mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-16 21:35:07 +00:00
ce6e85a186
The show_stack function had some code to detect double faults. However, the logic is wrong and it would e.g. trigger if a WARNING happened inside an IRQ. Remove it without trying to add a new logic. The current behaviour, which will just fault repeatedly until the IRQ stack is used up and the host kills UML, seems to be good enough. Signed-off-by: Benjamin Berg <benjamin.berg@intel.com> Link: https://patch.msgid.link/20241103150506.1367695-5-benjamin@sipsolutions.net Signed-off-by: Johannes Berg <johannes.berg@intel.com>
490 lines
12 KiB
C
490 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
|
|
* Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
|
|
* Copyright (C) 2004 PathScale, Inc
|
|
* Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
#include <stdbool.h>
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#include <string.h>
|
|
#include <strings.h>
|
|
#include <as-layout.h>
|
|
#include <kern_util.h>
|
|
#include <os.h>
|
|
#include <sysdep/mcontext.h>
|
|
#include <um_malloc.h>
|
|
#include <sys/ucontext.h>
|
|
#include <timetravel.h>
|
|
|
|
void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
|
|
[SIGTRAP] = relay_signal,
|
|
[SIGFPE] = relay_signal,
|
|
[SIGILL] = relay_signal,
|
|
[SIGWINCH] = winch,
|
|
[SIGBUS] = relay_signal,
|
|
[SIGSEGV] = segv_handler,
|
|
[SIGIO] = sigio_handler,
|
|
};
|
|
|
|
static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
|
|
{
|
|
struct uml_pt_regs r;
|
|
int save_errno = errno;
|
|
|
|
r.is_user = 0;
|
|
if (sig == SIGSEGV) {
|
|
/* For segfaults, we want the data from the sigcontext. */
|
|
get_regs_from_mc(&r, mc);
|
|
GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
|
|
}
|
|
|
|
/* enable signals if sig isn't IRQ signal */
|
|
if ((sig != SIGIO) && (sig != SIGWINCH))
|
|
unblock_signals_trace();
|
|
|
|
(*sig_info[sig])(sig, si, &r);
|
|
|
|
errno = save_errno;
|
|
}
|
|
|
|
/*
|
|
* These are the asynchronous signals. SIGPROF is excluded because we want to
|
|
* be able to profile all of UML, not just the non-critical sections. If
|
|
* profiling is not thread-safe, then that is not my problem. We can disable
|
|
* profiling when SMP is enabled in that case.
|
|
*/
|
|
#define SIGIO_BIT 0
|
|
#define SIGIO_MASK (1 << SIGIO_BIT)
|
|
|
|
#define SIGALRM_BIT 1
|
|
#define SIGALRM_MASK (1 << SIGALRM_BIT)
|
|
|
|
int signals_enabled;
|
|
#if IS_ENABLED(CONFIG_UML_TIME_TRAVEL_SUPPORT)
|
|
static int signals_blocked, signals_blocked_pending;
|
|
#endif
|
|
static unsigned int signals_pending;
|
|
static unsigned int signals_active = 0;
|
|
|
|
static void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
|
|
{
|
|
int enabled = signals_enabled;
|
|
|
|
#if IS_ENABLED(CONFIG_UML_TIME_TRAVEL_SUPPORT)
|
|
if ((signals_blocked ||
|
|
__atomic_load_n(&signals_blocked_pending, __ATOMIC_SEQ_CST)) &&
|
|
(sig == SIGIO)) {
|
|
/* increment so unblock will do another round */
|
|
__atomic_add_fetch(&signals_blocked_pending, 1,
|
|
__ATOMIC_SEQ_CST);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (!enabled && (sig == SIGIO)) {
|
|
/*
|
|
* In TT_MODE_EXTERNAL, need to still call time-travel
|
|
* handlers. This will mark signals_pending by itself
|
|
* (only if necessary.)
|
|
* Note we won't get here if signals are hard-blocked
|
|
* (which is handled above), in that case the hard-
|
|
* unblock will handle things.
|
|
*/
|
|
if (time_travel_mode == TT_MODE_EXTERNAL)
|
|
sigio_run_timetravel_handlers();
|
|
else
|
|
signals_pending |= SIGIO_MASK;
|
|
return;
|
|
}
|
|
|
|
block_signals_trace();
|
|
|
|
sig_handler_common(sig, si, mc);
|
|
|
|
um_set_signals_trace(enabled);
|
|
}
|
|
|
|
static void timer_real_alarm_handler(mcontext_t *mc)
|
|
{
|
|
struct uml_pt_regs regs;
|
|
|
|
if (mc != NULL)
|
|
get_regs_from_mc(®s, mc);
|
|
else
|
|
memset(®s, 0, sizeof(regs));
|
|
timer_handler(SIGALRM, NULL, ®s);
|
|
}
|
|
|
|
static void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
|
|
{
|
|
int enabled;
|
|
|
|
enabled = signals_enabled;
|
|
if (!signals_enabled) {
|
|
signals_pending |= SIGALRM_MASK;
|
|
return;
|
|
}
|
|
|
|
block_signals_trace();
|
|
|
|
signals_active |= SIGALRM_MASK;
|
|
|
|
timer_real_alarm_handler(mc);
|
|
|
|
signals_active &= ~SIGALRM_MASK;
|
|
|
|
um_set_signals_trace(enabled);
|
|
}
|
|
|
|
void deliver_alarm(void) {
|
|
timer_alarm_handler(SIGALRM, NULL, NULL);
|
|
}
|
|
|
|
void timer_set_signal_handler(void)
|
|
{
|
|
set_handler(SIGALRM);
|
|
}
|
|
|
|
void set_sigstack(void *sig_stack, int size)
|
|
{
|
|
stack_t stack = {
|
|
.ss_flags = 0,
|
|
.ss_sp = sig_stack,
|
|
.ss_size = size
|
|
};
|
|
|
|
if (sigaltstack(&stack, NULL) != 0)
|
|
panic("enabling signal stack failed, errno = %d\n", errno);
|
|
}
|
|
|
|
static void sigusr1_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
|
|
{
|
|
uml_pm_wake();
|
|
}
|
|
|
|
void register_pm_wake_signal(void)
|
|
{
|
|
set_handler(SIGUSR1);
|
|
}
|
|
|
|
static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
|
|
[SIGSEGV] = sig_handler,
|
|
[SIGBUS] = sig_handler,
|
|
[SIGILL] = sig_handler,
|
|
[SIGFPE] = sig_handler,
|
|
[SIGTRAP] = sig_handler,
|
|
|
|
[SIGIO] = sig_handler,
|
|
[SIGWINCH] = sig_handler,
|
|
[SIGALRM] = timer_alarm_handler,
|
|
|
|
[SIGUSR1] = sigusr1_handler,
|
|
};
|
|
|
|
static void hard_handler(int sig, siginfo_t *si, void *p)
|
|
{
|
|
ucontext_t *uc = p;
|
|
mcontext_t *mc = &uc->uc_mcontext;
|
|
unsigned long pending = 1UL << sig;
|
|
|
|
do {
|
|
int nested, bail;
|
|
|
|
/*
|
|
* pending comes back with one bit set for each
|
|
* interrupt that arrived while setting up the stack,
|
|
* plus a bit for this interrupt, plus the zero bit is
|
|
* set if this is a nested interrupt.
|
|
* If bail is true, then we interrupted another
|
|
* handler setting up the stack. In this case, we
|
|
* have to return, and the upper handler will deal
|
|
* with this interrupt.
|
|
*/
|
|
bail = to_irq_stack(&pending);
|
|
if (bail)
|
|
return;
|
|
|
|
nested = pending & 1;
|
|
pending &= ~1;
|
|
|
|
while ((sig = ffs(pending)) != 0){
|
|
sig--;
|
|
pending &= ~(1 << sig);
|
|
(*handlers[sig])(sig, (struct siginfo *)si, mc);
|
|
}
|
|
|
|
/*
|
|
* Again, pending comes back with a mask of signals
|
|
* that arrived while tearing down the stack. If this
|
|
* is non-zero, we just go back, set up the stack
|
|
* again, and handle the new interrupts.
|
|
*/
|
|
if (!nested)
|
|
pending = from_irq_stack(nested);
|
|
} while (pending);
|
|
}
|
|
|
|
void set_handler(int sig)
|
|
{
|
|
struct sigaction action;
|
|
int flags = SA_SIGINFO | SA_ONSTACK;
|
|
sigset_t sig_mask;
|
|
|
|
action.sa_sigaction = hard_handler;
|
|
|
|
/* block irq ones */
|
|
sigemptyset(&action.sa_mask);
|
|
sigaddset(&action.sa_mask, SIGIO);
|
|
sigaddset(&action.sa_mask, SIGWINCH);
|
|
sigaddset(&action.sa_mask, SIGALRM);
|
|
|
|
if (sig == SIGSEGV)
|
|
flags |= SA_NODEFER;
|
|
|
|
if (sigismember(&action.sa_mask, sig))
|
|
flags |= SA_RESTART; /* if it's an irq signal */
|
|
|
|
action.sa_flags = flags;
|
|
action.sa_restorer = NULL;
|
|
if (sigaction(sig, &action, NULL) < 0)
|
|
panic("sigaction failed - errno = %d\n", errno);
|
|
|
|
sigemptyset(&sig_mask);
|
|
sigaddset(&sig_mask, sig);
|
|
if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
|
|
panic("sigprocmask failed - errno = %d\n", errno);
|
|
}
|
|
|
|
void send_sigio_to_self(void)
|
|
{
|
|
kill(os_getpid(), SIGIO);
|
|
}
|
|
|
|
int change_sig(int signal, int on)
|
|
{
|
|
sigset_t sigset;
|
|
|
|
sigemptyset(&sigset);
|
|
sigaddset(&sigset, signal);
|
|
if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
|
|
return -errno;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void block_signals(void)
|
|
{
|
|
signals_enabled = 0;
|
|
/*
|
|
* This must return with signals disabled, so this barrier
|
|
* ensures that writes are flushed out before the return.
|
|
* This might matter if gcc figures out how to inline this and
|
|
* decides to shuffle this code into the caller.
|
|
*/
|
|
barrier();
|
|
}
|
|
|
|
void unblock_signals(void)
|
|
{
|
|
int save_pending;
|
|
|
|
if (signals_enabled == 1)
|
|
return;
|
|
|
|
signals_enabled = 1;
|
|
#if IS_ENABLED(CONFIG_UML_TIME_TRAVEL_SUPPORT)
|
|
deliver_time_travel_irqs();
|
|
#endif
|
|
|
|
/*
|
|
* We loop because the IRQ handler returns with interrupts off. So,
|
|
* interrupts may have arrived and we need to re-enable them and
|
|
* recheck signals_pending.
|
|
*/
|
|
while (1) {
|
|
/*
|
|
* Save and reset save_pending after enabling signals. This
|
|
* way, signals_pending won't be changed while we're reading it.
|
|
*
|
|
* Setting signals_enabled and reading signals_pending must
|
|
* happen in this order, so have the barrier here.
|
|
*/
|
|
barrier();
|
|
|
|
save_pending = signals_pending;
|
|
if (save_pending == 0)
|
|
return;
|
|
|
|
signals_pending = 0;
|
|
|
|
/*
|
|
* We have pending interrupts, so disable signals, as the
|
|
* handlers expect them off when they are called. They will
|
|
* be enabled again above. We need to trace this, as we're
|
|
* expected to be enabling interrupts already, but any more
|
|
* tracing that happens inside the handlers we call for the
|
|
* pending signals will mess up the tracing state.
|
|
*/
|
|
signals_enabled = 0;
|
|
um_trace_signals_off();
|
|
|
|
/*
|
|
* Deal with SIGIO first because the alarm handler might
|
|
* schedule, leaving the pending SIGIO stranded until we come
|
|
* back here.
|
|
*
|
|
* SIGIO's handler doesn't use siginfo or mcontext,
|
|
* so they can be NULL.
|
|
*/
|
|
if (save_pending & SIGIO_MASK)
|
|
sig_handler_common(SIGIO, NULL, NULL);
|
|
|
|
/* Do not reenter the handler */
|
|
|
|
if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
|
|
timer_real_alarm_handler(NULL);
|
|
|
|
/* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
|
|
|
|
if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
|
|
return;
|
|
|
|
/* Re-enable signals and trace that we're doing so. */
|
|
um_trace_signals_on();
|
|
signals_enabled = 1;
|
|
}
|
|
}
|
|
|
|
int um_set_signals(int enable)
|
|
{
|
|
int ret;
|
|
if (signals_enabled == enable)
|
|
return enable;
|
|
|
|
ret = signals_enabled;
|
|
if (enable)
|
|
unblock_signals();
|
|
else block_signals();
|
|
|
|
return ret;
|
|
}
|
|
|
|
int um_set_signals_trace(int enable)
|
|
{
|
|
int ret;
|
|
if (signals_enabled == enable)
|
|
return enable;
|
|
|
|
ret = signals_enabled;
|
|
if (enable)
|
|
unblock_signals_trace();
|
|
else
|
|
block_signals_trace();
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_UML_TIME_TRAVEL_SUPPORT)
|
|
void mark_sigio_pending(void)
|
|
{
|
|
/*
|
|
* It would seem that this should be atomic so
|
|
* it isn't a read-modify-write with a signal
|
|
* that could happen in the middle, losing the
|
|
* value set by the signal.
|
|
*
|
|
* However, this function is only called when in
|
|
* time-travel=ext simulation mode, in which case
|
|
* the only signal ever pending is SIGIO, which
|
|
* is blocked while this can be called, and the
|
|
* timer signal (SIGALRM) cannot happen.
|
|
*/
|
|
signals_pending |= SIGIO_MASK;
|
|
}
|
|
|
|
void block_signals_hard(void)
|
|
{
|
|
signals_blocked++;
|
|
barrier();
|
|
}
|
|
|
|
void unblock_signals_hard(void)
|
|
{
|
|
static bool unblocking;
|
|
|
|
if (!signals_blocked)
|
|
panic("unblocking signals while not blocked");
|
|
|
|
if (--signals_blocked)
|
|
return;
|
|
/*
|
|
* Must be set to 0 before we check pending so the
|
|
* SIGIO handler will run as normal unless we're still
|
|
* going to process signals_blocked_pending.
|
|
*/
|
|
barrier();
|
|
|
|
/*
|
|
* Note that block_signals_hard()/unblock_signals_hard() can be called
|
|
* within the unblock_signals()/sigio_run_timetravel_handlers() below.
|
|
* This would still be prone to race conditions since it's actually a
|
|
* call _within_ e.g. vu_req_read_message(), where we observed this
|
|
* issue, which loops. Thus, if the inner call handles the recorded
|
|
* pending signals, we can get out of the inner call with the real
|
|
* signal hander no longer blocked, and still have a race. Thus don't
|
|
* handle unblocking in the inner call, if it happens, but only in
|
|
* the outermost call - 'unblocking' serves as an ownership for the
|
|
* signals_blocked_pending decrement.
|
|
*/
|
|
if (unblocking)
|
|
return;
|
|
unblocking = true;
|
|
|
|
while (__atomic_load_n(&signals_blocked_pending, __ATOMIC_SEQ_CST)) {
|
|
if (signals_enabled) {
|
|
/* signals are enabled so we can touch this */
|
|
signals_pending |= SIGIO_MASK;
|
|
/*
|
|
* this is a bit inefficient, but that's
|
|
* not really important
|
|
*/
|
|
block_signals();
|
|
unblock_signals();
|
|
} else {
|
|
/*
|
|
* we need to run time-travel handlers even
|
|
* if not enabled
|
|
*/
|
|
sigio_run_timetravel_handlers();
|
|
}
|
|
|
|
/*
|
|
* The decrement of signals_blocked_pending must be atomic so
|
|
* that the signal handler will either happen before or after
|
|
* the decrement, not during a read-modify-write:
|
|
* - If it happens before, it can increment it and we'll
|
|
* decrement it and do another round in the loop.
|
|
* - If it happens after it'll see 0 for both signals_blocked
|
|
* and signals_blocked_pending and thus run the handler as
|
|
* usual (subject to signals_enabled, but that's unrelated.)
|
|
*
|
|
* Note that a call to unblock_signals_hard() within the calls
|
|
* to unblock_signals() or sigio_run_timetravel_handlers() above
|
|
* will do nothing due to the 'unblocking' state, so this cannot
|
|
* underflow as the only one decrementing will be the outermost
|
|
* one.
|
|
*/
|
|
if (__atomic_sub_fetch(&signals_blocked_pending, 1,
|
|
__ATOMIC_SEQ_CST) < 0)
|
|
panic("signals_blocked_pending underflow");
|
|
}
|
|
|
|
unblocking = false;
|
|
}
|
|
#endif
|