_KERNEL while holding
* tasklist_lock. We could use GFP_ATOMIC, but with a
* few more lines of code, we can retry until we get a big
* enough mmarray[] w/o using GFP_ATOMIC.
*/
while (1) {
ntasks = atomic_read(&cs->count); /* guess */
ntasks += fudge;
mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
if (!mmarray)
goto done;
write_lock_irq(&tasklist_lock); /* block fork */
if (atomic_read(&cs->count) <= ntasks)
break; /* got enough */
write_unlock_irq(&tasklist_lock); /* try again */
kfree(mmarray);
}
n = 0;
/* Load up mmarray[] with mm reference for each task in cpuset. */
do_each_thread(g, p) {
struct mm_struct *mm;
if (n >= ntasks) {
printk(KERN_WARNING
"Cpuset mempolicy rebind incomplete.\n");
continue;
}
if (p->cpuset != cs)
continue;
mm = get_task_mm(p);
if (!mm)
continue;
mmarray[n++] = mm;
} while_each_thread(g, p);
write_unlock_irq(&tasklist_lock);
/*
* Now that we've dropped the tasklist spinlock, we can
* rebind the vma mempolicies of each mm in mmarray[] to their
* new cpuset, and release that mm. The mpol_rebind_mm()
* call takes mmap_sem, which we couldn't take while holding
* tasklist_lock. Forks can happen again now - the mpol_copy()
* cpuset_being_rebound check will catch such forks, and rebind
* their vma mempolicies too. Because we still hold the global
* cpuset manage_mutex, we know that no other rebind effort will
* be contending for the global variable cpuset_being_rebound.
* It's ok if we rebind the same mm twice; mpol_rebind_mm()
* is idempotent. Also migrate pages in each mm to new nodes.
*/
migrate = is_memory_migrate(cs);
for (i = 0; i < n; i++) {
struct mm_struct *mm = mmarray[i];
mpol_rebind_mm(mm, &cs->mems_allowed);
if (migrate)
cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
mmput(mm);
}
/* We're done rebinding vma's to this cpusets new mems_allowed. */
kfree(mmarray);
set_cpuset_being_rebound(NULL);
retval = 0;
done:
return retval;
}
/*
* Call with manage_mutex held.
*/
static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
{
if (simple_strtoul(buf, NULL, 10) != 0)
cpuset_memory_pressure_enabled = 1;
else
cpuset_memory_pressure_enabled = 0;
return 0;
}
/*
* update_flag - read a 0 or a 1 in a file and update associated flag
* bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
* CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
* CS_SPREAD_PAGE, CS_SPREAD_SLAB)
* cs: the cpuset to update
* buf: the buffer where we read the 0 or 1
*
* Call with manage_mutex held.
*/
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
int turning_on;
struct cpuset trialcs;
int err, cpu_exclusive_changed;
turning_on = (simple_strtoul(buf, NULL, 10) != 0);
trialcs = *cs;
if (turning_on)
set_bit(bit, &trialcs.flags);
else
clear_bit(bit, &trialcs.flags);
err = validate_change(cs, &trialcs);
if (err < 0)
return err;
cpu_exclusive_changed =
(is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
mutex_lock(&callback_mutex);
if (turning_on)
set_bit(bit, &cs->flags);
else
clear_bit(bit, &cs->flags);
mutex_unlock(&callback_mutex);
if (cpu_exclusive_changed)
update_cpu_domains(cs);
return 0;
}
/*
* Frequency meter - How fast is some event occurring?
*
* These routines manage a digitally filtered, constant time based,
* event frequency meter. There are four routines:
* fmeter_init() - initialize a frequency meter.
* fmeter_markevent() - called each time the event happens.
* fmeter_getrate() - returns the recent rate of such events.
* fmeter_update() - internal routine used to update fmeter.
*
* A common data structure is passed to each of these routines,
* which is used to keep track of the state required to manage the
* frequency meter and its digital filter.
*
* The filter works on the number of events marked per unit time.
* The filter is single-pole low-pass recursive (IIR). The time unit
* is 1 second. Arithmetic is done using 32-bit integers scaled to
* simulate 3 decimal digits of precision (multiplied by 1000).
*
* With an FM_COEF of 933, and a time base of 1 second, the filter
* has a half-life of 10 seconds, meaning that if the events quit
* happening, then the rate returned from the fmeter_getrate()
* will be cut in half each 10 seconds, until it converges to zero.
*
* It is not worth doing a real infinitely recursive filter. If more
* than FM_MAXTICKS ticks have elapsed since the last filter event,
* just compute FM_MAXTICKS ticks worth, by which point the level
* will be stable.
*
* Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
* arithmetic overflow in the fmeter_update() routine.
*
* Given the simple 32 bit integer arithmetic used, this meter works
* best for reporting rates between one per millisecond (msec) and
* one per 32 (approx) seconds. At constant rates faster than one
* per msec it maxes out at values just under 1,000,000. At constant
* rates between one per msec, and one per second it will stabilize
* to a value N*1000, where N is the rate of events per second.
* At constant rates between one per second and one per 32 seconds,
* it will be choppy, moving up on the seconds that have an event,
* and then decaying until the next event. At rates slower than
* about one in 32 seconds, it decays all the way back to zero between
* each event.
*/
#define FM_COEF 933 /* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
#define FM_SCALE 1000 /* faux fixed point scale */
/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
fmp->cnt = 0;
fmp->val = 0;
fmp->time = 0;
spin_lock_init(&fmp->lock);
}
/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
time_t now = get_seconds();
time_t ticks = now - fmp->time;
if (ticks == 0)
return;
ticks = min(FM_MAXTICKS, ticks);
while (ticks-- > 0)
fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
fmp->time = now;
fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
fmp->cnt = 0;
}
/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
spin_lock(&fmp->lock);
fmeter_update(fmp);
fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
spin_unlock(&fmp->lock);
}
/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
int val;
spin_lock(&fmp->lock);
fmeter_update(fmp);
val = fmp->val;
spin_unlock(&fmp->lock);
return val;
}
/*
* Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
* writing the path of the old cpuset in 'ppathbuf' if it needs to be
* notified on release.
*
* Call holding manage_mutex. May take callback_mutex and task_lock of
* the task 'pid' during call.
*/
static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
{
pid_t pid;
struct task_struct *tsk;
struct cpuset *oldcs;
cpumask_t cpus;
nodemask_t from, to;
struct mm_struct *mm;
int retval;
if (sscanf(pidbuf, "%d", &pid) != 1)
return -EIO;
if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
return -ENOSPC;
if (pid) {
read_lock(&tasklist_lock);
tsk = find_task_by_pid(pid);
if (!tsk || tsk->flags & PF_EXITING) {
read_unlock(&tasklist_lock);
return -ESRCH;
}
get_task_struct(tsk);
read_unlock(&tasklist_lock);
if ((current->euid) && (current->euid != tsk->uid)
&& (current->euid != tsk->suid)) {
put_task_struct(tsk);
return -EACCES;
}
} else {
tsk = current;
get_task_struct(tsk);
}
retval = security_task_setscheduler(tsk, 0, NULL);
if (retval) {
put_task_struct(tsk);
return retval;
}
mutex_lock(&callback_mutex);
task_lock(tsk);
oldcs = tsk->cpuset;
if (!oldcs) {
task_unlock(tsk);
mutex_unlock(&callback_mutex);
put_task_struct(tsk);
return -ESRCH;
}
atomic_inc(&cs->count);
rcu_assign_pointer(tsk->cpuset, cs);
task_unlock(tsk);
guarantee_online_cpus(cs, &cpus);
set_cpus_allowed(tsk, cpus);
from = oldcs->mems_allowed;
to = cs->mems_allowed;
mutex_unlock(&callback_mutex);
mm = get_task_mm(tsk);
if (mm) {
mpol_rebind_mm(mm, &to);
if (is_memory_migrate(cs))
cpuset_migrate_mm(mm, &from, &to);
mmput(mm);
}
put_task_struct(tsk);
synchronize_rcu();
if (atomic_dec_and_test(&oldcs->count))
check_for_release(oldcs, ppathbuf);
return 0;
}
/* The various types of files and directories in a cpuset file system */
typedef enum {
FILE_ROOT,
FILE_DIR,
FILE_MEMORY_MIGRATE,
FILE_CPULIST,
FILE_MEMLIST,
FILE_CPU_EXCLUSIVE,
FILE_MEM_EXCLUSIVE,
FILE_NOTIFY_ON_RELEASE,
FILE_MEMORY_PRESSURE_ENABLED,
FILE_MEMORY_PRESSURE,
FILE_SPREAD_PAGE,
FILE_SPREAD_SLAB,
FILE_TASKLIST,
} cpuset_filetype_t;
static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
size_t nbytes, loff_t *unused_ppos)
{
struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
struct cftype *cft = __d_cft(file->f_dentry);
cpuset_filetype_t type = cft->private;
char *buffer;
char *pathbuf = NULL;
int retval = 0;
/* Crude upper limit on largest legitimate cpulist user might write. */
if (nbytes > 100 + 6 * NR_CPUS)
return -E2BIG;
/* +1 for nul-terminator */
if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
return -ENOMEM;
if (copy_from_user(buffer, userbuf, nbytes)) {
retval = -EFAULT;
goto out1;
}
buffer[nbytes] = 0; /* nul-terminate */
mutex_lock(&manage_mutex);
if (is_removed(cs)) {
retval = -ENODEV;
goto out2;
}
switch (type) {
case FILE_CPULIST:
retval = update_cpumask(cs, buffer);
break;
case FILE_MEMLIST:
retval = update_nodemask(cs, buffer);
break;
case FILE_CPU_EXCLUSIVE:
retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
break;
case FILE_MEM_EXCLUSIVE:
retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
break;
case FILE_NOTIFY_ON_RELEASE:
retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
break;
case FILE_MEMORY_MIGRATE:
retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
break;
case FILE_MEMORY_PRESSURE_ENABLED:
retval = update_memory_pressure_enabled(cs, buffer);
break;
case FILE_MEMORY_PRESSURE:
retval = -EACCES;
break;
case FILE_SPREAD_PAGE:
retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
cs->mems_generation = cpuset_mems_generation++;
break;
case FILE_SPREAD_SLAB:
retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
cs->mems_generation = cpuset_mems_generation++;
break;
case FILE_TASKLIST:
retval = attach_task(cs, buffer, &pathbuf);
break;
default:
retval = -EINVAL;
goto out2;
}
if (retval == 0)
retval = nbytes;
out2:
mutex_unlock(&manage_mutex);
cpuset_release_agent(pathbuf);
out1:
kfree(buffer);
return retval;
}
static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
ssize_t retval = 0;
struct cftype *cft = __d_cft(file->f_dentry);
if (!cft)
return -ENODEV;
/* special function ? */
if (cft->write)
retval = cft->write(file, buf, nbytes, ppos);
else
retval = cpuset_common_file_write(file, buf, nbytes, ppos);
return retval;
}
/*
* These ascii lists should be read in a single call, by using a user
* buffer large enough to hold the entire map. If read in smaller
* chunks, there is no guarantee of atomicity. Since the display format
* used, list of ranges of sequential numbers, is variable length,
* and since these maps can change value dynamically, one could read
* gibberish by doing partial reads while a list was changing.
* A single large read to a buffer that crosses a page boundary is
* ok, because the result being copied to user land is not recomputed
* across a page fault.
*/
static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
cpumask_t mask;
mutex_lock(&callback_mutex);
mask = cs->cpus_allowed;
mutex_unlock(&callback_mutex);
return cpulist_scnprintf(page, PAGE_SIZE, mask);
}
static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
nodemask_t mask;
mutex_lock(&callback_mutex);
mask = cs->mems_allowed;
mutex_unlock(&callback_mutex);
return nodelist_scnprintf(page, PAGE_SIZE, mask);
}
static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct cftype *cft = __d_cft(file->f_dentry);
struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
cpuset_filetype_t type = cft->private;
char *page;
ssize_t retval = 0;
char *s;
if (!(page = (char *)__get_free_page(GFP_KERNEL)))
return -ENOMEM;
s = page;
switch (type) {
case FILE_CPULIST:
s += cpuset_sprintf_cpulist(s, cs);
break;
case FILE_MEMLIST:
s += cpuset_sprintf_memlist(s, cs);
break;
case FILE_CPU_EXCLUSIVE:
*s++ = is_cpu_exclusive(cs) ? '1' : '0';
break;
case FILE_MEM_EXCLUSIVE:
*s++ = is_mem_exclusive(cs) ? '1' : '0';
break;
case FILE_NOTIFY_ON_RELEASE:
*s++ = notify_on_release(cs) ? '1' : '0';
break;
case FILE_MEMORY_MIGRATE:
*s++ = is_memory_migrate(cs) ? '1' : '0';
break;
case FILE_MEMORY_PRESSURE_ENABLED:
*s++ = cpuset_memory_pressure_enabled ? '1' : '0';
break;
case FILE_MEMORY_PRESSURE:
s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
break;
case FILE_SPREAD_PAGE:
*s++ = is_spread_page(cs) ? '1' : '0';
break;
case FILE_SPREAD_SLAB:
*s++ = is_spread_slab(cs) ? '1' : '0';
break;
default:
retval = -EINVAL;
goto out;
}
*s++ = '\n';
retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
out:
free_page((unsigned long)page);
return retval;
}
static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
ssize_t retval = 0;
struct cftype *cft = __d_cft(file->f_dentry);
if (!cft)
return -ENODEV;
/* special function ? */
if (cft->read)
retval = cft->read(file, buf, nbytes, ppos);
else
retval = cpuset_common_file_read(file, buf, nbytes, ppos);
return retval;
}
static int cpuset_file_open(struct inode *inode, struct file *file)
{
int err;
struct cftype *cft;
err = generic_file_open(inode, file);
if (err)
return err;
cft = __d_cft(file->f_dentry);
if (!cft)
return -ENODEV;
if (cft->open)
err = cft->open(inode, file);
else
err = 0;
return err;
}
static int cpuset_file_release(struct inode *inode, struct file *file)
{
struct cftype *cft = __d_cft(file->f_dentry);
if (cft->release)
return cft->release(inode, file);
return 0;
}
/*
* cpuset_rename - Only allow simple rename of directories in place.
*/
static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
if (!S_ISDIR(old_dentry->d_inode->i_mode))
return -ENOTDIR;
if (new_dentry->d_inode)
return -EEXIST;
if (old_dir != new_dir)
return -EIO;
return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}
static struct file_operations cpuset_file_operations = {
.read = cpuset_file_read,
.write = cpuset_file_write,
.llseek = generic_file_llseek,
.open = cpuset_file_open,
.release = cpuset_file_release,
};
static struct inode_operations cpuset_dir_inode_operations = {
.lookup = simple_lookup,
.mkdir = cpuset_mkdir,
.rmdir = cpuset_rmdir,
.rename = cpuset_rename,
};
static int cpuset_create_file(struct dentry *dentry, int mode)
{
struct inode *inode;
if (!dentry)
return -ENOENT;
if (dentry->d_inode)
return -EEXIST;
inode = cpuset_new_inode(mode);
if (!inode)
return -ENOMEM;
if (S_ISDIR(mode)) {
inode->i_op = &cpuset_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
/* start off with i_nlink == 2 (for "." entry) */
inode->i_nlink++;
} else if (S_ISREG(mode)) {
inode->i_size = 0;
inode->i_fop = &cpuset_file_operations;
}
d_instantiate(dentry, inode);
dget(dentry); /* Extra count - pin the dentry in core */
return 0;
}
/*
* cpuset_create_dir - create a directory for an object.
* cs: the cpuset we create the directory for.
* It must have a valid ->parent field
* And we are going to fill its ->dentry field.
* name: The name to give to the cpuset directory. Will be copied.
* mode: mode to set on new directory.
*/
static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
{
struct dentry *dentry = NULL;
struct dentry *parent;
int error = 0;
parent = cs->parent->dentry;
dentry = cpuset_get_dentry(parent, name);
if (IS_ERR(dentry))
return PTR_ERR(dentry);
error = cpuset_create_file(dentry, S_IFDIR | mode);
if (!error) {
dentry->d_fsdata = cs;
parent->d_inode->i_nlink++;
cs->dentry = dentry;
}
dput(dentry);
return error;
}
static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
{
struct dentry *dentry;
int error;
mutex_lock(&dir->d_inode->i_mutex);
dentry = cpuset_get_dentry(dir, cft->name);
if (!IS_ERR(dentry)) {
error = cpuset_create_file(dentry, 0644 | S_IFREG);
if (!error)
dentry->d_fsdata = (void *)cft;
dput(dentry);
} else
error = PTR_ERR(dentry);
mutex_unlock(&dir->d_inode->i_mutex);
return error;
}
/*
* Stuff for reading the 'tasks' file.
*
* Reading this file can return large amounts of data if a cpuset has
* *lots* of attached tasks. So it may need several calls to read(),
* but we cannot guarantee that the information we produce is correct
* unless we produce it entirely atomically.
*
* Upon tasks file open(), a struct ctr_struct is allocated, that
* will have a pointer to an array (also allocated here). The struct
* ctr_struct * is stored in file->private_data. Its resources will
* be freed by release() when the file is closed. The array is used
* to sprintf the PIDs and then used by read().
*/
/* cpusets_tasks_read array */
struct ctr_struct {
char *buf;
int bufsz;
};
/*
* Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
* Return actual number of pids loaded. No need to task_lock(p)
* when reading out p->cpuset, as we don't really care if it changes
* on the next cycle, and we are not going to try to dereference it.
*/
static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
{
int n = 0;
struct task_struct *g, *p;
read_lock(&tasklist_lock);
do_each_thread(g, p) {
if (p->cpuset == cs) {
pidarray[n++] = p->pid;
if (unlikely(n == npids))
goto array_full;
}
} while_each_thread(g, p);
array_full:
read_unlock(&tasklist_lock);
return n;
}
static int cmppid(const void *a, const void *b)
{
return *(pid_t *)a - *(pid_t *)b;
}
/*
* Convert array 'a' of 'npids' pid_t's to a string of newline separated
* decimal pids in 'buf'. Don't write more than 'sz' chars, but return
* count 'cnt' of how many chars would be written if buf were large enough.
*/
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
int cnt = 0;
int i;
for (i = 0; i < npids; i++)
cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
return cnt;
}
/*
* Handle an open on 'tasks' file. Prepare a buffer listing the
* process id's of tasks currently attached to the cpuset being opened.
*
* Does not require any specific cpuset mutexes, and does not take any.
*/
static int cpuset_tasks_open(struct inode *unused, struct file *file)
{
struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
struct ctr_struct *ctr;
pid_t *pidarray;
int npids;
char c;
if (!(file->f_mode & FMODE_READ))
return 0;
ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
if (!ctr)
goto err0;
/*
* If cpuset gets more users after we read count, we won't have
* enough space - tough. This race is indistinguishable to the
* caller from the case that the additional cpuset users didn't
* show up until sometime later on.
*/
npids = atomic_read(&cs->count);
pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
if (!pidarray)
goto err1;
npids = pid_array_load(pidarray, npids, cs);
sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
/* Call pid_array_to_buf() twice, first just to get bufsz */
ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
if (!ctr->buf)
goto err2;
ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
kfree(pidarray);
file->private_data = ctr;
return 0;
err2:
kfree(pidarray);
err1:
kfree(ctr);
err0:
return -ENOMEM;
}
static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct ctr_struct *ctr = file->private_data;
if (*ppos + nbytes > ctr->bufsz)
nbytes = ctr->bufsz - *ppos;
if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
return -EFAULT;
*ppos += nbytes;
return nbytes;
}
static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
{
struct ctr_struct *ctr;
if (file->f_mode & FMODE_READ) {
ctr = file->private_data;
kfree(ctr->buf);
kfree(ctr);
}
return 0;
}
/*
* for the common functions, 'private' gives the type of file
*/
static struct cftype cft_tasks = {
.name = "tasks",
.open = cpuset_tasks_open,
.read = cpuset_tasks_read,
.release = cpuset_tasks_release,
.private = FILE_TASKLIST,
};
static struct cftype cft_cpus = {
.name = "cpus",
.private = FILE_CPULIST,
};
static struct cftype cft_mems = {
.name = "mems",
.private = FILE_MEMLIST,
};
static struct cftype cft_cpu_exclusive = {
.name = "cpu_exclusive",
.private = FILE_CPU_EXCLUSIVE,
};
static struct cftype cft_mem_exclusive = {
.name = "mem_exclusive",
.private = FILE_MEM_EXCLUSIVE,
};
static struct cftype cft_notify_on_release = {
.name = "notify_on_release",
.private = FILE_NOTIFY_ON_RELEASE,
};
static struct cftype cft_memory_migrate = {
.name = "memory_migrate",
.private = FILE_MEMORY_MIGRATE,
};
static struct cftype cft_memory_pressure_enabled = {
.name = "memory_pressure_enabled",
.private = FILE_MEMORY_PRESSURE_ENABLED,
};
static struct cftype cft_memory_pressure = {
.name = "memory_pressure",
.private = FILE_MEMORY_PRESSURE,
};
static struct cftype cft_spread_page = {
.name = "memory_spread_page",
.private = FILE_SPREAD_PAGE,
};
static struct cftype cft_spread_slab = {
.name = "memory_spread_slab",
.private = FILE_SPREAD_SLAB,
};
static int cpuset_populate_dir(struct dentry *cs_dentry)
{
int err;
if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_spread_page)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_spread_slab)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
return err;
return 0;
}
/*
* cpuset_create - create a cpuset
* parent: cpuset that will be parent of the new cpuset.
* name: name of the new cpuset. Will be strcpy'ed.
* mode: mode to set on new inode
*
* Must be called with the mutex on the parent inode held
*/
static long cpuset_create(struct cpuset *parent, const char *name, int mode)
{
struct cpuset *cs;
int err;
cs = kmalloc(sizeof(*cs), GFP_KERNEL);
if (!cs)
return -ENOMEM;
mutex_lock(&manage_mutex);
cpuset_update_task_memory_state();
cs->flags = 0;
if (notify_on_release(parent))
set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
if (is_spread_page(parent))
set_bit(CS_SPREAD_PAGE, &cs->flags);
if (is_spread_slab(parent))
set_bit(CS_SPREAD_SLAB, &cs->flags);
cs->cpus_allowed = CPU_MASK_NONE;
cs->mems_allowed = NODE_MASK_NONE;
atomic_set(&cs->count, 0);
INIT_LIST_HEAD(&cs->sibling);
INIT_LIST_HEAD(&cs->children);
cs->mems_generation = cpuset_mems_generation++;
fmeter_init(&cs->fmeter);
cs->parent = parent;
mutex_lock(&callback_mutex);
list_add(&cs->sibling, &cs->parent->children);
number_of_cpusets++;
mutex_unlock(&callback_mutex);
err = cpuset_create_dir(cs, name, mode);
if (err < 0)
goto err;
/*
* Release manage_mutex before cpuset_populate_dir() because it
* will down() this new directory's i_mutex and if we race with
* another mkdir, we might deadlock.
*/
mutex_unlock(&manage_mutex);
err = cpuset_populate_dir(cs->dentry);
/* If err < 0, we have a half-filled directory - oh well ;) */
return 0;
err:
list_del(&cs->sibling);
mutex_unlock(&manage_mutex);
kfree(cs);
return err;
}
static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
struct cpuset *c_parent = dentry->d_parent->d_fsdata;
/* the vfs holds inode->i_mutex already */
return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
}
/*
* Locking note on the strange update_flag() call below:
*
* If the cpuset being removed is marked cpu_exclusive, then simulate
* turning cpu_exclusive off, which will call update_cpu_domains().
* The lock_cpu_hotplug() call in update_cpu_domains() must not be
* made while holding callback_mutex. Elsewhere the kernel nests
* callback_mutex inside lock_cpu_hotplug() calls. So the reverse
* nesting would risk an ABBA deadlock.
*/
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
struct cpuset *cs = dentry->d_fsdata;
struct dentry *d;
struct cpuset *parent;
char *pathbuf = NULL;
/* the vfs holds both inode->i_mutex already */
mutex_lock(&manage_mutex);
cpuset_update_task_memory_state();
if (atomic_read(&cs->count) > 0) {
mutex_unlock(&manage_mutex);
return -EBUSY;
}
if (!list_empty(&cs->children)) {
mutex_unlock(&manage_mutex);
return -EBUSY;
}
if (is_cpu_exclusive(cs)) {
int retval = update_flag(CS_CPU_EXCLUSIVE, cs, "0");
if (retval < 0) {
mutex_unlock(&manage_mutex);
return retval;
}
}
parent = cs->parent;
mutex_lock(&callback_mutex);
set_bit(CS_REMOVED, &cs->flags);
list_del(&cs->sibling); /* delete my sibling from parent->children */
spin_lock(&cs->dentry->d_lock);
d = dget(cs->dentry);
cs->dentry = NULL;
spin_unlock(&d->d_lock);
cpuset_d_remove_dir(d);
dput(d);
number_of_cpusets--;
mutex_unlock(&callback_mutex);
if (list_empty(&parent->children))
check_for_release(parent, &pathbuf);
mutex_unlock(&manage_mutex);
cpuset_release_agent(pathbuf);
return 0;
}
/*
* cpuset_init_early - just enough so that the calls to
* cpuset_update_task_memory_state() in early init code
* are harmless.
*/
int __init cpuset_init_early(void)
{
struct task_struct *tsk = current;
tsk->cpuset = &top_cpuset;
tsk->cpuset->mems_generation = cpuset_mems_generation++;
return 0;
}
/**
* cpuset_init - initialize cpusets at system boot
*
* Description: Initialize top_cpuset and the cpuset internal file system,
**/
int __init cpuset_init(void)
{
struct dentry *root;
int err;
top_cpuset.cpus_allowed = CPU_MASK_ALL;
top_cpuset.mems_allowed = NODE_MASK_ALL;
fmeter_init(&top_cpuset.fmeter);
top_cpuset.mems_generation = cpuset_mems_generation++;
init_task.cpuset = &top_cpuset;
err = register_filesystem(&cpuset_fs_type);
if (err < 0)
goto out;
cpuset_mount = kern_mount(&cpuset_fs_type);
if (IS_ERR(cpuset_mount)) {
printk(KERN_ERR "cpuset: could not mount!\n");
err = PTR_ERR(cpuset_mount);
cpuset_mount = NULL;
goto out;
}
root = cpuset_mount->mnt_sb->s_root;
root->d_fsdata = &top_cpuset;
root->d_inode->i_nlink++;
top_cpuset.dentry = root;
root->d_inode->i_op = &cpuset_dir_inode_operations;
number_of_cpusets = 1;
err = cpuset_populate_dir(root);
/* memory_pressure_enabled is in root cpuset only */
if (err == 0)
err = cpuset_add_file(root, &cft_memory_pressure_enabled);
out:
return err;
}
/*
* The top_cpuset tracks what CPUs and Memory Nodes are online,
* period. This is necessary in order to make cpusets transparent
* (of no affect) on systems that are actively using CPU hotplug
* but making no active use of cpusets.
*
* This handles CPU hotplug (cpuhp) events. If someday Memory
* Nodes can be hotplugged (dynamically changing node_online_map)
* then we should handle that too, perhaps in a similar way.
*/
#ifdef CONFIG_HOTPLUG_CPU
static int cpuset_handle_cpuhp(struct notifier_block *nb,
unsigned long phase, void *cpu)
{
mutex_lock(&manage_mutex);
mutex_lock(&callback_mutex);
top_cpuset.cpus_allowed = cpu_online_map;
mutex_unlock(&callback_mutex);
mutex_unlock(&manage_mutex);
return 0;
}
#endif
/**
* cpuset_init_smp - initialize cpus_allowed
*
* Description: Finish top cpuset after cpu, node maps are initialized
**/
void __init cpuset_init_smp(void)
{
top_cpuset.cpus_allowed = cpu_online_map;
top_cpuset.mems_allowed = node_online_map;
hotcpu_notifier(cpuset_handle_cpuhp, 0);
}
/**
* cpuset_fork - attach newly forked task to its parents cpuset.
* @tsk: pointer to task_struct of forking parent process.
*
* Description: A task inherits its parent's cpuset at fork().
*
* A pointer to the shared cpuset was automatically copied in fork.c
* by dup_task_struct(). However, we ignore that copy, since it was
* not made under the protection of task_lock(), so might no longer be
* a valid cpuset pointer. attach_task() might have already changed
* current->cpuset, allowing the previously referenced cpuset to
* be removed and freed. Instead, we task_lock(current) and copy
* its present value of current->cpuset for our freshly forked child.
*
* At the point that cpuset_fork() is called, 'current' is the parent
* task, and the passed argument 'child' points to the child task.
**/
void cpuset_fork(struct task_struct *child)
{
task_lock(current);
child->cpuset = current->cpuset;
atomic_inc(&child->cpuset->count);
task_unlock(current);
}
/**
* cpuset_exit - detach cpuset from exiting task
* @tsk: pointer to task_struct of exiting process
*
* Description: Detach cpuset from @tsk and release it.
*
* Note that cpusets marked notify_on_release force every task in
* them to take the global manage_mutex mutex when exiting.
* This could impact scaling on very large systems. Be reluctant to
* use notify_on_release cpusets where very high task exit scaling
* is required on large systems.
*
* Don't even think about derefencing 'cs' after the cpuset use count
* goes to zero, except inside a critical section guarded by manage_mutex
* or callback_mutex. Otherwise a zero cpuset use count is a license to
* any other task to nuke the cpuset immediately, via cpuset_rmdir().
*
* This routine has to take manage_mutex, not callback_mutex, because
* it is holding that mutex while calling check_for_release(),
* which calls kmalloc(), so can't be called holding callback_mutex().
*
* We don't need to task_lock() this reference to tsk->cpuset,
* because tsk is already marked PF_EXITING, so attach_task() won't
* mess with it, or task is a failed fork, never visible to attach_task.
*
* the_top_cpuset_hack:
*
* Set the exiting tasks cpuset to the root cpuset (top_cpuset).
*
* Don't leave a task unable to allocate memory, as that is an
* accident waiting to happen should someone add a callout in
* do_exit() after the cpuset_exit() call that might allocate.
* If a task tries to allocate memory with an invalid cpuset,
* it will oops in cpuset_update_task_memory_state().
*
* We call cpuset_exit() while the task is still competent to
* handle notify_on_release(), then leave the task attached to
* the root cpuset (top_cpuset) for the remainder of its exit.
*
* To do this properly, we would increment the reference count on
* top_cpuset, and near the very end of the kernel/exit.c do_exit()
* code we would add a second cpuset function call, to drop that
* reference. This would just create an unnecessary hot spot on
* the top_cpuset reference count, to no avail.
*
* Normally, holding a reference to a cpuset without bumping its
* count is unsafe. The cpuset could go away, or someone could
* attach us to a different cpuset, decrementing the count on
* the first cpuset that we never incremented. But in this case,
* top_cpuset isn't going away, and either task has PF_EXITING set,
* which wards off any attach_task() attempts, or task is a failed
* fork, never visible to attach_task.
*
* Another way to do this would be to set the cpuset pointer
* to NULL here, and check in cpuset_update_task_memory_state()
* for a NULL pointer. This hack avoids that NULL check, for no
* cost (other than this way too long comment ;).
**/
void cpuset_exit(struct task_struct *tsk)
{
struct cpuset *cs;
cs = tsk->cpuset;
tsk->cpuset = &top_cpuset; /* the_top_cpuset_hack - see above */
if (notify_on_release(cs)) {
char *pathbuf = NULL;
mutex_lock(&manage_mutex);
if (atomic_dec_and_test(&cs->count))
check_for_release(cs, &pathbuf);
mutex_unlock(&manage_mutex);
cpuset_release_agent(pathbuf);
} else {
atomic_dec(&cs->count);
}
}
/**
* cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
* @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
*
* Description: Returns the cpumask_t cpus_allowed of the cpuset
* attached to the specified @tsk. Guaranteed to return some non-empty
* subset of cpu_online_map, even if this means going outside the
* tasks cpuset.
**/
cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
{
cpumask_t mask;
mutex_lock(&callback_mutex);
task_lock(tsk);
guarantee_online_cpus(tsk->cpuset, &mask);
task_unlock(tsk);
mutex_unlock(&callback_mutex);
return mask;
}
void cpuset_init_current_mems_allowed(void)
{
current->mems_allowed = NODE_MASK_ALL;
}
/**
* cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
* @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
*
* Description: Returns the nodemask_t mems_allowed of the cpuset
* attached to the specified @tsk. Guaranteed to return some non-empty
* subset of node_online_map, even if this means going outside the
* tasks cpuset.
**/
nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
nodemask_t mask;
mutex_lock(&callback_mutex);
task_lock(tsk);
guarantee_online_mems(tsk->cpuset, &mask);
task_unlock(tsk);
mutex_unlock(&callback_mutex);
return mask;
}
/**
* cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
* @zl: the zonelist to be checked
*
* Are any of the nodes on zonelist zl allowed in current->mems_allowed?
*/
int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
{
int i;
for (i = 0; zl->zones[i]; i++) {
int nid = zone_to_nid(zl->zones[i]);
if (node_isset(nid, current->mems_allowed))
return 1;
}
return 0;
}
/*
* nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
* ancestor to the specified cpuset. Call holding callback_mutex.
* If no ancestor is mem_exclusive (an unusual configuration), then
* returns the root cpuset.
*/
static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
{
while (!is_mem_exclusive(cs) && cs->parent)
cs = cs->parent;
return cs;
}
/**
* cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
* @z: is this zone on an allowed node?
* @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
*
* If we're in interrupt, yes, we can always allocate. If zone
* z's node is in our tasks mems_allowed, yes. If it's not a
* __GFP_HARDWALL request and this zone's nodes is in the nearest
* mem_exclusive cpuset ancestor to this tasks cpuset, yes.
* Otherwise, no.
*
* GFP_USER allocations are marked with the __GFP_HARDWALL bit,
* and do not allow allocations outside the current tasks cpuset.
* GFP_KERNEL allocations are not so marked, so can escape to the
* nearest mem_exclusive ancestor cpuset.
*
* Scanning up parent cpusets requires callback_mutex. The __alloc_pages()
* routine only calls here with __GFP_HARDWALL bit _not_ set if
* it's a GFP_KERNEL allocation, and all nodes in the current tasks
* mems_allowed came up empty on the first pass over the zonelist.
* So only GFP_KERNEL allocations, if all nodes in the cpuset are
* short of memory, might require taking the callback_mutex mutex.
*
* The first call here from mm/page_alloc:get_page_from_freelist()
* has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, so
* no allocation on a node outside the cpuset is allowed (unless in
* interrupt, of course).
*
* The second pass through get_page_from_freelist() doesn't even call
* here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
* variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
* in alloc_flags. That logic and the checks below have the combined
* affect that:
* in_interrupt - any node ok (current task context irrelevant)
* GFP_ATOMIC - any node ok
* GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
* GFP_USER - only nodes in current tasks mems allowed ok.
*
* Rule:
* Don't call cpuset_zone_allowed() if you can't sleep, unless you
* pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
* the code that might scan up ancestor cpusets and sleep.
**/
int __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
{
int node; /* node that zone z is on */
const struct cpuset *cs; /* current cpuset ancestors */
int allowed; /* is allocation in zone z allowed? */
if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
return 1;
node = zone_to_nid(z);
might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
if (node_isset(node, current->mems_allowed))
return 1;
if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
return 0;
if (current->flags & PF_EXITING) /* Let dying task have memory */
return 1;
/* Not hardwall and node outside mems_allowed: scan up cpusets */
mutex_lock(&callback_mutex);
task_lock(current);
cs = nearest_exclusive_ancestor(current->cpuset);
task_unlock(current);
allowed = node_isset(node, cs->mems_allowed);
mutex_unlock(&callback_mutex);
return allowed;
}
/**
* cpuset_lock - lock out any changes to cpuset structures
*
* The out of memory (oom) code needs to mutex_lock cpusets
* from being changed while it scans the tasklist looking for a
* task in an overlapping cpuset. Expose callback_mutex via this
* cpuset_lock() routine, so the oom code can lock it, before
* locking the task list. The tasklist_lock is a spinlock, so
* must be taken inside callback_mutex.
*/
void cpuset_lock(void)
{
mutex_lock(&callback_mutex);
}
/**
* cpuset_unlock - release lock on cpuset changes
*
* Undo the lock taken in a previous cpuset_lock() call.
*/
void cpuset_unlock(void)
{
mutex_unlock(&callback_mutex);
}
/**
* cpuset_mem_spread_node() - On which node to begin search for a page
*
* If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
* tasks in a cpuset with is_spread_page or is_spread_slab set),
* and if the memory allocation used cpuset_mem_spread_node()
* to determine on which node to start looking, as it will for
* certain page cache or slab cache pages such as used for file
* system buffers and inode caches, then instead of starting on the
* local node to look for a free page, rather spread the starting
* node around the tasks mems_allowed nodes.
*
* We don't have to worry about the returned node being offline
* because "it can't happen", and even if it did, it would be ok.
*
* The routines calling guarantee_online_mems() are careful to
* only set nodes in task->mems_allowed that are online. So it
* should not be possible for the following code to return an
* offline node. But if it did, that would be ok, as this routine
* is not returning the node where the allocation must be, only
* the node where the search should start. The zonelist passed to
* __alloc_pages() will include all nodes. If the slab allocator
* is passed an offline node, it will fall back to the local node.
* See kmem_cache_alloc_node().
*/
int cpuset_mem_spread_node(void)
{
int node;
node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
if (node == MAX_NUMNODES)
node = first_node(current->mems_allowed);
current->cpuset_mem_spread_rotor = node;
return node;
}
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
/**
* cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
* @p: pointer to task_struct of some other task.
*
* Description: Return true if the nearest mem_exclusive ancestor
* cpusets of tasks @p and current overlap. Used by oom killer to
* determine if task @p's memory usage might impact the memory
* available to the current task.
*
* Call while holding callback_mutex.
**/
int cpuset_excl_nodes_overlap(const struct task_struct *p)
{
const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
int overlap = 1; /* do cpusets overlap? */
task_lock(current);
if (current->flags & PF_EXITING) {
task_unlock(current);
goto done;
}
cs1 = nearest_exclusive_ancestor(current->cpuset);
task_unlock(current);
task_lock((struct task_struct *)p);
if (p->flags & PF_EXITING) {
task_unlock((struct task_struct *)p);
goto done;
}
cs2 = nearest_exclusive_ancestor(p->cpuset);
task_unlock((struct task_struct *)p);
overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
done:
return overlap;
}
/*
* Collection of memory_pressure is suppressed unless
* this flag is enabled by writing "1" to the special
* cpuset file 'memory_pressure_enabled' in the root cpuset.
*/
int cpuset_memory_pressure_enabled __read_mostly;
/**
* cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
*
* Keep a running average of the rate of synchronous (direct)
* page reclaim efforts initiated by tasks in each cpuset.
*
* This represents the rate at which some task in the cpuset
* ran low on memory on all nodes it was allowed to use, and
* had to enter the kernels page reclaim code in an effort to
* create more free memory by tossing clean pages or swapping
* or writing dirty pages.
*
* Display to user space in the per-cpuset read-only file
* "memory_pressure". Value displayed is an integer
* representing the recent rate of entry into the synchronous
* (direct) page reclaim by any task attached to the cpuset.
**/
void __cpuset_memory_pressure_bump(void)
{
struct cpuset *cs;
task_lock(current);
cs = current->cpuset;
fmeter_markevent(&cs->fmeter);
task_unlock(current);
}
/*
* proc_cpuset_show()
* - Print tasks cpuset path into seq_file.
* - Used for /proc/<pid>/cpuset.
* - No need to task_lock(tsk) on this tsk->cpuset reference, as it
* doesn't really matter if tsk->cpuset changes after we read it,
* and we take manage_mutex, keeping attach_task() from changing it
* anyway. No need to check that tsk->cpuset != NULL, thanks to
* the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
* cpuset to top_cpuset.
*/
static int proc_cpuset_show(struct seq_file *m, void *v)
{
struct pid *pid;
struct task_struct *tsk;
char *buf;
int retval;
retval = -ENOMEM;
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!buf)
goto out;
retval = -ESRCH;
pid = m->private;
tsk = get_pid_task(pid, PIDTYPE_PID);
if (!tsk)
goto out_free;
retval = -EINVAL;
mutex_lock(&manage_mutex);
retval = cpuset_path(tsk->cpuset, buf, PAGE_SIZE);
if (retval < 0)
goto out_unlock;
seq_puts(m, buf);
seq_putc(m, '\n');
out_unlock:
mutex_unlock(&manage_mutex);
put_task_struct(tsk);
out_free:
kfree(buf);
out:
return retval;
}
static int cpuset_open(struct inode *inode, struct file *file)
{
struct pid *pid = PROC_I(inode)->pid;
return single_open(file, proc_cpuset_show, pid);
}
struct file_operations proc_cpuset_operations = {
.open = cpuset_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
{
buffer += sprintf(buffer, "Cpus_allowed:\t");
buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
buffer += sprintf(buffer, "\n");
buffer += sprintf(buffer, "Mems_allowed:\t");
buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
buffer += sprintf(buffer, "\n");
return buffer;
}