mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-19 14:56:21 +00:00
617a814f14
this pull request are: "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. "mm: split underused THPs" from Yu Zhao. Improve THP=always policy - this was overprovisioning THPs in sparsely accessed memory areas. "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZu1BBwAKCRDdBJ7gKXxA jlWNAQDYlqQLun7bgsAN4sSvi27VUuWv1q70jlMXTfmjJAvQqwD/fBFVR6IOOiw7 AkDbKWP2k0hWPiNJBGwoqxdHHx09Xgo= =s0T+ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Along with the usual shower of singleton patches, notable patch series in this pull request are: - "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. - "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. - "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. - "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. - "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. - "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". - "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. - "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". - "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. - "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. - "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. - "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. - "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. - "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. - "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). - "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. - "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, - "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. - "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. - "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. - "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. - "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. - "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. - "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. - "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. - "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. - "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. - "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). - "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! - "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. - "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. - "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. - "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. - "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. - "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. - "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. - "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. - "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. - "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. - "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. - "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. - "mm: split underused THPs" from Yu Zhao. Improve THP=always policy. This was overprovisioning THPs in sparsely accessed memory areas. - "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. - "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. - "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. - "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. - "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. - "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. - "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios" * tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits) zram: free secondary algorithms names uprobes: turn xol_area->pages[2] into xol_area->page uprobes: introduce the global struct vm_special_mapping xol_mapping Revert "uprobes: use vm_special_mapping close() functionality" mm: support large folios swap-in for sync io devices mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios mm: fix swap_read_folio_zeromap() for large folios with partial zeromap mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries set_memory: add __must_check to generic stubs mm/vma: return the exact errno in vms_gather_munmap_vmas() memcg: cleanup with !CONFIG_MEMCG_V1 mm/show_mem.c: report alloc tags in human readable units mm: support poison recovery from copy_present_page() mm: support poison recovery from do_cow_fault() resource, kunit: add test case for region_intersects() resource: make alloc_free_mem_region() works for iomem_resource mm: z3fold: deprecate CONFIG_Z3FOLD vfio/pci: implement huge_fault support mm/arm64: support large pfn mappings mm/x86: support large pfn mappings ...
1081 lines
36 KiB
C
1081 lines
36 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
|
|
*
|
|
* (C) SGI 2006, Christoph Lameter
|
|
* Cleaned up and restructured to ease the addition of alternative
|
|
* implementations of SLAB allocators.
|
|
* (C) Linux Foundation 2008-2013
|
|
* Unified interface for all slab allocators
|
|
*/
|
|
|
|
#ifndef _LINUX_SLAB_H
|
|
#define _LINUX_SLAB_H
|
|
|
|
#include <linux/cache.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/overflow.h>
|
|
#include <linux/types.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/percpu-refcount.h>
|
|
#include <linux/cleanup.h>
|
|
#include <linux/hash.h>
|
|
|
|
enum _slab_flag_bits {
|
|
_SLAB_CONSISTENCY_CHECKS,
|
|
_SLAB_RED_ZONE,
|
|
_SLAB_POISON,
|
|
_SLAB_KMALLOC,
|
|
_SLAB_HWCACHE_ALIGN,
|
|
_SLAB_CACHE_DMA,
|
|
_SLAB_CACHE_DMA32,
|
|
_SLAB_STORE_USER,
|
|
_SLAB_PANIC,
|
|
_SLAB_TYPESAFE_BY_RCU,
|
|
_SLAB_TRACE,
|
|
#ifdef CONFIG_DEBUG_OBJECTS
|
|
_SLAB_DEBUG_OBJECTS,
|
|
#endif
|
|
_SLAB_NOLEAKTRACE,
|
|
_SLAB_NO_MERGE,
|
|
#ifdef CONFIG_FAILSLAB
|
|
_SLAB_FAILSLAB,
|
|
#endif
|
|
#ifdef CONFIG_MEMCG
|
|
_SLAB_ACCOUNT,
|
|
#endif
|
|
#ifdef CONFIG_KASAN_GENERIC
|
|
_SLAB_KASAN,
|
|
#endif
|
|
_SLAB_NO_USER_FLAGS,
|
|
#ifdef CONFIG_KFENCE
|
|
_SLAB_SKIP_KFENCE,
|
|
#endif
|
|
#ifndef CONFIG_SLUB_TINY
|
|
_SLAB_RECLAIM_ACCOUNT,
|
|
#endif
|
|
_SLAB_OBJECT_POISON,
|
|
_SLAB_CMPXCHG_DOUBLE,
|
|
#ifdef CONFIG_SLAB_OBJ_EXT
|
|
_SLAB_NO_OBJ_EXT,
|
|
#endif
|
|
_SLAB_FLAGS_LAST_BIT
|
|
};
|
|
|
|
#define __SLAB_FLAG_BIT(nr) ((slab_flags_t __force)(1U << (nr)))
|
|
#define __SLAB_FLAG_UNUSED ((slab_flags_t __force)(0U))
|
|
|
|
/*
|
|
* Flags to pass to kmem_cache_create().
|
|
* The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op
|
|
*/
|
|
/* DEBUG: Perform (expensive) checks on alloc/free */
|
|
#define SLAB_CONSISTENCY_CHECKS __SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS)
|
|
/* DEBUG: Red zone objs in a cache */
|
|
#define SLAB_RED_ZONE __SLAB_FLAG_BIT(_SLAB_RED_ZONE)
|
|
/* DEBUG: Poison objects */
|
|
#define SLAB_POISON __SLAB_FLAG_BIT(_SLAB_POISON)
|
|
/* Indicate a kmalloc slab */
|
|
#define SLAB_KMALLOC __SLAB_FLAG_BIT(_SLAB_KMALLOC)
|
|
/* Align objs on cache lines */
|
|
#define SLAB_HWCACHE_ALIGN __SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN)
|
|
/* Use GFP_DMA memory */
|
|
#define SLAB_CACHE_DMA __SLAB_FLAG_BIT(_SLAB_CACHE_DMA)
|
|
/* Use GFP_DMA32 memory */
|
|
#define SLAB_CACHE_DMA32 __SLAB_FLAG_BIT(_SLAB_CACHE_DMA32)
|
|
/* DEBUG: Store the last owner for bug hunting */
|
|
#define SLAB_STORE_USER __SLAB_FLAG_BIT(_SLAB_STORE_USER)
|
|
/* Panic if kmem_cache_create() fails */
|
|
#define SLAB_PANIC __SLAB_FLAG_BIT(_SLAB_PANIC)
|
|
/*
|
|
* SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
|
|
*
|
|
* This delays freeing the SLAB page by a grace period, it does _NOT_
|
|
* delay object freeing. This means that if you do kmem_cache_free()
|
|
* that memory location is free to be reused at any time. Thus it may
|
|
* be possible to see another object there in the same RCU grace period.
|
|
*
|
|
* This feature only ensures the memory location backing the object
|
|
* stays valid, the trick to using this is relying on an independent
|
|
* object validation pass. Something like:
|
|
*
|
|
* begin:
|
|
* rcu_read_lock();
|
|
* obj = lockless_lookup(key);
|
|
* if (obj) {
|
|
* if (!try_get_ref(obj)) // might fail for free objects
|
|
* rcu_read_unlock();
|
|
* goto begin;
|
|
*
|
|
* if (obj->key != key) { // not the object we expected
|
|
* put_ref(obj);
|
|
* rcu_read_unlock();
|
|
* goto begin;
|
|
* }
|
|
* }
|
|
* rcu_read_unlock();
|
|
*
|
|
* This is useful if we need to approach a kernel structure obliquely,
|
|
* from its address obtained without the usual locking. We can lock
|
|
* the structure to stabilize it and check it's still at the given address,
|
|
* only if we can be sure that the memory has not been meanwhile reused
|
|
* for some other kind of object (which our subsystem's lock might corrupt).
|
|
*
|
|
* rcu_read_lock before reading the address, then rcu_read_unlock after
|
|
* taking the spinlock within the structure expected at that address.
|
|
*
|
|
* Note that it is not possible to acquire a lock within a structure
|
|
* allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
|
|
* as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages
|
|
* are not zeroed before being given to the slab, which means that any
|
|
* locks must be initialized after each and every kmem_struct_alloc().
|
|
* Alternatively, make the ctor passed to kmem_cache_create() initialize
|
|
* the locks at page-allocation time, as is done in __i915_request_ctor(),
|
|
* sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers
|
|
* to safely acquire those ctor-initialized locks under rcu_read_lock()
|
|
* protection.
|
|
*
|
|
* Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
|
|
*/
|
|
/* Defer freeing slabs to RCU */
|
|
#define SLAB_TYPESAFE_BY_RCU __SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU)
|
|
/* Trace allocations and frees */
|
|
#define SLAB_TRACE __SLAB_FLAG_BIT(_SLAB_TRACE)
|
|
|
|
/* Flag to prevent checks on free */
|
|
#ifdef CONFIG_DEBUG_OBJECTS
|
|
# define SLAB_DEBUG_OBJECTS __SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS)
|
|
#else
|
|
# define SLAB_DEBUG_OBJECTS __SLAB_FLAG_UNUSED
|
|
#endif
|
|
|
|
/* Avoid kmemleak tracing */
|
|
#define SLAB_NOLEAKTRACE __SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE)
|
|
|
|
/*
|
|
* Prevent merging with compatible kmem caches. This flag should be used
|
|
* cautiously. Valid use cases:
|
|
*
|
|
* - caches created for self-tests (e.g. kunit)
|
|
* - general caches created and used by a subsystem, only when a
|
|
* (subsystem-specific) debug option is enabled
|
|
* - performance critical caches, should be very rare and consulted with slab
|
|
* maintainers, and not used together with CONFIG_SLUB_TINY
|
|
*/
|
|
#define SLAB_NO_MERGE __SLAB_FLAG_BIT(_SLAB_NO_MERGE)
|
|
|
|
/* Fault injection mark */
|
|
#ifdef CONFIG_FAILSLAB
|
|
# define SLAB_FAILSLAB __SLAB_FLAG_BIT(_SLAB_FAILSLAB)
|
|
#else
|
|
# define SLAB_FAILSLAB __SLAB_FLAG_UNUSED
|
|
#endif
|
|
/* Account to memcg */
|
|
#ifdef CONFIG_MEMCG
|
|
# define SLAB_ACCOUNT __SLAB_FLAG_BIT(_SLAB_ACCOUNT)
|
|
#else
|
|
# define SLAB_ACCOUNT __SLAB_FLAG_UNUSED
|
|
#endif
|
|
|
|
#ifdef CONFIG_KASAN_GENERIC
|
|
#define SLAB_KASAN __SLAB_FLAG_BIT(_SLAB_KASAN)
|
|
#else
|
|
#define SLAB_KASAN __SLAB_FLAG_UNUSED
|
|
#endif
|
|
|
|
/*
|
|
* Ignore user specified debugging flags.
|
|
* Intended for caches created for self-tests so they have only flags
|
|
* specified in the code and other flags are ignored.
|
|
*/
|
|
#define SLAB_NO_USER_FLAGS __SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS)
|
|
|
|
#ifdef CONFIG_KFENCE
|
|
#define SLAB_SKIP_KFENCE __SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE)
|
|
#else
|
|
#define SLAB_SKIP_KFENCE __SLAB_FLAG_UNUSED
|
|
#endif
|
|
|
|
/* The following flags affect the page allocator grouping pages by mobility */
|
|
/* Objects are reclaimable */
|
|
#ifndef CONFIG_SLUB_TINY
|
|
#define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT)
|
|
#else
|
|
#define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_UNUSED
|
|
#endif
|
|
#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
|
|
|
|
/* Slab created using create_boot_cache */
|
|
#ifdef CONFIG_SLAB_OBJ_EXT
|
|
#define SLAB_NO_OBJ_EXT __SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT)
|
|
#else
|
|
#define SLAB_NO_OBJ_EXT __SLAB_FLAG_UNUSED
|
|
#endif
|
|
|
|
/*
|
|
* freeptr_t represents a SLUB freelist pointer, which might be encoded
|
|
* and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
|
|
*/
|
|
typedef struct { unsigned long v; } freeptr_t;
|
|
|
|
/*
|
|
* ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
|
|
*
|
|
* Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
|
|
*
|
|
* ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
|
|
* Both make kfree a no-op.
|
|
*/
|
|
#define ZERO_SIZE_PTR ((void *)16)
|
|
|
|
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
|
|
(unsigned long)ZERO_SIZE_PTR)
|
|
|
|
#include <linux/kasan.h>
|
|
|
|
struct list_lru;
|
|
struct mem_cgroup;
|
|
/*
|
|
* struct kmem_cache related prototypes
|
|
*/
|
|
bool slab_is_available(void);
|
|
|
|
/**
|
|
* struct kmem_cache_args - Less common arguments for kmem_cache_create()
|
|
*
|
|
* Any uninitialized fields of the structure are interpreted as unused. The
|
|
* exception is @freeptr_offset where %0 is a valid value, so
|
|
* @use_freeptr_offset must be also set to %true in order to interpret the field
|
|
* as used. For @useroffset %0 is also valid, but only with non-%0
|
|
* @usersize.
|
|
*
|
|
* When %NULL args is passed to kmem_cache_create(), it is equivalent to all
|
|
* fields unused.
|
|
*/
|
|
struct kmem_cache_args {
|
|
/**
|
|
* @align: The required alignment for the objects.
|
|
*
|
|
* %0 means no specific alignment is requested.
|
|
*/
|
|
unsigned int align;
|
|
/**
|
|
* @useroffset: Usercopy region offset.
|
|
*
|
|
* %0 is a valid offset, when @usersize is non-%0
|
|
*/
|
|
unsigned int useroffset;
|
|
/**
|
|
* @usersize: Usercopy region size.
|
|
*
|
|
* %0 means no usercopy region is specified.
|
|
*/
|
|
unsigned int usersize;
|
|
/**
|
|
* @freeptr_offset: Custom offset for the free pointer
|
|
* in &SLAB_TYPESAFE_BY_RCU caches
|
|
*
|
|
* By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer
|
|
* outside of the object. This might cause the object to grow in size.
|
|
* Cache creators that have a reason to avoid this can specify a custom
|
|
* free pointer offset in their struct where the free pointer will be
|
|
* placed.
|
|
*
|
|
* Note that placing the free pointer inside the object requires the
|
|
* caller to ensure that no fields are invalidated that are required to
|
|
* guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for
|
|
* details).
|
|
*
|
|
* Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset
|
|
* is specified, %use_freeptr_offset must be set %true.
|
|
*
|
|
* Note that @ctor currently isn't supported with custom free pointers
|
|
* as a @ctor requires an external free pointer.
|
|
*/
|
|
unsigned int freeptr_offset;
|
|
/**
|
|
* @use_freeptr_offset: Whether a @freeptr_offset is used.
|
|
*/
|
|
bool use_freeptr_offset;
|
|
/**
|
|
* @ctor: A constructor for the objects.
|
|
*
|
|
* The constructor is invoked for each object in a newly allocated slab
|
|
* page. It is the cache user's responsibility to free object in the
|
|
* same state as after calling the constructor, or deal appropriately
|
|
* with any differences between a freshly constructed and a reallocated
|
|
* object.
|
|
*
|
|
* %NULL means no constructor.
|
|
*/
|
|
void (*ctor)(void *);
|
|
};
|
|
|
|
struct kmem_cache *__kmem_cache_create_args(const char *name,
|
|
unsigned int object_size,
|
|
struct kmem_cache_args *args,
|
|
slab_flags_t flags);
|
|
static inline struct kmem_cache *
|
|
__kmem_cache_create(const char *name, unsigned int size, unsigned int align,
|
|
slab_flags_t flags, void (*ctor)(void *))
|
|
{
|
|
struct kmem_cache_args kmem_args = {
|
|
.align = align,
|
|
.ctor = ctor,
|
|
};
|
|
|
|
return __kmem_cache_create_args(name, size, &kmem_args, flags);
|
|
}
|
|
|
|
/**
|
|
* kmem_cache_create_usercopy - Create a kmem cache with a region suitable
|
|
* for copying to userspace.
|
|
* @name: A string which is used in /proc/slabinfo to identify this cache.
|
|
* @size: The size of objects to be created in this cache.
|
|
* @align: The required alignment for the objects.
|
|
* @flags: SLAB flags
|
|
* @useroffset: Usercopy region offset
|
|
* @usersize: Usercopy region size
|
|
* @ctor: A constructor for the objects, or %NULL.
|
|
*
|
|
* This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY()
|
|
* if whitelisting a single field is sufficient, or kmem_cache_create() with
|
|
* the necessary parameters passed via the args parameter (see
|
|
* &struct kmem_cache_args)
|
|
*
|
|
* Return: a pointer to the cache on success, NULL on failure.
|
|
*/
|
|
static inline struct kmem_cache *
|
|
kmem_cache_create_usercopy(const char *name, unsigned int size,
|
|
unsigned int align, slab_flags_t flags,
|
|
unsigned int useroffset, unsigned int usersize,
|
|
void (*ctor)(void *))
|
|
{
|
|
struct kmem_cache_args kmem_args = {
|
|
.align = align,
|
|
.ctor = ctor,
|
|
.useroffset = useroffset,
|
|
.usersize = usersize,
|
|
};
|
|
|
|
return __kmem_cache_create_args(name, size, &kmem_args, flags);
|
|
}
|
|
|
|
/* If NULL is passed for @args, use this variant with default arguments. */
|
|
static inline struct kmem_cache *
|
|
__kmem_cache_default_args(const char *name, unsigned int size,
|
|
struct kmem_cache_args *args,
|
|
slab_flags_t flags)
|
|
{
|
|
struct kmem_cache_args kmem_default_args = {};
|
|
|
|
/* Make sure we don't get passed garbage. */
|
|
if (WARN_ON_ONCE(args))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
return __kmem_cache_create_args(name, size, &kmem_default_args, flags);
|
|
}
|
|
|
|
/**
|
|
* kmem_cache_create - Create a kmem cache.
|
|
* @__name: A string which is used in /proc/slabinfo to identify this cache.
|
|
* @__object_size: The size of objects to be created in this cache.
|
|
* @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL
|
|
* means defaults will be used for all the arguments.
|
|
*
|
|
* This is currently implemented as a macro using ``_Generic()`` to call
|
|
* either the new variant of the function, or a legacy one.
|
|
*
|
|
* The new variant has 4 parameters:
|
|
* ``kmem_cache_create(name, object_size, args, flags)``
|
|
*
|
|
* See __kmem_cache_create_args() which implements this.
|
|
*
|
|
* The legacy variant has 5 parameters:
|
|
* ``kmem_cache_create(name, object_size, align, flags, ctor)``
|
|
*
|
|
* The align and ctor parameters map to the respective fields of
|
|
* &struct kmem_cache_args
|
|
*
|
|
* Context: Cannot be called within a interrupt, but can be interrupted.
|
|
*
|
|
* Return: a pointer to the cache on success, NULL on failure.
|
|
*/
|
|
#define kmem_cache_create(__name, __object_size, __args, ...) \
|
|
_Generic((__args), \
|
|
struct kmem_cache_args *: __kmem_cache_create_args, \
|
|
void *: __kmem_cache_default_args, \
|
|
default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__)
|
|
|
|
void kmem_cache_destroy(struct kmem_cache *s);
|
|
int kmem_cache_shrink(struct kmem_cache *s);
|
|
|
|
/*
|
|
* Please use this macro to create slab caches. Simply specify the
|
|
* name of the structure and maybe some flags that are listed above.
|
|
*
|
|
* The alignment of the struct determines object alignment. If you
|
|
* f.e. add ____cacheline_aligned_in_smp to the struct declaration
|
|
* then the objects will be properly aligned in SMP configurations.
|
|
*/
|
|
#define KMEM_CACHE(__struct, __flags) \
|
|
__kmem_cache_create_args(#__struct, sizeof(struct __struct), \
|
|
&(struct kmem_cache_args) { \
|
|
.align = __alignof__(struct __struct), \
|
|
}, (__flags))
|
|
|
|
/*
|
|
* To whitelist a single field for copying to/from usercopy, use this
|
|
* macro instead for KMEM_CACHE() above.
|
|
*/
|
|
#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
|
|
__kmem_cache_create_args(#__struct, sizeof(struct __struct), \
|
|
&(struct kmem_cache_args) { \
|
|
.align = __alignof__(struct __struct), \
|
|
.useroffset = offsetof(struct __struct, __field), \
|
|
.usersize = sizeof_field(struct __struct, __field), \
|
|
}, (__flags))
|
|
|
|
/*
|
|
* Common kmalloc functions provided by all allocators
|
|
*/
|
|
void * __must_check krealloc_noprof(const void *objp, size_t new_size,
|
|
gfp_t flags) __realloc_size(2);
|
|
#define krealloc(...) alloc_hooks(krealloc_noprof(__VA_ARGS__))
|
|
|
|
void kfree(const void *objp);
|
|
void kfree_sensitive(const void *objp);
|
|
size_t __ksize(const void *objp);
|
|
|
|
DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T))
|
|
|
|
/**
|
|
* ksize - Report actual allocation size of associated object
|
|
*
|
|
* @objp: Pointer returned from a prior kmalloc()-family allocation.
|
|
*
|
|
* This should not be used for writing beyond the originally requested
|
|
* allocation size. Either use krealloc() or round up the allocation size
|
|
* with kmalloc_size_roundup() prior to allocation. If this is used to
|
|
* access beyond the originally requested allocation size, UBSAN_BOUNDS
|
|
* and/or FORTIFY_SOURCE may trip, since they only know about the
|
|
* originally allocated size via the __alloc_size attribute.
|
|
*/
|
|
size_t ksize(const void *objp);
|
|
|
|
#ifdef CONFIG_PRINTK
|
|
bool kmem_dump_obj(void *object);
|
|
#else
|
|
static inline bool kmem_dump_obj(void *object) { return false; }
|
|
#endif
|
|
|
|
/*
|
|
* Some archs want to perform DMA into kmalloc caches and need a guaranteed
|
|
* alignment larger than the alignment of a 64-bit integer.
|
|
* Setting ARCH_DMA_MINALIGN in arch headers allows that.
|
|
*/
|
|
#ifdef ARCH_HAS_DMA_MINALIGN
|
|
#if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN)
|
|
#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef ARCH_KMALLOC_MINALIGN
|
|
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
|
|
#elif ARCH_KMALLOC_MINALIGN > 8
|
|
#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
|
|
#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
|
|
#endif
|
|
|
|
/*
|
|
* Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
|
|
* Intended for arches that get misalignment faults even for 64 bit integer
|
|
* aligned buffers.
|
|
*/
|
|
#ifndef ARCH_SLAB_MINALIGN
|
|
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
|
|
#endif
|
|
|
|
/*
|
|
* Arches can define this function if they want to decide the minimum slab
|
|
* alignment at runtime. The value returned by the function must be a power
|
|
* of two and >= ARCH_SLAB_MINALIGN.
|
|
*/
|
|
#ifndef arch_slab_minalign
|
|
static inline unsigned int arch_slab_minalign(void)
|
|
{
|
|
return ARCH_SLAB_MINALIGN;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
|
|
* kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
|
|
* and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
|
|
*/
|
|
#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
|
|
#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
|
|
#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
|
|
|
|
/*
|
|
* Kmalloc array related definitions
|
|
*/
|
|
|
|
/*
|
|
* SLUB directly allocates requests fitting in to an order-1 page
|
|
* (PAGE_SIZE*2). Larger requests are passed to the page allocator.
|
|
*/
|
|
#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
|
|
#define KMALLOC_SHIFT_MAX (MAX_PAGE_ORDER + PAGE_SHIFT)
|
|
#ifndef KMALLOC_SHIFT_LOW
|
|
#define KMALLOC_SHIFT_LOW 3
|
|
#endif
|
|
|
|
/* Maximum allocatable size */
|
|
#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
|
|
/* Maximum size for which we actually use a slab cache */
|
|
#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
|
|
/* Maximum order allocatable via the slab allocator */
|
|
#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
|
|
|
|
/*
|
|
* Kmalloc subsystem.
|
|
*/
|
|
#ifndef KMALLOC_MIN_SIZE
|
|
#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
|
|
#endif
|
|
|
|
/*
|
|
* This restriction comes from byte sized index implementation.
|
|
* Page size is normally 2^12 bytes and, in this case, if we want to use
|
|
* byte sized index which can represent 2^8 entries, the size of the object
|
|
* should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
|
|
* If minimum size of kmalloc is less than 16, we use it as minimum object
|
|
* size and give up to use byte sized index.
|
|
*/
|
|
#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
|
|
(KMALLOC_MIN_SIZE) : 16)
|
|
|
|
#ifdef CONFIG_RANDOM_KMALLOC_CACHES
|
|
#define RANDOM_KMALLOC_CACHES_NR 15 // # of cache copies
|
|
#else
|
|
#define RANDOM_KMALLOC_CACHES_NR 0
|
|
#endif
|
|
|
|
/*
|
|
* Whenever changing this, take care of that kmalloc_type() and
|
|
* create_kmalloc_caches() still work as intended.
|
|
*
|
|
* KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
|
|
* is for accounted but unreclaimable and non-dma objects. All the other
|
|
* kmem caches can have both accounted and unaccounted objects.
|
|
*/
|
|
enum kmalloc_cache_type {
|
|
KMALLOC_NORMAL = 0,
|
|
#ifndef CONFIG_ZONE_DMA
|
|
KMALLOC_DMA = KMALLOC_NORMAL,
|
|
#endif
|
|
#ifndef CONFIG_MEMCG
|
|
KMALLOC_CGROUP = KMALLOC_NORMAL,
|
|
#endif
|
|
KMALLOC_RANDOM_START = KMALLOC_NORMAL,
|
|
KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR,
|
|
#ifdef CONFIG_SLUB_TINY
|
|
KMALLOC_RECLAIM = KMALLOC_NORMAL,
|
|
#else
|
|
KMALLOC_RECLAIM,
|
|
#endif
|
|
#ifdef CONFIG_ZONE_DMA
|
|
KMALLOC_DMA,
|
|
#endif
|
|
#ifdef CONFIG_MEMCG
|
|
KMALLOC_CGROUP,
|
|
#endif
|
|
NR_KMALLOC_TYPES
|
|
};
|
|
|
|
typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1];
|
|
|
|
extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES];
|
|
|
|
/*
|
|
* Define gfp bits that should not be set for KMALLOC_NORMAL.
|
|
*/
|
|
#define KMALLOC_NOT_NORMAL_BITS \
|
|
(__GFP_RECLAIMABLE | \
|
|
(IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \
|
|
(IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0))
|
|
|
|
extern unsigned long random_kmalloc_seed;
|
|
|
|
static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller)
|
|
{
|
|
/*
|
|
* The most common case is KMALLOC_NORMAL, so test for it
|
|
* with a single branch for all the relevant flags.
|
|
*/
|
|
if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
|
|
#ifdef CONFIG_RANDOM_KMALLOC_CACHES
|
|
/* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */
|
|
return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed,
|
|
ilog2(RANDOM_KMALLOC_CACHES_NR + 1));
|
|
#else
|
|
return KMALLOC_NORMAL;
|
|
#endif
|
|
|
|
/*
|
|
* At least one of the flags has to be set. Their priorities in
|
|
* decreasing order are:
|
|
* 1) __GFP_DMA
|
|
* 2) __GFP_RECLAIMABLE
|
|
* 3) __GFP_ACCOUNT
|
|
*/
|
|
if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
|
|
return KMALLOC_DMA;
|
|
if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE))
|
|
return KMALLOC_RECLAIM;
|
|
else
|
|
return KMALLOC_CGROUP;
|
|
}
|
|
|
|
/*
|
|
* Figure out which kmalloc slab an allocation of a certain size
|
|
* belongs to.
|
|
* 0 = zero alloc
|
|
* 1 = 65 .. 96 bytes
|
|
* 2 = 129 .. 192 bytes
|
|
* n = 2^(n-1)+1 .. 2^n
|
|
*
|
|
* Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
|
|
* typical usage is via kmalloc_index() and therefore evaluated at compile-time.
|
|
* Callers where !size_is_constant should only be test modules, where runtime
|
|
* overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab().
|
|
*/
|
|
static __always_inline unsigned int __kmalloc_index(size_t size,
|
|
bool size_is_constant)
|
|
{
|
|
if (!size)
|
|
return 0;
|
|
|
|
if (size <= KMALLOC_MIN_SIZE)
|
|
return KMALLOC_SHIFT_LOW;
|
|
|
|
if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
|
|
return 1;
|
|
if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
|
|
return 2;
|
|
if (size <= 8) return 3;
|
|
if (size <= 16) return 4;
|
|
if (size <= 32) return 5;
|
|
if (size <= 64) return 6;
|
|
if (size <= 128) return 7;
|
|
if (size <= 256) return 8;
|
|
if (size <= 512) return 9;
|
|
if (size <= 1024) return 10;
|
|
if (size <= 2 * 1024) return 11;
|
|
if (size <= 4 * 1024) return 12;
|
|
if (size <= 8 * 1024) return 13;
|
|
if (size <= 16 * 1024) return 14;
|
|
if (size <= 32 * 1024) return 15;
|
|
if (size <= 64 * 1024) return 16;
|
|
if (size <= 128 * 1024) return 17;
|
|
if (size <= 256 * 1024) return 18;
|
|
if (size <= 512 * 1024) return 19;
|
|
if (size <= 1024 * 1024) return 20;
|
|
if (size <= 2 * 1024 * 1024) return 21;
|
|
|
|
if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
|
|
BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
|
|
else
|
|
BUG();
|
|
|
|
/* Will never be reached. Needed because the compiler may complain */
|
|
return -1;
|
|
}
|
|
static_assert(PAGE_SHIFT <= 20);
|
|
#define kmalloc_index(s) __kmalloc_index(s, true)
|
|
|
|
#include <linux/alloc_tag.h>
|
|
|
|
/**
|
|
* kmem_cache_alloc - Allocate an object
|
|
* @cachep: The cache to allocate from.
|
|
* @flags: See kmalloc().
|
|
*
|
|
* Allocate an object from this cache.
|
|
* See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
|
|
*
|
|
* Return: pointer to the new object or %NULL in case of error
|
|
*/
|
|
void *kmem_cache_alloc_noprof(struct kmem_cache *cachep,
|
|
gfp_t flags) __assume_slab_alignment __malloc;
|
|
#define kmem_cache_alloc(...) alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__))
|
|
|
|
void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
|
|
gfp_t gfpflags) __assume_slab_alignment __malloc;
|
|
#define kmem_cache_alloc_lru(...) alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__))
|
|
|
|
/**
|
|
* kmem_cache_charge - memcg charge an already allocated slab memory
|
|
* @objp: address of the slab object to memcg charge
|
|
* @gfpflags: describe the allocation context
|
|
*
|
|
* kmem_cache_charge allows charging a slab object to the current memcg,
|
|
* primarily in cases where charging at allocation time might not be possible
|
|
* because the target memcg is not known (i.e. softirq context)
|
|
*
|
|
* The objp should be pointer returned by the slab allocator functions like
|
|
* kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge
|
|
* behavior can be controlled through gfpflags parameter, which affects how the
|
|
* necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes
|
|
* that overcharging is requested instead of failure, but is not applied for the
|
|
* internal metadata allocation.
|
|
*
|
|
* There are several cases where it will return true even if the charging was
|
|
* not done:
|
|
* More specifically:
|
|
*
|
|
* 1. For !CONFIG_MEMCG or cgroup_disable=memory systems.
|
|
* 2. Already charged slab objects.
|
|
* 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc()
|
|
* without __GFP_ACCOUNT
|
|
* 4. Allocating internal metadata has failed
|
|
*
|
|
* Return: true if charge was successful otherwise false.
|
|
*/
|
|
bool kmem_cache_charge(void *objp, gfp_t gfpflags);
|
|
void kmem_cache_free(struct kmem_cache *s, void *objp);
|
|
|
|
kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
|
|
unsigned int useroffset, unsigned int usersize,
|
|
void (*ctor)(void *));
|
|
|
|
/*
|
|
* Bulk allocation and freeing operations. These are accelerated in an
|
|
* allocator specific way to avoid taking locks repeatedly or building
|
|
* metadata structures unnecessarily.
|
|
*
|
|
* Note that interrupts must be enabled when calling these functions.
|
|
*/
|
|
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
|
|
|
|
int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
|
|
#define kmem_cache_alloc_bulk(...) alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__))
|
|
|
|
static __always_inline void kfree_bulk(size_t size, void **p)
|
|
{
|
|
kmem_cache_free_bulk(NULL, size, p);
|
|
}
|
|
|
|
void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags,
|
|
int node) __assume_slab_alignment __malloc;
|
|
#define kmem_cache_alloc_node(...) alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__))
|
|
|
|
/*
|
|
* These macros allow declaring a kmem_buckets * parameter alongside size, which
|
|
* can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call
|
|
* sites don't have to pass NULL.
|
|
*/
|
|
#ifdef CONFIG_SLAB_BUCKETS
|
|
#define DECL_BUCKET_PARAMS(_size, _b) size_t (_size), kmem_buckets *(_b)
|
|
#define PASS_BUCKET_PARAMS(_size, _b) (_size), (_b)
|
|
#define PASS_BUCKET_PARAM(_b) (_b)
|
|
#else
|
|
#define DECL_BUCKET_PARAMS(_size, _b) size_t (_size)
|
|
#define PASS_BUCKET_PARAMS(_size, _b) (_size)
|
|
#define PASS_BUCKET_PARAM(_b) NULL
|
|
#endif
|
|
|
|
/*
|
|
* The following functions are not to be used directly and are intended only
|
|
* for internal use from kmalloc() and kmalloc_node()
|
|
* with the exception of kunit tests
|
|
*/
|
|
|
|
void *__kmalloc_noprof(size_t size, gfp_t flags)
|
|
__assume_kmalloc_alignment __alloc_size(1);
|
|
|
|
void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
|
|
__assume_kmalloc_alignment __alloc_size(1);
|
|
|
|
void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size)
|
|
__assume_kmalloc_alignment __alloc_size(3);
|
|
|
|
void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
|
|
int node, size_t size)
|
|
__assume_kmalloc_alignment __alloc_size(4);
|
|
|
|
void *__kmalloc_large_noprof(size_t size, gfp_t flags)
|
|
__assume_page_alignment __alloc_size(1);
|
|
|
|
void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
|
|
__assume_page_alignment __alloc_size(1);
|
|
|
|
/**
|
|
* kmalloc - allocate kernel memory
|
|
* @size: how many bytes of memory are required.
|
|
* @flags: describe the allocation context
|
|
*
|
|
* kmalloc is the normal method of allocating memory
|
|
* for objects smaller than page size in the kernel.
|
|
*
|
|
* The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
|
|
* bytes. For @size of power of two bytes, the alignment is also guaranteed
|
|
* to be at least to the size. For other sizes, the alignment is guaranteed to
|
|
* be at least the largest power-of-two divisor of @size.
|
|
*
|
|
* The @flags argument may be one of the GFP flags defined at
|
|
* include/linux/gfp_types.h and described at
|
|
* :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
|
|
*
|
|
* The recommended usage of the @flags is described at
|
|
* :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
|
|
*
|
|
* Below is a brief outline of the most useful GFP flags
|
|
*
|
|
* %GFP_KERNEL
|
|
* Allocate normal kernel ram. May sleep.
|
|
*
|
|
* %GFP_NOWAIT
|
|
* Allocation will not sleep.
|
|
*
|
|
* %GFP_ATOMIC
|
|
* Allocation will not sleep. May use emergency pools.
|
|
*
|
|
* Also it is possible to set different flags by OR'ing
|
|
* in one or more of the following additional @flags:
|
|
*
|
|
* %__GFP_ZERO
|
|
* Zero the allocated memory before returning. Also see kzalloc().
|
|
*
|
|
* %__GFP_HIGH
|
|
* This allocation has high priority and may use emergency pools.
|
|
*
|
|
* %__GFP_NOFAIL
|
|
* Indicate that this allocation is in no way allowed to fail
|
|
* (think twice before using).
|
|
*
|
|
* %__GFP_NORETRY
|
|
* If memory is not immediately available,
|
|
* then give up at once.
|
|
*
|
|
* %__GFP_NOWARN
|
|
* If allocation fails, don't issue any warnings.
|
|
*
|
|
* %__GFP_RETRY_MAYFAIL
|
|
* Try really hard to succeed the allocation but fail
|
|
* eventually.
|
|
*/
|
|
static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags)
|
|
{
|
|
if (__builtin_constant_p(size) && size) {
|
|
unsigned int index;
|
|
|
|
if (size > KMALLOC_MAX_CACHE_SIZE)
|
|
return __kmalloc_large_noprof(size, flags);
|
|
|
|
index = kmalloc_index(size);
|
|
return __kmalloc_cache_noprof(
|
|
kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
|
|
flags, size);
|
|
}
|
|
return __kmalloc_noprof(size, flags);
|
|
}
|
|
#define kmalloc(...) alloc_hooks(kmalloc_noprof(__VA_ARGS__))
|
|
|
|
#define kmem_buckets_alloc(_b, _size, _flags) \
|
|
alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
|
|
|
|
#define kmem_buckets_alloc_track_caller(_b, _size, _flags) \
|
|
alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_))
|
|
|
|
static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node)
|
|
{
|
|
if (__builtin_constant_p(size) && size) {
|
|
unsigned int index;
|
|
|
|
if (size > KMALLOC_MAX_CACHE_SIZE)
|
|
return __kmalloc_large_node_noprof(size, flags, node);
|
|
|
|
index = kmalloc_index(size);
|
|
return __kmalloc_cache_node_noprof(
|
|
kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
|
|
flags, node, size);
|
|
}
|
|
return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node);
|
|
}
|
|
#define kmalloc_node(...) alloc_hooks(kmalloc_node_noprof(__VA_ARGS__))
|
|
|
|
/**
|
|
* kmalloc_array - allocate memory for an array.
|
|
* @n: number of elements.
|
|
* @size: element size.
|
|
* @flags: the type of memory to allocate (see kmalloc).
|
|
*/
|
|
static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
|
|
{
|
|
size_t bytes;
|
|
|
|
if (unlikely(check_mul_overflow(n, size, &bytes)))
|
|
return NULL;
|
|
if (__builtin_constant_p(n) && __builtin_constant_p(size))
|
|
return kmalloc_noprof(bytes, flags);
|
|
return kmalloc_noprof(bytes, flags);
|
|
}
|
|
#define kmalloc_array(...) alloc_hooks(kmalloc_array_noprof(__VA_ARGS__))
|
|
|
|
/**
|
|
* krealloc_array - reallocate memory for an array.
|
|
* @p: pointer to the memory chunk to reallocate
|
|
* @new_n: new number of elements to alloc
|
|
* @new_size: new size of a single member of the array
|
|
* @flags: the type of memory to allocate (see kmalloc)
|
|
*
|
|
* If __GFP_ZERO logic is requested, callers must ensure that, starting with the
|
|
* initial memory allocation, every subsequent call to this API for the same
|
|
* memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
|
|
* __GFP_ZERO is not fully honored by this API.
|
|
*
|
|
* See krealloc_noprof() for further details.
|
|
*
|
|
* In any case, the contents of the object pointed to are preserved up to the
|
|
* lesser of the new and old sizes.
|
|
*/
|
|
static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p,
|
|
size_t new_n,
|
|
size_t new_size,
|
|
gfp_t flags)
|
|
{
|
|
size_t bytes;
|
|
|
|
if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
|
|
return NULL;
|
|
|
|
return krealloc_noprof(p, bytes, flags);
|
|
}
|
|
#define krealloc_array(...) alloc_hooks(krealloc_array_noprof(__VA_ARGS__))
|
|
|
|
/**
|
|
* kcalloc - allocate memory for an array. The memory is set to zero.
|
|
* @n: number of elements.
|
|
* @size: element size.
|
|
* @flags: the type of memory to allocate (see kmalloc).
|
|
*/
|
|
#define kcalloc(n, size, flags) kmalloc_array(n, size, (flags) | __GFP_ZERO)
|
|
|
|
void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node,
|
|
unsigned long caller) __alloc_size(1);
|
|
#define kmalloc_node_track_caller_noprof(size, flags, node, caller) \
|
|
__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller)
|
|
#define kmalloc_node_track_caller(...) \
|
|
alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_))
|
|
|
|
/*
|
|
* kmalloc_track_caller is a special version of kmalloc that records the
|
|
* calling function of the routine calling it for slab leak tracking instead
|
|
* of just the calling function (confusing, eh?).
|
|
* It's useful when the call to kmalloc comes from a widely-used standard
|
|
* allocator where we care about the real place the memory allocation
|
|
* request comes from.
|
|
*/
|
|
#define kmalloc_track_caller(...) kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE)
|
|
|
|
#define kmalloc_track_caller_noprof(...) \
|
|
kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_)
|
|
|
|
static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags,
|
|
int node)
|
|
{
|
|
size_t bytes;
|
|
|
|
if (unlikely(check_mul_overflow(n, size, &bytes)))
|
|
return NULL;
|
|
if (__builtin_constant_p(n) && __builtin_constant_p(size))
|
|
return kmalloc_node_noprof(bytes, flags, node);
|
|
return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node);
|
|
}
|
|
#define kmalloc_array_node(...) alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__))
|
|
|
|
#define kcalloc_node(_n, _size, _flags, _node) \
|
|
kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node)
|
|
|
|
/*
|
|
* Shortcuts
|
|
*/
|
|
#define kmem_cache_zalloc(_k, _flags) kmem_cache_alloc(_k, (_flags)|__GFP_ZERO)
|
|
|
|
/**
|
|
* kzalloc - allocate memory. The memory is set to zero.
|
|
* @size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate (see kmalloc).
|
|
*/
|
|
static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags)
|
|
{
|
|
return kmalloc_noprof(size, flags | __GFP_ZERO);
|
|
}
|
|
#define kzalloc(...) alloc_hooks(kzalloc_noprof(__VA_ARGS__))
|
|
#define kzalloc_node(_size, _flags, _node) kmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
|
|
|
|
void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1);
|
|
#define kvmalloc_node_noprof(size, flags, node) \
|
|
__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node)
|
|
#define kvmalloc_node(...) alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__))
|
|
|
|
#define kvmalloc(_size, _flags) kvmalloc_node(_size, _flags, NUMA_NO_NODE)
|
|
#define kvmalloc_noprof(_size, _flags) kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE)
|
|
#define kvzalloc(_size, _flags) kvmalloc(_size, (_flags)|__GFP_ZERO)
|
|
|
|
#define kvzalloc_node(_size, _flags, _node) kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
|
|
#define kmem_buckets_valloc(_b, _size, _flags) \
|
|
alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
|
|
|
|
static inline __alloc_size(1, 2) void *
|
|
kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node)
|
|
{
|
|
size_t bytes;
|
|
|
|
if (unlikely(check_mul_overflow(n, size, &bytes)))
|
|
return NULL;
|
|
|
|
return kvmalloc_node_noprof(bytes, flags, node);
|
|
}
|
|
|
|
#define kvmalloc_array_noprof(...) kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
|
|
#define kvcalloc_node_noprof(_n,_s,_f,_node) kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node)
|
|
#define kvcalloc_noprof(...) kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
|
|
|
|
#define kvmalloc_array(...) alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__))
|
|
#define kvcalloc_node(...) alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__))
|
|
#define kvcalloc(...) alloc_hooks(kvcalloc_noprof(__VA_ARGS__))
|
|
|
|
void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
|
|
__realloc_size(2);
|
|
#define kvrealloc(...) alloc_hooks(kvrealloc_noprof(__VA_ARGS__))
|
|
|
|
extern void kvfree(const void *addr);
|
|
DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T))
|
|
|
|
extern void kvfree_sensitive(const void *addr, size_t len);
|
|
|
|
unsigned int kmem_cache_size(struct kmem_cache *s);
|
|
|
|
/**
|
|
* kmalloc_size_roundup - Report allocation bucket size for the given size
|
|
*
|
|
* @size: Number of bytes to round up from.
|
|
*
|
|
* This returns the number of bytes that would be available in a kmalloc()
|
|
* allocation of @size bytes. For example, a 126 byte request would be
|
|
* rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
|
|
* for the general-purpose kmalloc()-based allocations, and is not for the
|
|
* pre-sized kmem_cache_alloc()-based allocations.)
|
|
*
|
|
* Use this to kmalloc() the full bucket size ahead of time instead of using
|
|
* ksize() to query the size after an allocation.
|
|
*/
|
|
size_t kmalloc_size_roundup(size_t size);
|
|
|
|
void __init kmem_cache_init_late(void);
|
|
|
|
#endif /* _LINUX_SLAB_H */
|