linux-next/crypto/lskcipher.c
Herbert Xu 7cfc2ab3f0 crypto: lskcipher - Copy IV in lskcipher glue code always
The lskcipher glue code for skcipher needs to copy the IV every
time rather than only on the first and last request.  Otherwise
those algorithms that use IV to perform chaining may break, e.g.,
CBC.

This is because crypto_skcipher_import/export do not include the
IV as part of the saved state.

Reported-by: syzbot+b90b904ef6bdfdafec1d@syzkaller.appspotmail.com
Fixes: 662ea18d089b ("crypto: skcipher - Make use of internal state")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-02-24 08:37:24 +08:00

658 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Linear symmetric key cipher operations.
*
* Generic encrypt/decrypt wrapper for ciphers.
*
* Copyright (c) 2023 Herbert Xu <herbert@gondor.apana.org.au>
*/
#include <linux/cryptouser.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <net/netlink.h>
#include "skcipher.h"
static inline struct crypto_lskcipher *__crypto_lskcipher_cast(
struct crypto_tfm *tfm)
{
return container_of(tfm, struct crypto_lskcipher, base);
}
static inline struct lskcipher_alg *__crypto_lskcipher_alg(
struct crypto_alg *alg)
{
return container_of(alg, struct lskcipher_alg, co.base);
}
static inline struct crypto_istat_cipher *lskcipher_get_stat(
struct lskcipher_alg *alg)
{
return skcipher_get_stat_common(&alg->co);
}
static inline int crypto_lskcipher_errstat(struct lskcipher_alg *alg, int err)
{
struct crypto_istat_cipher *istat = lskcipher_get_stat(alg);
if (!IS_ENABLED(CONFIG_CRYPTO_STATS))
return err;
if (err)
atomic64_inc(&istat->err_cnt);
return err;
}
static int lskcipher_setkey_unaligned(struct crypto_lskcipher *tfm,
const u8 *key, unsigned int keylen)
{
unsigned long alignmask = crypto_lskcipher_alignmask(tfm);
struct lskcipher_alg *cipher = crypto_lskcipher_alg(tfm);
u8 *buffer, *alignbuffer;
unsigned long absize;
int ret;
absize = keylen + alignmask;
buffer = kmalloc(absize, GFP_ATOMIC);
if (!buffer)
return -ENOMEM;
alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
memcpy(alignbuffer, key, keylen);
ret = cipher->setkey(tfm, alignbuffer, keylen);
kfree_sensitive(buffer);
return ret;
}
int crypto_lskcipher_setkey(struct crypto_lskcipher *tfm, const u8 *key,
unsigned int keylen)
{
unsigned long alignmask = crypto_lskcipher_alignmask(tfm);
struct lskcipher_alg *cipher = crypto_lskcipher_alg(tfm);
if (keylen < cipher->co.min_keysize || keylen > cipher->co.max_keysize)
return -EINVAL;
if ((unsigned long)key & alignmask)
return lskcipher_setkey_unaligned(tfm, key, keylen);
else
return cipher->setkey(tfm, key, keylen);
}
EXPORT_SYMBOL_GPL(crypto_lskcipher_setkey);
static int crypto_lskcipher_crypt_unaligned(
struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len,
u8 *iv, int (*crypt)(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *iv, u32 flags))
{
unsigned statesize = crypto_lskcipher_statesize(tfm);
unsigned ivsize = crypto_lskcipher_ivsize(tfm);
unsigned bs = crypto_lskcipher_blocksize(tfm);
unsigned cs = crypto_lskcipher_chunksize(tfm);
int err;
u8 *tiv;
u8 *p;
BUILD_BUG_ON(MAX_CIPHER_BLOCKSIZE > PAGE_SIZE ||
MAX_CIPHER_ALIGNMASK >= PAGE_SIZE);
tiv = kmalloc(PAGE_SIZE, GFP_ATOMIC);
if (!tiv)
return -ENOMEM;
memcpy(tiv, iv, ivsize + statesize);
p = kmalloc(PAGE_SIZE, GFP_ATOMIC);
err = -ENOMEM;
if (!p)
goto out;
while (len >= bs) {
unsigned chunk = min((unsigned)PAGE_SIZE, len);
int err;
if (chunk > cs)
chunk &= ~(cs - 1);
memcpy(p, src, chunk);
err = crypt(tfm, p, p, chunk, tiv, CRYPTO_LSKCIPHER_FLAG_FINAL);
if (err)
goto out;
memcpy(dst, p, chunk);
src += chunk;
dst += chunk;
len -= chunk;
}
err = len ? -EINVAL : 0;
out:
memcpy(iv, tiv, ivsize + statesize);
kfree_sensitive(p);
kfree_sensitive(tiv);
return err;
}
static int crypto_lskcipher_crypt(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *iv,
int (*crypt)(struct crypto_lskcipher *tfm,
const u8 *src, u8 *dst,
unsigned len, u8 *iv,
u32 flags))
{
unsigned long alignmask = crypto_lskcipher_alignmask(tfm);
struct lskcipher_alg *alg = crypto_lskcipher_alg(tfm);
int ret;
if (((unsigned long)src | (unsigned long)dst | (unsigned long)iv) &
alignmask) {
ret = crypto_lskcipher_crypt_unaligned(tfm, src, dst, len, iv,
crypt);
goto out;
}
ret = crypt(tfm, src, dst, len, iv, CRYPTO_LSKCIPHER_FLAG_FINAL);
out:
return crypto_lskcipher_errstat(alg, ret);
}
int crypto_lskcipher_encrypt(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *iv)
{
struct lskcipher_alg *alg = crypto_lskcipher_alg(tfm);
if (IS_ENABLED(CONFIG_CRYPTO_STATS)) {
struct crypto_istat_cipher *istat = lskcipher_get_stat(alg);
atomic64_inc(&istat->encrypt_cnt);
atomic64_add(len, &istat->encrypt_tlen);
}
return crypto_lskcipher_crypt(tfm, src, dst, len, iv, alg->encrypt);
}
EXPORT_SYMBOL_GPL(crypto_lskcipher_encrypt);
int crypto_lskcipher_decrypt(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *iv)
{
struct lskcipher_alg *alg = crypto_lskcipher_alg(tfm);
if (IS_ENABLED(CONFIG_CRYPTO_STATS)) {
struct crypto_istat_cipher *istat = lskcipher_get_stat(alg);
atomic64_inc(&istat->decrypt_cnt);
atomic64_add(len, &istat->decrypt_tlen);
}
return crypto_lskcipher_crypt(tfm, src, dst, len, iv, alg->decrypt);
}
EXPORT_SYMBOL_GPL(crypto_lskcipher_decrypt);
static int crypto_lskcipher_crypt_sg(struct skcipher_request *req,
int (*crypt)(struct crypto_lskcipher *tfm,
const u8 *src, u8 *dst,
unsigned len, u8 *ivs,
u32 flags))
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct crypto_lskcipher **ctx = crypto_skcipher_ctx(skcipher);
u8 *ivs = skcipher_request_ctx(req);
struct crypto_lskcipher *tfm = *ctx;
struct skcipher_walk walk;
unsigned ivsize;
u32 flags;
int err;
ivsize = crypto_lskcipher_ivsize(tfm);
ivs = PTR_ALIGN(ivs, crypto_skcipher_alignmask(skcipher) + 1);
memcpy(ivs, req->iv, ivsize);
flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
if (req->base.flags & CRYPTO_SKCIPHER_REQ_CONT)
flags |= CRYPTO_LSKCIPHER_FLAG_CONT;
if (!(req->base.flags & CRYPTO_SKCIPHER_REQ_NOTFINAL))
flags |= CRYPTO_LSKCIPHER_FLAG_FINAL;
err = skcipher_walk_virt(&walk, req, false);
while (walk.nbytes) {
err = crypt(tfm, walk.src.virt.addr, walk.dst.virt.addr,
walk.nbytes, ivs,
flags & ~(walk.nbytes == walk.total ?
0 : CRYPTO_LSKCIPHER_FLAG_FINAL));
err = skcipher_walk_done(&walk, err);
flags |= CRYPTO_LSKCIPHER_FLAG_CONT;
}
memcpy(req->iv, ivs, ivsize);
return err;
}
int crypto_lskcipher_encrypt_sg(struct skcipher_request *req)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct crypto_lskcipher **ctx = crypto_skcipher_ctx(skcipher);
struct lskcipher_alg *alg = crypto_lskcipher_alg(*ctx);
return crypto_lskcipher_crypt_sg(req, alg->encrypt);
}
int crypto_lskcipher_decrypt_sg(struct skcipher_request *req)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct crypto_lskcipher **ctx = crypto_skcipher_ctx(skcipher);
struct lskcipher_alg *alg = crypto_lskcipher_alg(*ctx);
return crypto_lskcipher_crypt_sg(req, alg->decrypt);
}
static void crypto_lskcipher_exit_tfm(struct crypto_tfm *tfm)
{
struct crypto_lskcipher *skcipher = __crypto_lskcipher_cast(tfm);
struct lskcipher_alg *alg = crypto_lskcipher_alg(skcipher);
alg->exit(skcipher);
}
static int crypto_lskcipher_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_lskcipher *skcipher = __crypto_lskcipher_cast(tfm);
struct lskcipher_alg *alg = crypto_lskcipher_alg(skcipher);
if (alg->exit)
skcipher->base.exit = crypto_lskcipher_exit_tfm;
if (alg->init)
return alg->init(skcipher);
return 0;
}
static void crypto_lskcipher_free_instance(struct crypto_instance *inst)
{
struct lskcipher_instance *skcipher =
container_of(inst, struct lskcipher_instance, s.base);
skcipher->free(skcipher);
}
static void __maybe_unused crypto_lskcipher_show(
struct seq_file *m, struct crypto_alg *alg)
{
struct lskcipher_alg *skcipher = __crypto_lskcipher_alg(alg);
seq_printf(m, "type : lskcipher\n");
seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
seq_printf(m, "min keysize : %u\n", skcipher->co.min_keysize);
seq_printf(m, "max keysize : %u\n", skcipher->co.max_keysize);
seq_printf(m, "ivsize : %u\n", skcipher->co.ivsize);
seq_printf(m, "chunksize : %u\n", skcipher->co.chunksize);
seq_printf(m, "statesize : %u\n", skcipher->co.statesize);
}
static int __maybe_unused crypto_lskcipher_report(
struct sk_buff *skb, struct crypto_alg *alg)
{
struct lskcipher_alg *skcipher = __crypto_lskcipher_alg(alg);
struct crypto_report_blkcipher rblkcipher;
memset(&rblkcipher, 0, sizeof(rblkcipher));
strscpy(rblkcipher.type, "lskcipher", sizeof(rblkcipher.type));
strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
rblkcipher.blocksize = alg->cra_blocksize;
rblkcipher.min_keysize = skcipher->co.min_keysize;
rblkcipher.max_keysize = skcipher->co.max_keysize;
rblkcipher.ivsize = skcipher->co.ivsize;
return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
sizeof(rblkcipher), &rblkcipher);
}
static int __maybe_unused crypto_lskcipher_report_stat(
struct sk_buff *skb, struct crypto_alg *alg)
{
struct lskcipher_alg *skcipher = __crypto_lskcipher_alg(alg);
struct crypto_istat_cipher *istat;
struct crypto_stat_cipher rcipher;
istat = lskcipher_get_stat(skcipher);
memset(&rcipher, 0, sizeof(rcipher));
strscpy(rcipher.type, "cipher", sizeof(rcipher.type));
rcipher.stat_encrypt_cnt = atomic64_read(&istat->encrypt_cnt);
rcipher.stat_encrypt_tlen = atomic64_read(&istat->encrypt_tlen);
rcipher.stat_decrypt_cnt = atomic64_read(&istat->decrypt_cnt);
rcipher.stat_decrypt_tlen = atomic64_read(&istat->decrypt_tlen);
rcipher.stat_err_cnt = atomic64_read(&istat->err_cnt);
return nla_put(skb, CRYPTOCFGA_STAT_CIPHER, sizeof(rcipher), &rcipher);
}
static const struct crypto_type crypto_lskcipher_type = {
.extsize = crypto_alg_extsize,
.init_tfm = crypto_lskcipher_init_tfm,
.free = crypto_lskcipher_free_instance,
#ifdef CONFIG_PROC_FS
.show = crypto_lskcipher_show,
#endif
#if IS_ENABLED(CONFIG_CRYPTO_USER)
.report = crypto_lskcipher_report,
#endif
#ifdef CONFIG_CRYPTO_STATS
.report_stat = crypto_lskcipher_report_stat,
#endif
.maskclear = ~CRYPTO_ALG_TYPE_MASK,
.maskset = CRYPTO_ALG_TYPE_MASK,
.type = CRYPTO_ALG_TYPE_LSKCIPHER,
.tfmsize = offsetof(struct crypto_lskcipher, base),
};
static void crypto_lskcipher_exit_tfm_sg(struct crypto_tfm *tfm)
{
struct crypto_lskcipher **ctx = crypto_tfm_ctx(tfm);
crypto_free_lskcipher(*ctx);
}
int crypto_init_lskcipher_ops_sg(struct crypto_tfm *tfm)
{
struct crypto_lskcipher **ctx = crypto_tfm_ctx(tfm);
struct crypto_alg *calg = tfm->__crt_alg;
struct crypto_lskcipher *skcipher;
if (!crypto_mod_get(calg))
return -EAGAIN;
skcipher = crypto_create_tfm(calg, &crypto_lskcipher_type);
if (IS_ERR(skcipher)) {
crypto_mod_put(calg);
return PTR_ERR(skcipher);
}
*ctx = skcipher;
tfm->exit = crypto_lskcipher_exit_tfm_sg;
return 0;
}
int crypto_grab_lskcipher(struct crypto_lskcipher_spawn *spawn,
struct crypto_instance *inst,
const char *name, u32 type, u32 mask)
{
spawn->base.frontend = &crypto_lskcipher_type;
return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_grab_lskcipher);
struct crypto_lskcipher *crypto_alloc_lskcipher(const char *alg_name,
u32 type, u32 mask)
{
return crypto_alloc_tfm(alg_name, &crypto_lskcipher_type, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_alloc_lskcipher);
static int lskcipher_prepare_alg(struct lskcipher_alg *alg)
{
struct crypto_alg *base = &alg->co.base;
int err;
err = skcipher_prepare_alg_common(&alg->co);
if (err)
return err;
if (alg->co.chunksize & (alg->co.chunksize - 1))
return -EINVAL;
base->cra_type = &crypto_lskcipher_type;
base->cra_flags |= CRYPTO_ALG_TYPE_LSKCIPHER;
return 0;
}
int crypto_register_lskcipher(struct lskcipher_alg *alg)
{
struct crypto_alg *base = &alg->co.base;
int err;
err = lskcipher_prepare_alg(alg);
if (err)
return err;
return crypto_register_alg(base);
}
EXPORT_SYMBOL_GPL(crypto_register_lskcipher);
void crypto_unregister_lskcipher(struct lskcipher_alg *alg)
{
crypto_unregister_alg(&alg->co.base);
}
EXPORT_SYMBOL_GPL(crypto_unregister_lskcipher);
int crypto_register_lskciphers(struct lskcipher_alg *algs, int count)
{
int i, ret;
for (i = 0; i < count; i++) {
ret = crypto_register_lskcipher(&algs[i]);
if (ret)
goto err;
}
return 0;
err:
for (--i; i >= 0; --i)
crypto_unregister_lskcipher(&algs[i]);
return ret;
}
EXPORT_SYMBOL_GPL(crypto_register_lskciphers);
void crypto_unregister_lskciphers(struct lskcipher_alg *algs, int count)
{
int i;
for (i = count - 1; i >= 0; --i)
crypto_unregister_lskcipher(&algs[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_lskciphers);
int lskcipher_register_instance(struct crypto_template *tmpl,
struct lskcipher_instance *inst)
{
int err;
if (WARN_ON(!inst->free))
return -EINVAL;
err = lskcipher_prepare_alg(&inst->alg);
if (err)
return err;
return crypto_register_instance(tmpl, lskcipher_crypto_instance(inst));
}
EXPORT_SYMBOL_GPL(lskcipher_register_instance);
static int lskcipher_setkey_simple(struct crypto_lskcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct crypto_lskcipher *cipher = lskcipher_cipher_simple(tfm);
crypto_lskcipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
crypto_lskcipher_set_flags(cipher, crypto_lskcipher_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
return crypto_lskcipher_setkey(cipher, key, keylen);
}
static int lskcipher_init_tfm_simple(struct crypto_lskcipher *tfm)
{
struct lskcipher_instance *inst = lskcipher_alg_instance(tfm);
struct crypto_lskcipher **ctx = crypto_lskcipher_ctx(tfm);
struct crypto_lskcipher_spawn *spawn;
struct crypto_lskcipher *cipher;
spawn = lskcipher_instance_ctx(inst);
cipher = crypto_spawn_lskcipher(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
*ctx = cipher;
return 0;
}
static void lskcipher_exit_tfm_simple(struct crypto_lskcipher *tfm)
{
struct crypto_lskcipher **ctx = crypto_lskcipher_ctx(tfm);
crypto_free_lskcipher(*ctx);
}
static void lskcipher_free_instance_simple(struct lskcipher_instance *inst)
{
crypto_drop_lskcipher(lskcipher_instance_ctx(inst));
kfree(inst);
}
/**
* lskcipher_alloc_instance_simple - allocate instance of simple block cipher
*
* Allocate an lskcipher_instance for a simple block cipher mode of operation,
* e.g. cbc or ecb. The instance context will have just a single crypto_spawn,
* that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize,
* alignmask, and priority are set from the underlying cipher but can be
* overridden if needed. The tfm context defaults to
* struct crypto_lskcipher *, and default ->setkey(), ->init(), and
* ->exit() methods are installed.
*
* @tmpl: the template being instantiated
* @tb: the template parameters
*
* Return: a pointer to the new instance, or an ERR_PTR(). The caller still
* needs to register the instance.
*/
struct lskcipher_instance *lskcipher_alloc_instance_simple(
struct crypto_template *tmpl, struct rtattr **tb)
{
u32 mask;
struct lskcipher_instance *inst;
struct crypto_lskcipher_spawn *spawn;
char ecb_name[CRYPTO_MAX_ALG_NAME];
struct lskcipher_alg *cipher_alg;
const char *cipher_name;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_LSKCIPHER, &mask);
if (err)
return ERR_PTR(err);
cipher_name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(cipher_name))
return ERR_CAST(cipher_name);
inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
if (!inst)
return ERR_PTR(-ENOMEM);
spawn = lskcipher_instance_ctx(inst);
err = crypto_grab_lskcipher(spawn,
lskcipher_crypto_instance(inst),
cipher_name, 0, mask);
ecb_name[0] = 0;
if (err == -ENOENT && !!memcmp(tmpl->name, "ecb", 4)) {
err = -ENAMETOOLONG;
if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
cipher_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
err = crypto_grab_lskcipher(spawn,
lskcipher_crypto_instance(inst),
ecb_name, 0, mask);
}
if (err)
goto err_free_inst;
cipher_alg = crypto_lskcipher_spawn_alg(spawn);
err = crypto_inst_setname(lskcipher_crypto_instance(inst), tmpl->name,
&cipher_alg->co.base);
if (err)
goto err_free_inst;
if (ecb_name[0]) {
int len;
err = -EINVAL;
len = strscpy(ecb_name, &cipher_alg->co.base.cra_name[4],
sizeof(ecb_name));
if (len < 2)
goto err_free_inst;
if (ecb_name[len - 1] != ')')
goto err_free_inst;
ecb_name[len - 1] = 0;
err = -ENAMETOOLONG;
if (snprintf(inst->alg.co.base.cra_name, CRYPTO_MAX_ALG_NAME,
"%s(%s)", tmpl->name, ecb_name) >=
CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
if (strcmp(ecb_name, cipher_name) &&
snprintf(inst->alg.co.base.cra_driver_name,
CRYPTO_MAX_ALG_NAME,
"%s(%s)", tmpl->name, cipher_name) >=
CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
} else {
/* Don't allow nesting. */
err = -ELOOP;
if ((cipher_alg->co.base.cra_flags & CRYPTO_ALG_INSTANCE))
goto err_free_inst;
}
err = -EINVAL;
if (cipher_alg->co.ivsize)
goto err_free_inst;
inst->free = lskcipher_free_instance_simple;
/* Default algorithm properties, can be overridden */
inst->alg.co.base.cra_blocksize = cipher_alg->co.base.cra_blocksize;
inst->alg.co.base.cra_alignmask = cipher_alg->co.base.cra_alignmask;
inst->alg.co.base.cra_priority = cipher_alg->co.base.cra_priority;
inst->alg.co.min_keysize = cipher_alg->co.min_keysize;
inst->alg.co.max_keysize = cipher_alg->co.max_keysize;
inst->alg.co.ivsize = cipher_alg->co.base.cra_blocksize;
inst->alg.co.statesize = cipher_alg->co.statesize;
/* Use struct crypto_lskcipher * by default, can be overridden */
inst->alg.co.base.cra_ctxsize = sizeof(struct crypto_lskcipher *);
inst->alg.setkey = lskcipher_setkey_simple;
inst->alg.init = lskcipher_init_tfm_simple;
inst->alg.exit = lskcipher_exit_tfm_simple;
return inst;
err_free_inst:
lskcipher_free_instance_simple(inst);
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(lskcipher_alloc_instance_simple);