linux-next/fs/ntfs3/bitmap.c
Konstantin Komarov 4ad5c924df
fs/ntfs3: Allow repeated call to ntfs3_put_sbi
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
2023-09-28 15:03:59 +03:00

1575 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
*
* Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
*
* This code builds two trees of free clusters extents.
* Trees are sorted by start of extent and by length of extent.
* NTFS_MAX_WND_EXTENTS defines the maximum number of elements in trees.
* In extreme case code reads on-disk bitmap to find free clusters.
*
*/
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include "ntfs.h"
#include "ntfs_fs.h"
/*
* Maximum number of extents in tree.
*/
#define NTFS_MAX_WND_EXTENTS (32u * 1024u)
struct rb_node_key {
struct rb_node node;
size_t key;
};
struct e_node {
struct rb_node_key start; /* Tree sorted by start. */
struct rb_node_key count; /* Tree sorted by len. */
};
static int wnd_rescan(struct wnd_bitmap *wnd);
static struct buffer_head *wnd_map(struct wnd_bitmap *wnd, size_t iw);
static bool wnd_is_free_hlp(struct wnd_bitmap *wnd, size_t bit, size_t bits);
static struct kmem_cache *ntfs_enode_cachep;
int __init ntfs3_init_bitmap(void)
{
ntfs_enode_cachep = kmem_cache_create("ntfs3_enode_cache",
sizeof(struct e_node), 0,
SLAB_RECLAIM_ACCOUNT, NULL);
return ntfs_enode_cachep ? 0 : -ENOMEM;
}
void ntfs3_exit_bitmap(void)
{
kmem_cache_destroy(ntfs_enode_cachep);
}
/*
* wnd_scan
*
* b_pos + b_len - biggest fragment.
* Scan range [wpos wbits) window @buf.
*
* Return: -1 if not found.
*/
static size_t wnd_scan(const void *buf, size_t wbit, u32 wpos, u32 wend,
size_t to_alloc, size_t *prev_tail, size_t *b_pos,
size_t *b_len)
{
while (wpos < wend) {
size_t free_len;
u32 free_bits, end;
u32 used = find_next_zero_bit_le(buf, wend, wpos);
if (used >= wend) {
if (*b_len < *prev_tail) {
*b_pos = wbit - *prev_tail;
*b_len = *prev_tail;
}
*prev_tail = 0;
return -1;
}
if (used > wpos) {
wpos = used;
if (*b_len < *prev_tail) {
*b_pos = wbit - *prev_tail;
*b_len = *prev_tail;
}
*prev_tail = 0;
}
/*
* Now we have a fragment [wpos, wend) staring with 0.
*/
end = wpos + to_alloc - *prev_tail;
free_bits = find_next_bit_le(buf, min(end, wend), wpos);
free_len = *prev_tail + free_bits - wpos;
if (*b_len < free_len) {
*b_pos = wbit + wpos - *prev_tail;
*b_len = free_len;
}
if (free_len >= to_alloc)
return wbit + wpos - *prev_tail;
if (free_bits >= wend) {
*prev_tail += free_bits - wpos;
return -1;
}
wpos = free_bits + 1;
*prev_tail = 0;
}
return -1;
}
/*
* wnd_close - Frees all resources.
*/
void wnd_close(struct wnd_bitmap *wnd)
{
struct rb_node *node, *next;
kfree(wnd->free_bits);
wnd->free_bits = NULL;
run_close(&wnd->run);
node = rb_first(&wnd->start_tree);
while (node) {
next = rb_next(node);
rb_erase(node, &wnd->start_tree);
kmem_cache_free(ntfs_enode_cachep,
rb_entry(node, struct e_node, start.node));
node = next;
}
}
static struct rb_node *rb_lookup(struct rb_root *root, size_t v)
{
struct rb_node **p = &root->rb_node;
struct rb_node *r = NULL;
while (*p) {
struct rb_node_key *k;
k = rb_entry(*p, struct rb_node_key, node);
if (v < k->key) {
p = &(*p)->rb_left;
} else if (v > k->key) {
r = &k->node;
p = &(*p)->rb_right;
} else {
return &k->node;
}
}
return r;
}
/*
* rb_insert_count - Helper function to insert special kind of 'count' tree.
*/
static inline bool rb_insert_count(struct rb_root *root, struct e_node *e)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
size_t e_ckey = e->count.key;
size_t e_skey = e->start.key;
while (*p) {
struct e_node *k =
rb_entry(parent = *p, struct e_node, count.node);
if (e_ckey > k->count.key) {
p = &(*p)->rb_left;
} else if (e_ckey < k->count.key) {
p = &(*p)->rb_right;
} else if (e_skey < k->start.key) {
p = &(*p)->rb_left;
} else if (e_skey > k->start.key) {
p = &(*p)->rb_right;
} else {
WARN_ON(1);
return false;
}
}
rb_link_node(&e->count.node, parent, p);
rb_insert_color(&e->count.node, root);
return true;
}
/*
* rb_insert_start - Helper function to insert special kind of 'count' tree.
*/
static inline bool rb_insert_start(struct rb_root *root, struct e_node *e)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
size_t e_skey = e->start.key;
while (*p) {
struct e_node *k;
parent = *p;
k = rb_entry(parent, struct e_node, start.node);
if (e_skey < k->start.key) {
p = &(*p)->rb_left;
} else if (e_skey > k->start.key) {
p = &(*p)->rb_right;
} else {
WARN_ON(1);
return false;
}
}
rb_link_node(&e->start.node, parent, p);
rb_insert_color(&e->start.node, root);
return true;
}
/*
* wnd_add_free_ext - Adds a new extent of free space.
* @build: 1 when building tree.
*/
static void wnd_add_free_ext(struct wnd_bitmap *wnd, size_t bit, size_t len,
bool build)
{
struct e_node *e, *e0 = NULL;
size_t ib, end_in = bit + len;
struct rb_node *n;
if (build) {
/* Use extent_min to filter too short extents. */
if (wnd->count >= NTFS_MAX_WND_EXTENTS &&
len <= wnd->extent_min) {
wnd->uptodated = -1;
return;
}
} else {
/* Try to find extent before 'bit'. */
n = rb_lookup(&wnd->start_tree, bit);
if (!n) {
n = rb_first(&wnd->start_tree);
} else {
e = rb_entry(n, struct e_node, start.node);
n = rb_next(n);
if (e->start.key + e->count.key == bit) {
/* Remove left. */
bit = e->start.key;
len += e->count.key;
rb_erase(&e->start.node, &wnd->start_tree);
rb_erase(&e->count.node, &wnd->count_tree);
wnd->count -= 1;
e0 = e;
}
}
while (n) {
size_t next_end;
e = rb_entry(n, struct e_node, start.node);
next_end = e->start.key + e->count.key;
if (e->start.key > end_in)
break;
/* Remove right. */
n = rb_next(n);
len += next_end - end_in;
end_in = next_end;
rb_erase(&e->start.node, &wnd->start_tree);
rb_erase(&e->count.node, &wnd->count_tree);
wnd->count -= 1;
if (!e0)
e0 = e;
else
kmem_cache_free(ntfs_enode_cachep, e);
}
if (wnd->uptodated != 1) {
/* Check bits before 'bit'. */
ib = wnd->zone_bit == wnd->zone_end ||
bit < wnd->zone_end ?
0 :
wnd->zone_end;
while (bit > ib && wnd_is_free_hlp(wnd, bit - 1, 1)) {
bit -= 1;
len += 1;
}
/* Check bits after 'end_in'. */
ib = wnd->zone_bit == wnd->zone_end ||
end_in > wnd->zone_bit ?
wnd->nbits :
wnd->zone_bit;
while (end_in < ib && wnd_is_free_hlp(wnd, end_in, 1)) {
end_in += 1;
len += 1;
}
}
}
/* Insert new fragment. */
if (wnd->count >= NTFS_MAX_WND_EXTENTS) {
if (e0)
kmem_cache_free(ntfs_enode_cachep, e0);
wnd->uptodated = -1;
/* Compare with smallest fragment. */
n = rb_last(&wnd->count_tree);
e = rb_entry(n, struct e_node, count.node);
if (len <= e->count.key)
goto out; /* Do not insert small fragments. */
if (build) {
struct e_node *e2;
n = rb_prev(n);
e2 = rb_entry(n, struct e_node, count.node);
/* Smallest fragment will be 'e2->count.key'. */
wnd->extent_min = e2->count.key;
}
/* Replace smallest fragment by new one. */
rb_erase(&e->start.node, &wnd->start_tree);
rb_erase(&e->count.node, &wnd->count_tree);
wnd->count -= 1;
} else {
e = e0 ? e0 : kmem_cache_alloc(ntfs_enode_cachep, GFP_ATOMIC);
if (!e) {
wnd->uptodated = -1;
goto out;
}
if (build && len <= wnd->extent_min)
wnd->extent_min = len;
}
e->start.key = bit;
e->count.key = len;
if (len > wnd->extent_max)
wnd->extent_max = len;
rb_insert_start(&wnd->start_tree, e);
rb_insert_count(&wnd->count_tree, e);
wnd->count += 1;
out:;
}
/*
* wnd_remove_free_ext - Remove a run from the cached free space.
*/
static void wnd_remove_free_ext(struct wnd_bitmap *wnd, size_t bit, size_t len)
{
struct rb_node *n, *n3;
struct e_node *e, *e3;
size_t end_in = bit + len;
size_t end3, end, new_key, new_len, max_new_len;
/* Try to find extent before 'bit'. */
n = rb_lookup(&wnd->start_tree, bit);
if (!n)
return;
e = rb_entry(n, struct e_node, start.node);
end = e->start.key + e->count.key;
new_key = new_len = 0;
len = e->count.key;
/* Range [bit,end_in) must be inside 'e' or outside 'e' and 'n'. */
if (e->start.key > bit)
;
else if (end_in <= end) {
/* Range [bit,end_in) inside 'e'. */
new_key = end_in;
new_len = end - end_in;
len = bit - e->start.key;
} else if (bit > end) {
bool bmax = false;
n3 = rb_next(n);
while (n3) {
e3 = rb_entry(n3, struct e_node, start.node);
if (e3->start.key >= end_in)
break;
if (e3->count.key == wnd->extent_max)
bmax = true;
end3 = e3->start.key + e3->count.key;
if (end3 > end_in) {
e3->start.key = end_in;
rb_erase(&e3->count.node, &wnd->count_tree);
e3->count.key = end3 - end_in;
rb_insert_count(&wnd->count_tree, e3);
break;
}
n3 = rb_next(n3);
rb_erase(&e3->start.node, &wnd->start_tree);
rb_erase(&e3->count.node, &wnd->count_tree);
wnd->count -= 1;
kmem_cache_free(ntfs_enode_cachep, e3);
}
if (!bmax)
return;
n3 = rb_first(&wnd->count_tree);
wnd->extent_max =
n3 ? rb_entry(n3, struct e_node, count.node)->count.key :
0;
return;
}
if (e->count.key != wnd->extent_max) {
;
} else if (rb_prev(&e->count.node)) {
;
} else {
n3 = rb_next(&e->count.node);
max_new_len = max(len, new_len);
if (!n3) {
wnd->extent_max = max_new_len;
} else {
e3 = rb_entry(n3, struct e_node, count.node);
wnd->extent_max = max(e3->count.key, max_new_len);
}
}
if (!len) {
if (new_len) {
e->start.key = new_key;
rb_erase(&e->count.node, &wnd->count_tree);
e->count.key = new_len;
rb_insert_count(&wnd->count_tree, e);
} else {
rb_erase(&e->start.node, &wnd->start_tree);
rb_erase(&e->count.node, &wnd->count_tree);
wnd->count -= 1;
kmem_cache_free(ntfs_enode_cachep, e);
}
goto out;
}
rb_erase(&e->count.node, &wnd->count_tree);
e->count.key = len;
rb_insert_count(&wnd->count_tree, e);
if (!new_len)
goto out;
if (wnd->count >= NTFS_MAX_WND_EXTENTS) {
wnd->uptodated = -1;
/* Get minimal extent. */
e = rb_entry(rb_last(&wnd->count_tree), struct e_node,
count.node);
if (e->count.key > new_len)
goto out;
/* Replace minimum. */
rb_erase(&e->start.node, &wnd->start_tree);
rb_erase(&e->count.node, &wnd->count_tree);
wnd->count -= 1;
} else {
e = kmem_cache_alloc(ntfs_enode_cachep, GFP_ATOMIC);
if (!e)
wnd->uptodated = -1;
}
if (e) {
e->start.key = new_key;
e->count.key = new_len;
rb_insert_start(&wnd->start_tree, e);
rb_insert_count(&wnd->count_tree, e);
wnd->count += 1;
}
out:
if (!wnd->count && 1 != wnd->uptodated)
wnd_rescan(wnd);
}
/*
* wnd_rescan - Scan all bitmap. Used while initialization.
*/
static int wnd_rescan(struct wnd_bitmap *wnd)
{
int err = 0;
size_t prev_tail = 0;
struct super_block *sb = wnd->sb;
struct ntfs_sb_info *sbi = sb->s_fs_info;
u64 lbo, len = 0;
u32 blocksize = sb->s_blocksize;
u8 cluster_bits = sbi->cluster_bits;
u32 wbits = 8 * sb->s_blocksize;
u32 used, frb;
size_t wpos, wbit, iw, vbo;
struct buffer_head *bh = NULL;
CLST lcn, clen;
wnd->uptodated = 0;
wnd->extent_max = 0;
wnd->extent_min = MINUS_ONE_T;
wnd->total_zeroes = 0;
vbo = 0;
for (iw = 0; iw < wnd->nwnd; iw++) {
if (iw + 1 == wnd->nwnd)
wbits = wnd->bits_last;
if (wnd->inited) {
if (!wnd->free_bits[iw]) {
/* All ones. */
if (prev_tail) {
wnd_add_free_ext(wnd,
vbo * 8 - prev_tail,
prev_tail, true);
prev_tail = 0;
}
goto next_wnd;
}
if (wbits == wnd->free_bits[iw]) {
/* All zeroes. */
prev_tail += wbits;
wnd->total_zeroes += wbits;
goto next_wnd;
}
}
if (!len) {
u32 off = vbo & sbi->cluster_mask;
if (!run_lookup_entry(&wnd->run, vbo >> cluster_bits,
&lcn, &clen, NULL)) {
err = -ENOENT;
goto out;
}
lbo = ((u64)lcn << cluster_bits) + off;
len = ((u64)clen << cluster_bits) - off;
}
bh = ntfs_bread(sb, lbo >> sb->s_blocksize_bits);
if (!bh) {
err = -EIO;
goto out;
}
used = ntfs_bitmap_weight_le(bh->b_data, wbits);
if (used < wbits) {
frb = wbits - used;
wnd->free_bits[iw] = frb;
wnd->total_zeroes += frb;
}
wpos = 0;
wbit = vbo * 8;
if (wbit + wbits > wnd->nbits)
wbits = wnd->nbits - wbit;
do {
used = find_next_zero_bit_le(bh->b_data, wbits, wpos);
if (used > wpos && prev_tail) {
wnd_add_free_ext(wnd, wbit + wpos - prev_tail,
prev_tail, true);
prev_tail = 0;
}
wpos = used;
if (wpos >= wbits) {
/* No free blocks. */
prev_tail = 0;
break;
}
frb = find_next_bit_le(bh->b_data, wbits, wpos);
if (frb >= wbits) {
/* Keep last free block. */
prev_tail += frb - wpos;
break;
}
wnd_add_free_ext(wnd, wbit + wpos - prev_tail,
frb + prev_tail - wpos, true);
/* Skip free block and first '1'. */
wpos = frb + 1;
/* Reset previous tail. */
prev_tail = 0;
} while (wpos < wbits);
next_wnd:
if (bh)
put_bh(bh);
bh = NULL;
vbo += blocksize;
if (len) {
len -= blocksize;
lbo += blocksize;
}
}
/* Add last block. */
if (prev_tail)
wnd_add_free_ext(wnd, wnd->nbits - prev_tail, prev_tail, true);
/*
* Before init cycle wnd->uptodated was 0.
* If any errors or limits occurs while initialization then
* wnd->uptodated will be -1.
* If 'uptodated' is still 0 then Tree is really updated.
*/
if (!wnd->uptodated)
wnd->uptodated = 1;
if (wnd->zone_bit != wnd->zone_end) {
size_t zlen = wnd->zone_end - wnd->zone_bit;
wnd->zone_end = wnd->zone_bit;
wnd_zone_set(wnd, wnd->zone_bit, zlen);
}
out:
return err;
}
int wnd_init(struct wnd_bitmap *wnd, struct super_block *sb, size_t nbits)
{
int err;
u32 blocksize = sb->s_blocksize;
u32 wbits = blocksize * 8;
init_rwsem(&wnd->rw_lock);
wnd->sb = sb;
wnd->nbits = nbits;
wnd->total_zeroes = nbits;
wnd->extent_max = MINUS_ONE_T;
wnd->zone_bit = wnd->zone_end = 0;
wnd->nwnd = bytes_to_block(sb, bitmap_size(nbits));
wnd->bits_last = nbits & (wbits - 1);
if (!wnd->bits_last)
wnd->bits_last = wbits;
wnd->free_bits =
kvmalloc_array(wnd->nwnd, sizeof(u16), GFP_KERNEL | __GFP_ZERO);
if (!wnd->free_bits)
return -ENOMEM;
err = wnd_rescan(wnd);
if (err)
return err;
wnd->inited = true;
return 0;
}
/*
* wnd_map - Call sb_bread for requested window.
*/
static struct buffer_head *wnd_map(struct wnd_bitmap *wnd, size_t iw)
{
size_t vbo;
CLST lcn, clen;
struct super_block *sb = wnd->sb;
struct ntfs_sb_info *sbi;
struct buffer_head *bh;
u64 lbo;
sbi = sb->s_fs_info;
vbo = (u64)iw << sb->s_blocksize_bits;
if (!run_lookup_entry(&wnd->run, vbo >> sbi->cluster_bits, &lcn, &clen,
NULL)) {
return ERR_PTR(-ENOENT);
}
lbo = ((u64)lcn << sbi->cluster_bits) + (vbo & sbi->cluster_mask);
bh = ntfs_bread(wnd->sb, lbo >> sb->s_blocksize_bits);
if (!bh)
return ERR_PTR(-EIO);
return bh;
}
/*
* wnd_set_free - Mark the bits range from bit to bit + bits as free.
*/
int wnd_set_free(struct wnd_bitmap *wnd, size_t bit, size_t bits)
{
int err = 0;
struct super_block *sb = wnd->sb;
size_t bits0 = bits;
u32 wbits = 8 * sb->s_blocksize;
size_t iw = bit >> (sb->s_blocksize_bits + 3);
u32 wbit = bit & (wbits - 1);
struct buffer_head *bh;
while (iw < wnd->nwnd && bits) {
u32 tail, op;
if (iw + 1 == wnd->nwnd)
wbits = wnd->bits_last;
tail = wbits - wbit;
op = min_t(u32, tail, bits);
bh = wnd_map(wnd, iw);
if (IS_ERR(bh)) {
err = PTR_ERR(bh);
break;
}
lock_buffer(bh);
ntfs_bitmap_clear_le(bh->b_data, wbit, op);
wnd->free_bits[iw] += op;
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
unlock_buffer(bh);
put_bh(bh);
wnd->total_zeroes += op;
bits -= op;
wbit = 0;
iw += 1;
}
wnd_add_free_ext(wnd, bit, bits0, false);
return err;
}
/*
* wnd_set_used - Mark the bits range from bit to bit + bits as used.
*/
int wnd_set_used(struct wnd_bitmap *wnd, size_t bit, size_t bits)
{
int err = 0;
struct super_block *sb = wnd->sb;
size_t bits0 = bits;
size_t iw = bit >> (sb->s_blocksize_bits + 3);
u32 wbits = 8 * sb->s_blocksize;
u32 wbit = bit & (wbits - 1);
struct buffer_head *bh;
while (iw < wnd->nwnd && bits) {
u32 tail, op;
if (unlikely(iw + 1 == wnd->nwnd))
wbits = wnd->bits_last;
tail = wbits - wbit;
op = min_t(u32, tail, bits);
bh = wnd_map(wnd, iw);
if (IS_ERR(bh)) {
err = PTR_ERR(bh);
break;
}
lock_buffer(bh);
ntfs_bitmap_set_le(bh->b_data, wbit, op);
wnd->free_bits[iw] -= op;
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
unlock_buffer(bh);
put_bh(bh);
wnd->total_zeroes -= op;
bits -= op;
wbit = 0;
iw += 1;
}
if (!RB_EMPTY_ROOT(&wnd->start_tree))
wnd_remove_free_ext(wnd, bit, bits0);
return err;
}
/*
* wnd_set_used_safe - Mark the bits range from bit to bit + bits as used.
*
* Unlikely wnd_set_used/wnd_set_free this function is not full trusted.
* It scans every bit in bitmap and marks free bit as used.
* @done - how many bits were marked as used.
*
* NOTE: normally *done should be 0.
*/
int wnd_set_used_safe(struct wnd_bitmap *wnd, size_t bit, size_t bits,
size_t *done)
{
size_t i, from = 0, len = 0;
int err = 0;
*done = 0;
for (i = 0; i < bits; i++) {
if (wnd_is_free(wnd, bit + i, 1)) {
if (!len)
from = bit + i;
len += 1;
} else if (len) {
err = wnd_set_used(wnd, from, len);
*done += len;
len = 0;
if (err)
break;
}
}
if (len) {
/* last fragment. */
err = wnd_set_used(wnd, from, len);
*done += len;
}
return err;
}
/*
* wnd_is_free_hlp
*
* Return: True if all clusters [bit, bit+bits) are free (bitmap only).
*/
static bool wnd_is_free_hlp(struct wnd_bitmap *wnd, size_t bit, size_t bits)
{
struct super_block *sb = wnd->sb;
size_t iw = bit >> (sb->s_blocksize_bits + 3);
u32 wbits = 8 * sb->s_blocksize;
u32 wbit = bit & (wbits - 1);
while (iw < wnd->nwnd && bits) {
u32 tail, op;
if (unlikely(iw + 1 == wnd->nwnd))
wbits = wnd->bits_last;
tail = wbits - wbit;
op = min_t(u32, tail, bits);
if (wbits != wnd->free_bits[iw]) {
bool ret;
struct buffer_head *bh = wnd_map(wnd, iw);
if (IS_ERR(bh))
return false;
ret = are_bits_clear(bh->b_data, wbit, op);
put_bh(bh);
if (!ret)
return false;
}
bits -= op;
wbit = 0;
iw += 1;
}
return true;
}
/*
* wnd_is_free
*
* Return: True if all clusters [bit, bit+bits) are free.
*/
bool wnd_is_free(struct wnd_bitmap *wnd, size_t bit, size_t bits)
{
bool ret;
struct rb_node *n;
size_t end;
struct e_node *e;
if (RB_EMPTY_ROOT(&wnd->start_tree))
goto use_wnd;
n = rb_lookup(&wnd->start_tree, bit);
if (!n)
goto use_wnd;
e = rb_entry(n, struct e_node, start.node);
end = e->start.key + e->count.key;
if (bit < end && bit + bits <= end)
return true;
use_wnd:
ret = wnd_is_free_hlp(wnd, bit, bits);
return ret;
}
/*
* wnd_is_used
*
* Return: True if all clusters [bit, bit+bits) are used.
*/
bool wnd_is_used(struct wnd_bitmap *wnd, size_t bit, size_t bits)
{
bool ret = false;
struct super_block *sb = wnd->sb;
size_t iw = bit >> (sb->s_blocksize_bits + 3);
u32 wbits = 8 * sb->s_blocksize;
u32 wbit = bit & (wbits - 1);
size_t end;
struct rb_node *n;
struct e_node *e;
if (RB_EMPTY_ROOT(&wnd->start_tree))
goto use_wnd;
end = bit + bits;
n = rb_lookup(&wnd->start_tree, end - 1);
if (!n)
goto use_wnd;
e = rb_entry(n, struct e_node, start.node);
if (e->start.key + e->count.key > bit)
return false;
use_wnd:
while (iw < wnd->nwnd && bits) {
u32 tail, op;
if (unlikely(iw + 1 == wnd->nwnd))
wbits = wnd->bits_last;
tail = wbits - wbit;
op = min_t(u32, tail, bits);
if (wnd->free_bits[iw]) {
bool ret;
struct buffer_head *bh = wnd_map(wnd, iw);
if (IS_ERR(bh))
goto out;
ret = are_bits_set(bh->b_data, wbit, op);
put_bh(bh);
if (!ret)
goto out;
}
bits -= op;
wbit = 0;
iw += 1;
}
ret = true;
out:
return ret;
}
/*
* wnd_find - Look for free space.
*
* - flags - BITMAP_FIND_XXX flags
*
* Return: 0 if not found.
*/
size_t wnd_find(struct wnd_bitmap *wnd, size_t to_alloc, size_t hint,
size_t flags, size_t *allocated)
{
struct super_block *sb;
u32 wbits, wpos, wzbit, wzend;
size_t fnd, max_alloc, b_len, b_pos;
size_t iw, prev_tail, nwnd, wbit, ebit, zbit, zend;
size_t to_alloc0 = to_alloc;
const struct e_node *e;
const struct rb_node *pr, *cr;
u8 log2_bits;
bool fbits_valid;
struct buffer_head *bh;
/* Fast checking for available free space. */
if (flags & BITMAP_FIND_FULL) {
size_t zeroes = wnd_zeroes(wnd);
zeroes -= wnd->zone_end - wnd->zone_bit;
if (zeroes < to_alloc0)
goto no_space;
if (to_alloc0 > wnd->extent_max)
goto no_space;
} else {
if (to_alloc > wnd->extent_max)
to_alloc = wnd->extent_max;
}
if (wnd->zone_bit <= hint && hint < wnd->zone_end)
hint = wnd->zone_end;
max_alloc = wnd->nbits;
b_len = b_pos = 0;
if (hint >= max_alloc)
hint = 0;
if (RB_EMPTY_ROOT(&wnd->start_tree)) {
if (wnd->uptodated == 1) {
/* Extents tree is updated -> No free space. */
goto no_space;
}
goto scan_bitmap;
}
e = NULL;
if (!hint)
goto allocate_biggest;
/* Use hint: Enumerate extents by start >= hint. */
pr = NULL;
cr = wnd->start_tree.rb_node;
for (;;) {
e = rb_entry(cr, struct e_node, start.node);
if (e->start.key == hint)
break;
if (e->start.key < hint) {
pr = cr;
cr = cr->rb_right;
if (!cr)
break;
continue;
}
cr = cr->rb_left;
if (!cr) {
e = pr ? rb_entry(pr, struct e_node, start.node) : NULL;
break;
}
}
if (!e)
goto allocate_biggest;
if (e->start.key + e->count.key > hint) {
/* We have found extension with 'hint' inside. */
size_t len = e->start.key + e->count.key - hint;
if (len >= to_alloc && hint + to_alloc <= max_alloc) {
fnd = hint;
goto found;
}
if (!(flags & BITMAP_FIND_FULL)) {
if (len > to_alloc)
len = to_alloc;
if (hint + len <= max_alloc) {
fnd = hint;
to_alloc = len;
goto found;
}
}
}
allocate_biggest:
/* Allocate from biggest free extent. */
e = rb_entry(rb_first(&wnd->count_tree), struct e_node, count.node);
if (e->count.key != wnd->extent_max)
wnd->extent_max = e->count.key;
if (e->count.key < max_alloc) {
if (e->count.key >= to_alloc) {
;
} else if (flags & BITMAP_FIND_FULL) {
if (e->count.key < to_alloc0) {
/* Biggest free block is less then requested. */
goto no_space;
}
to_alloc = e->count.key;
} else if (-1 != wnd->uptodated) {
to_alloc = e->count.key;
} else {
/* Check if we can use more bits. */
size_t op, max_check;
struct rb_root start_tree;
memcpy(&start_tree, &wnd->start_tree,
sizeof(struct rb_root));
memset(&wnd->start_tree, 0, sizeof(struct rb_root));
max_check = e->start.key + to_alloc;
if (max_check > max_alloc)
max_check = max_alloc;
for (op = e->start.key + e->count.key; op < max_check;
op++) {
if (!wnd_is_free(wnd, op, 1))
break;
}
memcpy(&wnd->start_tree, &start_tree,
sizeof(struct rb_root));
to_alloc = op - e->start.key;
}
/* Prepare to return. */
fnd = e->start.key;
if (e->start.key + to_alloc > max_alloc)
to_alloc = max_alloc - e->start.key;
goto found;
}
if (wnd->uptodated == 1) {
/* Extents tree is updated -> no free space. */
goto no_space;
}
b_len = e->count.key;
b_pos = e->start.key;
scan_bitmap:
sb = wnd->sb;
log2_bits = sb->s_blocksize_bits + 3;
/* At most two ranges [hint, max_alloc) + [0, hint). */
Again:
/* TODO: Optimize request for case nbits > wbits. */
iw = hint >> log2_bits;
wbits = sb->s_blocksize * 8;
wpos = hint & (wbits - 1);
prev_tail = 0;
fbits_valid = true;
if (max_alloc == wnd->nbits) {
nwnd = wnd->nwnd;
} else {
size_t t = max_alloc + wbits - 1;
nwnd = likely(t > max_alloc) ? (t >> log2_bits) : wnd->nwnd;
}
/* Enumerate all windows. */
for (; iw < nwnd; iw++) {
wbit = iw << log2_bits;
if (!wnd->free_bits[iw]) {
if (prev_tail > b_len) {
b_pos = wbit - prev_tail;
b_len = prev_tail;
}
/* Skip full used window. */
prev_tail = 0;
wpos = 0;
continue;
}
if (unlikely(iw + 1 == nwnd)) {
if (max_alloc == wnd->nbits) {
wbits = wnd->bits_last;
} else {
size_t t = max_alloc & (wbits - 1);
if (t) {
wbits = t;
fbits_valid = false;
}
}
}
if (wnd->zone_end > wnd->zone_bit) {
ebit = wbit + wbits;
zbit = max(wnd->zone_bit, wbit);
zend = min(wnd->zone_end, ebit);
/* Here we have a window [wbit, ebit) and zone [zbit, zend). */
if (zend <= zbit) {
/* Zone does not overlap window. */
} else {
wzbit = zbit - wbit;
wzend = zend - wbit;
/* Zone overlaps window. */
if (wnd->free_bits[iw] == wzend - wzbit) {
prev_tail = 0;
wpos = 0;
continue;
}
/* Scan two ranges window: [wbit, zbit) and [zend, ebit). */
bh = wnd_map(wnd, iw);
if (IS_ERR(bh)) {
/* TODO: Error */
prev_tail = 0;
wpos = 0;
continue;
}
/* Scan range [wbit, zbit). */
if (wpos < wzbit) {
/* Scan range [wpos, zbit). */
fnd = wnd_scan(bh->b_data, wbit, wpos,
wzbit, to_alloc,
&prev_tail, &b_pos,
&b_len);
if (fnd != MINUS_ONE_T) {
put_bh(bh);
goto found;
}
}
prev_tail = 0;
/* Scan range [zend, ebit). */
if (wzend < wbits) {
fnd = wnd_scan(bh->b_data, wbit,
max(wzend, wpos), wbits,
to_alloc, &prev_tail,
&b_pos, &b_len);
if (fnd != MINUS_ONE_T) {
put_bh(bh);
goto found;
}
}
wpos = 0;
put_bh(bh);
continue;
}
}
/* Current window does not overlap zone. */
if (!wpos && fbits_valid && wnd->free_bits[iw] == wbits) {
/* Window is empty. */
if (prev_tail + wbits >= to_alloc) {
fnd = wbit + wpos - prev_tail;
goto found;
}
/* Increase 'prev_tail' and process next window. */
prev_tail += wbits;
wpos = 0;
continue;
}
/* Read window. */
bh = wnd_map(wnd, iw);
if (IS_ERR(bh)) {
// TODO: Error.
prev_tail = 0;
wpos = 0;
continue;
}
/* Scan range [wpos, eBits). */
fnd = wnd_scan(bh->b_data, wbit, wpos, wbits, to_alloc,
&prev_tail, &b_pos, &b_len);
put_bh(bh);
if (fnd != MINUS_ONE_T)
goto found;
}
if (b_len < prev_tail) {
/* The last fragment. */
b_len = prev_tail;
b_pos = max_alloc - prev_tail;
}
if (hint) {
/*
* We have scanned range [hint max_alloc).
* Prepare to scan range [0 hint + to_alloc).
*/
size_t nextmax = hint + to_alloc;
if (likely(nextmax >= hint) && nextmax < max_alloc)
max_alloc = nextmax;
hint = 0;
goto Again;
}
if (!b_len)
goto no_space;
wnd->extent_max = b_len;
if (flags & BITMAP_FIND_FULL)
goto no_space;
fnd = b_pos;
to_alloc = b_len;
found:
if (flags & BITMAP_FIND_MARK_AS_USED) {
/* TODO: Optimize remove extent (pass 'e'?). */
if (wnd_set_used(wnd, fnd, to_alloc))
goto no_space;
} else if (wnd->extent_max != MINUS_ONE_T &&
to_alloc > wnd->extent_max) {
wnd->extent_max = to_alloc;
}
*allocated = fnd;
return to_alloc;
no_space:
return 0;
}
/*
* wnd_extend - Extend bitmap ($MFT bitmap).
*/
int wnd_extend(struct wnd_bitmap *wnd, size_t new_bits)
{
int err;
struct super_block *sb = wnd->sb;
struct ntfs_sb_info *sbi = sb->s_fs_info;
u32 blocksize = sb->s_blocksize;
u32 wbits = blocksize * 8;
u32 b0, new_last;
size_t bits, iw, new_wnd;
size_t old_bits = wnd->nbits;
u16 *new_free;
if (new_bits <= old_bits)
return -EINVAL;
/* Align to 8 byte boundary. */
new_wnd = bytes_to_block(sb, bitmap_size(new_bits));
new_last = new_bits & (wbits - 1);
if (!new_last)
new_last = wbits;
if (new_wnd != wnd->nwnd) {
new_free = kmalloc_array(new_wnd, sizeof(u16), GFP_NOFS);
if (!new_free)
return -ENOMEM;
memcpy(new_free, wnd->free_bits, wnd->nwnd * sizeof(short));
memset(new_free + wnd->nwnd, 0,
(new_wnd - wnd->nwnd) * sizeof(short));
kfree(wnd->free_bits);
wnd->free_bits = new_free;
}
/* Zero bits [old_bits,new_bits). */
bits = new_bits - old_bits;
b0 = old_bits & (wbits - 1);
for (iw = old_bits >> (sb->s_blocksize_bits + 3); bits; iw += 1) {
u32 op;
size_t frb;
u64 vbo, lbo, bytes;
struct buffer_head *bh;
if (iw + 1 == new_wnd)
wbits = new_last;
op = b0 + bits > wbits ? wbits - b0 : bits;
vbo = (u64)iw * blocksize;
err = ntfs_vbo_to_lbo(sbi, &wnd->run, vbo, &lbo, &bytes);
if (err)
break;
bh = ntfs_bread(sb, lbo >> sb->s_blocksize_bits);
if (!bh)
return -EIO;
lock_buffer(bh);
ntfs_bitmap_clear_le(bh->b_data, b0, blocksize * 8 - b0);
frb = wbits - ntfs_bitmap_weight_le(bh->b_data, wbits);
wnd->total_zeroes += frb - wnd->free_bits[iw];
wnd->free_bits[iw] = frb;
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
unlock_buffer(bh);
/* err = sync_dirty_buffer(bh); */
b0 = 0;
bits -= op;
}
wnd->nbits = new_bits;
wnd->nwnd = new_wnd;
wnd->bits_last = new_last;
wnd_add_free_ext(wnd, old_bits, new_bits - old_bits, false);
return 0;
}
void wnd_zone_set(struct wnd_bitmap *wnd, size_t lcn, size_t len)
{
size_t zlen = wnd->zone_end - wnd->zone_bit;
if (zlen)
wnd_add_free_ext(wnd, wnd->zone_bit, zlen, false);
if (!RB_EMPTY_ROOT(&wnd->start_tree) && len)
wnd_remove_free_ext(wnd, lcn, len);
wnd->zone_bit = lcn;
wnd->zone_end = lcn + len;
}
int ntfs_trim_fs(struct ntfs_sb_info *sbi, struct fstrim_range *range)
{
int err = 0;
struct super_block *sb = sbi->sb;
struct wnd_bitmap *wnd = &sbi->used.bitmap;
u32 wbits = 8 * sb->s_blocksize;
CLST len = 0, lcn = 0, done = 0;
CLST minlen = bytes_to_cluster(sbi, range->minlen);
CLST lcn_from = bytes_to_cluster(sbi, range->start);
size_t iw = lcn_from >> (sb->s_blocksize_bits + 3);
u32 wbit = lcn_from & (wbits - 1);
CLST lcn_to;
if (!minlen)
minlen = 1;
if (range->len == (u64)-1)
lcn_to = wnd->nbits;
else
lcn_to = bytes_to_cluster(sbi, range->start + range->len);
down_read_nested(&wnd->rw_lock, BITMAP_MUTEX_CLUSTERS);
for (; iw < wnd->nwnd; iw++, wbit = 0) {
CLST lcn_wnd = iw * wbits;
struct buffer_head *bh;
if (lcn_wnd > lcn_to)
break;
if (!wnd->free_bits[iw])
continue;
if (iw + 1 == wnd->nwnd)
wbits = wnd->bits_last;
if (lcn_wnd + wbits > lcn_to)
wbits = lcn_to - lcn_wnd;
bh = wnd_map(wnd, iw);
if (IS_ERR(bh)) {
err = PTR_ERR(bh);
break;
}
for (; wbit < wbits; wbit++) {
if (!test_bit_le(wbit, bh->b_data)) {
if (!len)
lcn = lcn_wnd + wbit;
len += 1;
continue;
}
if (len >= minlen) {
err = ntfs_discard(sbi, lcn, len);
if (err)
goto out;
done += len;
}
len = 0;
}
put_bh(bh);
}
/* Process the last fragment. */
if (len >= minlen) {
err = ntfs_discard(sbi, lcn, len);
if (err)
goto out;
done += len;
}
out:
range->len = (u64)done << sbi->cluster_bits;
up_read(&wnd->rw_lock);
return err;
}
#if BITS_PER_LONG == 64
typedef __le64 bitmap_ulong;
#define cpu_to_ul(x) cpu_to_le64(x)
#define ul_to_cpu(x) le64_to_cpu(x)
#else
typedef __le32 bitmap_ulong;
#define cpu_to_ul(x) cpu_to_le32(x)
#define ul_to_cpu(x) le32_to_cpu(x)
#endif
void ntfs_bitmap_set_le(void *map, unsigned int start, int len)
{
bitmap_ulong *p = (bitmap_ulong *)map + BIT_WORD(start);
const unsigned int size = start + len;
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
bitmap_ulong mask_to_set = cpu_to_ul(BITMAP_FIRST_WORD_MASK(start));
while (len - bits_to_set >= 0) {
*p |= mask_to_set;
len -= bits_to_set;
bits_to_set = BITS_PER_LONG;
mask_to_set = cpu_to_ul(~0UL);
p++;
}
if (len) {
mask_to_set &= cpu_to_ul(BITMAP_LAST_WORD_MASK(size));
*p |= mask_to_set;
}
}
void ntfs_bitmap_clear_le(void *map, unsigned int start, int len)
{
bitmap_ulong *p = (bitmap_ulong *)map + BIT_WORD(start);
const unsigned int size = start + len;
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
bitmap_ulong mask_to_clear = cpu_to_ul(BITMAP_FIRST_WORD_MASK(start));
while (len - bits_to_clear >= 0) {
*p &= ~mask_to_clear;
len -= bits_to_clear;
bits_to_clear = BITS_PER_LONG;
mask_to_clear = cpu_to_ul(~0UL);
p++;
}
if (len) {
mask_to_clear &= cpu_to_ul(BITMAP_LAST_WORD_MASK(size));
*p &= ~mask_to_clear;
}
}
unsigned int ntfs_bitmap_weight_le(const void *bitmap, int bits)
{
const ulong *bmp = bitmap;
unsigned int k, lim = bits / BITS_PER_LONG;
unsigned int w = 0;
for (k = 0; k < lim; k++)
w += hweight_long(bmp[k]);
if (bits % BITS_PER_LONG) {
w += hweight_long(ul_to_cpu(((bitmap_ulong *)bitmap)[k]) &
BITMAP_LAST_WORD_MASK(bits));
}
return w;
}