mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-18 06:15:12 +00:00
23d11a58a9
fca839c00a12 ("workqueue: warn if memory reclaim tries to flush !WQ_MEM_RECLAIM workqueue") implemented flush dependency warning which triggers if a PF_MEMALLOC task or WQ_MEM_RECLAIM workqueue tries to flush a !WQ_MEM_RECLAIM workquee. This assumes that workqueues marked with WQ_MEM_RECLAIM sit in memory reclaim path and making it depend on something which may need more memory to make forward progress can lead to deadlocks. Unfortunately, workqueues created with the legacy create*_workqueue() interface always have WQ_MEM_RECLAIM regardless of whether they are depended upon memory reclaim or not. These spurious WQ_MEM_RECLAIM markings cause spurious triggering of the flush dependency checks. WARNING: CPU: 0 PID: 6 at kernel/workqueue.c:2361 check_flush_dependency+0x138/0x144() workqueue: WQ_MEM_RECLAIM deferwq:deferred_probe_work_func is flushing !WQ_MEM_RECLAIM events:lru_add_drain_per_cpu ... Workqueue: deferwq deferred_probe_work_func [<c0017acc>] (unwind_backtrace) from [<c0013134>] (show_stack+0x10/0x14) [<c0013134>] (show_stack) from [<c0245f18>] (dump_stack+0x94/0xd4) [<c0245f18>] (dump_stack) from [<c0026f9c>] (warn_slowpath_common+0x80/0xb0) [<c0026f9c>] (warn_slowpath_common) from [<c0026ffc>] (warn_slowpath_fmt+0x30/0x40) [<c0026ffc>] (warn_slowpath_fmt) from [<c00390b8>] (check_flush_dependency+0x138/0x144) [<c00390b8>] (check_flush_dependency) from [<c0039ca0>] (flush_work+0x50/0x15c) [<c0039ca0>] (flush_work) from [<c00c51b0>] (lru_add_drain_all+0x130/0x180) [<c00c51b0>] (lru_add_drain_all) from [<c00f728c>] (migrate_prep+0x8/0x10) [<c00f728c>] (migrate_prep) from [<c00bfbc4>] (alloc_contig_range+0xd8/0x338) [<c00bfbc4>] (alloc_contig_range) from [<c00f8f18>] (cma_alloc+0xe0/0x1ac) [<c00f8f18>] (cma_alloc) from [<c001cac4>] (__alloc_from_contiguous+0x38/0xd8) [<c001cac4>] (__alloc_from_contiguous) from [<c001ceb4>] (__dma_alloc+0x240/0x278) [<c001ceb4>] (__dma_alloc) from [<c001cf78>] (arm_dma_alloc+0x54/0x5c) [<c001cf78>] (arm_dma_alloc) from [<c0355ea4>] (dmam_alloc_coherent+0xc0/0xec) [<c0355ea4>] (dmam_alloc_coherent) from [<c039cc4c>] (ahci_port_start+0x150/0x1dc) [<c039cc4c>] (ahci_port_start) from [<c0384734>] (ata_host_start.part.3+0xc8/0x1c8) [<c0384734>] (ata_host_start.part.3) from [<c03898dc>] (ata_host_activate+0x50/0x148) [<c03898dc>] (ata_host_activate) from [<c039d558>] (ahci_host_activate+0x44/0x114) [<c039d558>] (ahci_host_activate) from [<c039f05c>] (ahci_platform_init_host+0x1d8/0x3c8) [<c039f05c>] (ahci_platform_init_host) from [<c039e6bc>] (tegra_ahci_probe+0x448/0x4e8) [<c039e6bc>] (tegra_ahci_probe) from [<c0347058>] (platform_drv_probe+0x50/0xac) [<c0347058>] (platform_drv_probe) from [<c03458cc>] (driver_probe_device+0x214/0x2c0) [<c03458cc>] (driver_probe_device) from [<c0343cc0>] (bus_for_each_drv+0x60/0x94) [<c0343cc0>] (bus_for_each_drv) from [<c03455d8>] (__device_attach+0xb0/0x114) [<c03455d8>] (__device_attach) from [<c0344ab8>] (bus_probe_device+0x84/0x8c) [<c0344ab8>] (bus_probe_device) from [<c0344f48>] (deferred_probe_work_func+0x68/0x98) [<c0344f48>] (deferred_probe_work_func) from [<c003b738>] (process_one_work+0x120/0x3f8) [<c003b738>] (process_one_work) from [<c003ba48>] (worker_thread+0x38/0x55c) [<c003ba48>] (worker_thread) from [<c0040f14>] (kthread+0xdc/0xf4) [<c0040f14>] (kthread) from [<c000f778>] (ret_from_fork+0x14/0x3c) Fix it by marking workqueues created via create*_workqueue() with __WQ_LEGACY and disabling flush dependency checks on them. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-and-tested-by: Thierry Reding <thierry.reding@gmail.com> Link: http://lkml.kernel.org/g/20160126173843.GA11115@ulmo.nvidia.com Fixes: fca839c00a12 ("workqueue: warn if memory reclaim tries to flush !WQ_MEM_RECLAIM workqueue")
629 lines
20 KiB
C
629 lines
20 KiB
C
/*
|
|
* workqueue.h --- work queue handling for Linux.
|
|
*/
|
|
|
|
#ifndef _LINUX_WORKQUEUE_H
|
|
#define _LINUX_WORKQUEUE_H
|
|
|
|
#include <linux/timer.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/cpumask.h>
|
|
|
|
struct workqueue_struct;
|
|
|
|
struct work_struct;
|
|
typedef void (*work_func_t)(struct work_struct *work);
|
|
void delayed_work_timer_fn(unsigned long __data);
|
|
|
|
/*
|
|
* The first word is the work queue pointer and the flags rolled into
|
|
* one
|
|
*/
|
|
#define work_data_bits(work) ((unsigned long *)(&(work)->data))
|
|
|
|
enum {
|
|
WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */
|
|
WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */
|
|
WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */
|
|
WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */
|
|
#ifdef CONFIG_DEBUG_OBJECTS_WORK
|
|
WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */
|
|
WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */
|
|
#else
|
|
WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */
|
|
#endif
|
|
|
|
WORK_STRUCT_COLOR_BITS = 4,
|
|
|
|
WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT,
|
|
WORK_STRUCT_DELAYED = 1 << WORK_STRUCT_DELAYED_BIT,
|
|
WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT,
|
|
WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT,
|
|
#ifdef CONFIG_DEBUG_OBJECTS_WORK
|
|
WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT,
|
|
#else
|
|
WORK_STRUCT_STATIC = 0,
|
|
#endif
|
|
|
|
/*
|
|
* The last color is no color used for works which don't
|
|
* participate in workqueue flushing.
|
|
*/
|
|
WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS) - 1,
|
|
WORK_NO_COLOR = WORK_NR_COLORS,
|
|
|
|
/* not bound to any CPU, prefer the local CPU */
|
|
WORK_CPU_UNBOUND = NR_CPUS,
|
|
|
|
/*
|
|
* Reserve 7 bits off of pwq pointer w/ debugobjects turned off.
|
|
* This makes pwqs aligned to 256 bytes and allows 15 workqueue
|
|
* flush colors.
|
|
*/
|
|
WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT +
|
|
WORK_STRUCT_COLOR_BITS,
|
|
|
|
/* data contains off-queue information when !WORK_STRUCT_PWQ */
|
|
WORK_OFFQ_FLAG_BASE = WORK_STRUCT_COLOR_SHIFT,
|
|
|
|
__WORK_OFFQ_CANCELING = WORK_OFFQ_FLAG_BASE,
|
|
WORK_OFFQ_CANCELING = (1 << __WORK_OFFQ_CANCELING),
|
|
|
|
/*
|
|
* When a work item is off queue, its high bits point to the last
|
|
* pool it was on. Cap at 31 bits and use the highest number to
|
|
* indicate that no pool is associated.
|
|
*/
|
|
WORK_OFFQ_FLAG_BITS = 1,
|
|
WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS,
|
|
WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
|
|
WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
|
|
WORK_OFFQ_POOL_NONE = (1LU << WORK_OFFQ_POOL_BITS) - 1,
|
|
|
|
/* convenience constants */
|
|
WORK_STRUCT_FLAG_MASK = (1UL << WORK_STRUCT_FLAG_BITS) - 1,
|
|
WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK,
|
|
WORK_STRUCT_NO_POOL = (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT,
|
|
|
|
/* bit mask for work_busy() return values */
|
|
WORK_BUSY_PENDING = 1 << 0,
|
|
WORK_BUSY_RUNNING = 1 << 1,
|
|
|
|
/* maximum string length for set_worker_desc() */
|
|
WORKER_DESC_LEN = 24,
|
|
};
|
|
|
|
struct work_struct {
|
|
atomic_long_t data;
|
|
struct list_head entry;
|
|
work_func_t func;
|
|
#ifdef CONFIG_LOCKDEP
|
|
struct lockdep_map lockdep_map;
|
|
#endif
|
|
};
|
|
|
|
#define WORK_DATA_INIT() ATOMIC_LONG_INIT(WORK_STRUCT_NO_POOL)
|
|
#define WORK_DATA_STATIC_INIT() \
|
|
ATOMIC_LONG_INIT(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)
|
|
|
|
struct delayed_work {
|
|
struct work_struct work;
|
|
struct timer_list timer;
|
|
|
|
/* target workqueue and CPU ->timer uses to queue ->work */
|
|
struct workqueue_struct *wq;
|
|
int cpu;
|
|
};
|
|
|
|
/*
|
|
* A struct for workqueue attributes. This can be used to change
|
|
* attributes of an unbound workqueue.
|
|
*
|
|
* Unlike other fields, ->no_numa isn't a property of a worker_pool. It
|
|
* only modifies how apply_workqueue_attrs() select pools and thus doesn't
|
|
* participate in pool hash calculations or equality comparisons.
|
|
*/
|
|
struct workqueue_attrs {
|
|
int nice; /* nice level */
|
|
cpumask_var_t cpumask; /* allowed CPUs */
|
|
bool no_numa; /* disable NUMA affinity */
|
|
};
|
|
|
|
static inline struct delayed_work *to_delayed_work(struct work_struct *work)
|
|
{
|
|
return container_of(work, struct delayed_work, work);
|
|
}
|
|
|
|
struct execute_work {
|
|
struct work_struct work;
|
|
};
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
/*
|
|
* NB: because we have to copy the lockdep_map, setting _key
|
|
* here is required, otherwise it could get initialised to the
|
|
* copy of the lockdep_map!
|
|
*/
|
|
#define __WORK_INIT_LOCKDEP_MAP(n, k) \
|
|
.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
|
|
#else
|
|
#define __WORK_INIT_LOCKDEP_MAP(n, k)
|
|
#endif
|
|
|
|
#define __WORK_INITIALIZER(n, f) { \
|
|
.data = WORK_DATA_STATIC_INIT(), \
|
|
.entry = { &(n).entry, &(n).entry }, \
|
|
.func = (f), \
|
|
__WORK_INIT_LOCKDEP_MAP(#n, &(n)) \
|
|
}
|
|
|
|
#define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \
|
|
.work = __WORK_INITIALIZER((n).work, (f)), \
|
|
.timer = __TIMER_INITIALIZER(delayed_work_timer_fn, \
|
|
0, (unsigned long)&(n), \
|
|
(tflags) | TIMER_IRQSAFE), \
|
|
}
|
|
|
|
#define DECLARE_WORK(n, f) \
|
|
struct work_struct n = __WORK_INITIALIZER(n, f)
|
|
|
|
#define DECLARE_DELAYED_WORK(n, f) \
|
|
struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
|
|
|
|
#define DECLARE_DEFERRABLE_WORK(n, f) \
|
|
struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
|
|
|
|
#ifdef CONFIG_DEBUG_OBJECTS_WORK
|
|
extern void __init_work(struct work_struct *work, int onstack);
|
|
extern void destroy_work_on_stack(struct work_struct *work);
|
|
extern void destroy_delayed_work_on_stack(struct delayed_work *work);
|
|
static inline unsigned int work_static(struct work_struct *work)
|
|
{
|
|
return *work_data_bits(work) & WORK_STRUCT_STATIC;
|
|
}
|
|
#else
|
|
static inline void __init_work(struct work_struct *work, int onstack) { }
|
|
static inline void destroy_work_on_stack(struct work_struct *work) { }
|
|
static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
|
|
static inline unsigned int work_static(struct work_struct *work) { return 0; }
|
|
#endif
|
|
|
|
/*
|
|
* initialize all of a work item in one go
|
|
*
|
|
* NOTE! No point in using "atomic_long_set()": using a direct
|
|
* assignment of the work data initializer allows the compiler
|
|
* to generate better code.
|
|
*/
|
|
#ifdef CONFIG_LOCKDEP
|
|
#define __INIT_WORK(_work, _func, _onstack) \
|
|
do { \
|
|
static struct lock_class_key __key; \
|
|
\
|
|
__init_work((_work), _onstack); \
|
|
(_work)->data = (atomic_long_t) WORK_DATA_INIT(); \
|
|
lockdep_init_map(&(_work)->lockdep_map, #_work, &__key, 0); \
|
|
INIT_LIST_HEAD(&(_work)->entry); \
|
|
(_work)->func = (_func); \
|
|
} while (0)
|
|
#else
|
|
#define __INIT_WORK(_work, _func, _onstack) \
|
|
do { \
|
|
__init_work((_work), _onstack); \
|
|
(_work)->data = (atomic_long_t) WORK_DATA_INIT(); \
|
|
INIT_LIST_HEAD(&(_work)->entry); \
|
|
(_work)->func = (_func); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define INIT_WORK(_work, _func) \
|
|
__INIT_WORK((_work), (_func), 0)
|
|
|
|
#define INIT_WORK_ONSTACK(_work, _func) \
|
|
__INIT_WORK((_work), (_func), 1)
|
|
|
|
#define __INIT_DELAYED_WORK(_work, _func, _tflags) \
|
|
do { \
|
|
INIT_WORK(&(_work)->work, (_func)); \
|
|
__setup_timer(&(_work)->timer, delayed_work_timer_fn, \
|
|
(unsigned long)(_work), \
|
|
(_tflags) | TIMER_IRQSAFE); \
|
|
} while (0)
|
|
|
|
#define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \
|
|
do { \
|
|
INIT_WORK_ONSTACK(&(_work)->work, (_func)); \
|
|
__setup_timer_on_stack(&(_work)->timer, \
|
|
delayed_work_timer_fn, \
|
|
(unsigned long)(_work), \
|
|
(_tflags) | TIMER_IRQSAFE); \
|
|
} while (0)
|
|
|
|
#define INIT_DELAYED_WORK(_work, _func) \
|
|
__INIT_DELAYED_WORK(_work, _func, 0)
|
|
|
|
#define INIT_DELAYED_WORK_ONSTACK(_work, _func) \
|
|
__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
|
|
|
|
#define INIT_DEFERRABLE_WORK(_work, _func) \
|
|
__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
|
|
|
|
#define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \
|
|
__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
|
|
|
|
/**
|
|
* work_pending - Find out whether a work item is currently pending
|
|
* @work: The work item in question
|
|
*/
|
|
#define work_pending(work) \
|
|
test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
|
|
|
|
/**
|
|
* delayed_work_pending - Find out whether a delayable work item is currently
|
|
* pending
|
|
* @w: The work item in question
|
|
*/
|
|
#define delayed_work_pending(w) \
|
|
work_pending(&(w)->work)
|
|
|
|
/*
|
|
* Workqueue flags and constants. For details, please refer to
|
|
* Documentation/workqueue.txt.
|
|
*/
|
|
enum {
|
|
WQ_UNBOUND = 1 << 1, /* not bound to any cpu */
|
|
WQ_FREEZABLE = 1 << 2, /* freeze during suspend */
|
|
WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */
|
|
WQ_HIGHPRI = 1 << 4, /* high priority */
|
|
WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */
|
|
WQ_SYSFS = 1 << 6, /* visible in sysfs, see wq_sysfs_register() */
|
|
|
|
/*
|
|
* Per-cpu workqueues are generally preferred because they tend to
|
|
* show better performance thanks to cache locality. Per-cpu
|
|
* workqueues exclude the scheduler from choosing the CPU to
|
|
* execute the worker threads, which has an unfortunate side effect
|
|
* of increasing power consumption.
|
|
*
|
|
* The scheduler considers a CPU idle if it doesn't have any task
|
|
* to execute and tries to keep idle cores idle to conserve power;
|
|
* however, for example, a per-cpu work item scheduled from an
|
|
* interrupt handler on an idle CPU will force the scheduler to
|
|
* excute the work item on that CPU breaking the idleness, which in
|
|
* turn may lead to more scheduling choices which are sub-optimal
|
|
* in terms of power consumption.
|
|
*
|
|
* Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
|
|
* but become unbound if workqueue.power_efficient kernel param is
|
|
* specified. Per-cpu workqueues which are identified to
|
|
* contribute significantly to power-consumption are identified and
|
|
* marked with this flag and enabling the power_efficient mode
|
|
* leads to noticeable power saving at the cost of small
|
|
* performance disadvantage.
|
|
*
|
|
* http://thread.gmane.org/gmane.linux.kernel/1480396
|
|
*/
|
|
WQ_POWER_EFFICIENT = 1 << 7,
|
|
|
|
__WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */
|
|
__WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */
|
|
__WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */
|
|
|
|
WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */
|
|
WQ_MAX_UNBOUND_PER_CPU = 4, /* 4 * #cpus for unbound wq */
|
|
WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2,
|
|
};
|
|
|
|
/* unbound wq's aren't per-cpu, scale max_active according to #cpus */
|
|
#define WQ_UNBOUND_MAX_ACTIVE \
|
|
max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU)
|
|
|
|
/*
|
|
* System-wide workqueues which are always present.
|
|
*
|
|
* system_wq is the one used by schedule[_delayed]_work[_on]().
|
|
* Multi-CPU multi-threaded. There are users which expect relatively
|
|
* short queue flush time. Don't queue works which can run for too
|
|
* long.
|
|
*
|
|
* system_highpri_wq is similar to system_wq but for work items which
|
|
* require WQ_HIGHPRI.
|
|
*
|
|
* system_long_wq is similar to system_wq but may host long running
|
|
* works. Queue flushing might take relatively long.
|
|
*
|
|
* system_unbound_wq is unbound workqueue. Workers are not bound to
|
|
* any specific CPU, not concurrency managed, and all queued works are
|
|
* executed immediately as long as max_active limit is not reached and
|
|
* resources are available.
|
|
*
|
|
* system_freezable_wq is equivalent to system_wq except that it's
|
|
* freezable.
|
|
*
|
|
* *_power_efficient_wq are inclined towards saving power and converted
|
|
* into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
|
|
* they are same as their non-power-efficient counterparts - e.g.
|
|
* system_power_efficient_wq is identical to system_wq if
|
|
* 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info.
|
|
*/
|
|
extern struct workqueue_struct *system_wq;
|
|
extern struct workqueue_struct *system_highpri_wq;
|
|
extern struct workqueue_struct *system_long_wq;
|
|
extern struct workqueue_struct *system_unbound_wq;
|
|
extern struct workqueue_struct *system_freezable_wq;
|
|
extern struct workqueue_struct *system_power_efficient_wq;
|
|
extern struct workqueue_struct *system_freezable_power_efficient_wq;
|
|
|
|
extern struct workqueue_struct *
|
|
__alloc_workqueue_key(const char *fmt, unsigned int flags, int max_active,
|
|
struct lock_class_key *key, const char *lock_name, ...) __printf(1, 6);
|
|
|
|
/**
|
|
* alloc_workqueue - allocate a workqueue
|
|
* @fmt: printf format for the name of the workqueue
|
|
* @flags: WQ_* flags
|
|
* @max_active: max in-flight work items, 0 for default
|
|
* @args...: args for @fmt
|
|
*
|
|
* Allocate a workqueue with the specified parameters. For detailed
|
|
* information on WQ_* flags, please refer to Documentation/workqueue.txt.
|
|
*
|
|
* The __lock_name macro dance is to guarantee that single lock_class_key
|
|
* doesn't end up with different namesm, which isn't allowed by lockdep.
|
|
*
|
|
* RETURNS:
|
|
* Pointer to the allocated workqueue on success, %NULL on failure.
|
|
*/
|
|
#ifdef CONFIG_LOCKDEP
|
|
#define alloc_workqueue(fmt, flags, max_active, args...) \
|
|
({ \
|
|
static struct lock_class_key __key; \
|
|
const char *__lock_name; \
|
|
\
|
|
__lock_name = #fmt#args; \
|
|
\
|
|
__alloc_workqueue_key((fmt), (flags), (max_active), \
|
|
&__key, __lock_name, ##args); \
|
|
})
|
|
#else
|
|
#define alloc_workqueue(fmt, flags, max_active, args...) \
|
|
__alloc_workqueue_key((fmt), (flags), (max_active), \
|
|
NULL, NULL, ##args)
|
|
#endif
|
|
|
|
/**
|
|
* alloc_ordered_workqueue - allocate an ordered workqueue
|
|
* @fmt: printf format for the name of the workqueue
|
|
* @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
|
|
* @args...: args for @fmt
|
|
*
|
|
* Allocate an ordered workqueue. An ordered workqueue executes at
|
|
* most one work item at any given time in the queued order. They are
|
|
* implemented as unbound workqueues with @max_active of one.
|
|
*
|
|
* RETURNS:
|
|
* Pointer to the allocated workqueue on success, %NULL on failure.
|
|
*/
|
|
#define alloc_ordered_workqueue(fmt, flags, args...) \
|
|
alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | (flags), 1, ##args)
|
|
|
|
#define create_workqueue(name) \
|
|
alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
|
|
#define create_freezable_workqueue(name) \
|
|
alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \
|
|
WQ_MEM_RECLAIM, 1, (name))
|
|
#define create_singlethread_workqueue(name) \
|
|
alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
|
|
|
|
extern void destroy_workqueue(struct workqueue_struct *wq);
|
|
|
|
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask);
|
|
void free_workqueue_attrs(struct workqueue_attrs *attrs);
|
|
int apply_workqueue_attrs(struct workqueue_struct *wq,
|
|
const struct workqueue_attrs *attrs);
|
|
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask);
|
|
|
|
extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
|
|
struct work_struct *work);
|
|
extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
|
|
struct delayed_work *work, unsigned long delay);
|
|
extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
|
|
struct delayed_work *dwork, unsigned long delay);
|
|
|
|
extern void flush_workqueue(struct workqueue_struct *wq);
|
|
extern void drain_workqueue(struct workqueue_struct *wq);
|
|
|
|
extern int schedule_on_each_cpu(work_func_t func);
|
|
|
|
int execute_in_process_context(work_func_t fn, struct execute_work *);
|
|
|
|
extern bool flush_work(struct work_struct *work);
|
|
extern bool cancel_work_sync(struct work_struct *work);
|
|
|
|
extern bool flush_delayed_work(struct delayed_work *dwork);
|
|
extern bool cancel_delayed_work(struct delayed_work *dwork);
|
|
extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
|
|
|
|
extern void workqueue_set_max_active(struct workqueue_struct *wq,
|
|
int max_active);
|
|
extern bool current_is_workqueue_rescuer(void);
|
|
extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
|
|
extern unsigned int work_busy(struct work_struct *work);
|
|
extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
|
|
extern void print_worker_info(const char *log_lvl, struct task_struct *task);
|
|
extern void show_workqueue_state(void);
|
|
|
|
/**
|
|
* queue_work - queue work on a workqueue
|
|
* @wq: workqueue to use
|
|
* @work: work to queue
|
|
*
|
|
* Returns %false if @work was already on a queue, %true otherwise.
|
|
*
|
|
* We queue the work to the CPU on which it was submitted, but if the CPU dies
|
|
* it can be processed by another CPU.
|
|
*/
|
|
static inline bool queue_work(struct workqueue_struct *wq,
|
|
struct work_struct *work)
|
|
{
|
|
return queue_work_on(WORK_CPU_UNBOUND, wq, work);
|
|
}
|
|
|
|
/**
|
|
* queue_delayed_work - queue work on a workqueue after delay
|
|
* @wq: workqueue to use
|
|
* @dwork: delayable work to queue
|
|
* @delay: number of jiffies to wait before queueing
|
|
*
|
|
* Equivalent to queue_delayed_work_on() but tries to use the local CPU.
|
|
*/
|
|
static inline bool queue_delayed_work(struct workqueue_struct *wq,
|
|
struct delayed_work *dwork,
|
|
unsigned long delay)
|
|
{
|
|
return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
|
|
}
|
|
|
|
/**
|
|
* mod_delayed_work - modify delay of or queue a delayed work
|
|
* @wq: workqueue to use
|
|
* @dwork: work to queue
|
|
* @delay: number of jiffies to wait before queueing
|
|
*
|
|
* mod_delayed_work_on() on local CPU.
|
|
*/
|
|
static inline bool mod_delayed_work(struct workqueue_struct *wq,
|
|
struct delayed_work *dwork,
|
|
unsigned long delay)
|
|
{
|
|
return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
|
|
}
|
|
|
|
/**
|
|
* schedule_work_on - put work task on a specific cpu
|
|
* @cpu: cpu to put the work task on
|
|
* @work: job to be done
|
|
*
|
|
* This puts a job on a specific cpu
|
|
*/
|
|
static inline bool schedule_work_on(int cpu, struct work_struct *work)
|
|
{
|
|
return queue_work_on(cpu, system_wq, work);
|
|
}
|
|
|
|
/**
|
|
* schedule_work - put work task in global workqueue
|
|
* @work: job to be done
|
|
*
|
|
* Returns %false if @work was already on the kernel-global workqueue and
|
|
* %true otherwise.
|
|
*
|
|
* This puts a job in the kernel-global workqueue if it was not already
|
|
* queued and leaves it in the same position on the kernel-global
|
|
* workqueue otherwise.
|
|
*/
|
|
static inline bool schedule_work(struct work_struct *work)
|
|
{
|
|
return queue_work(system_wq, work);
|
|
}
|
|
|
|
/**
|
|
* flush_scheduled_work - ensure that any scheduled work has run to completion.
|
|
*
|
|
* Forces execution of the kernel-global workqueue and blocks until its
|
|
* completion.
|
|
*
|
|
* Think twice before calling this function! It's very easy to get into
|
|
* trouble if you don't take great care. Either of the following situations
|
|
* will lead to deadlock:
|
|
*
|
|
* One of the work items currently on the workqueue needs to acquire
|
|
* a lock held by your code or its caller.
|
|
*
|
|
* Your code is running in the context of a work routine.
|
|
*
|
|
* They will be detected by lockdep when they occur, but the first might not
|
|
* occur very often. It depends on what work items are on the workqueue and
|
|
* what locks they need, which you have no control over.
|
|
*
|
|
* In most situations flushing the entire workqueue is overkill; you merely
|
|
* need to know that a particular work item isn't queued and isn't running.
|
|
* In such cases you should use cancel_delayed_work_sync() or
|
|
* cancel_work_sync() instead.
|
|
*/
|
|
static inline void flush_scheduled_work(void)
|
|
{
|
|
flush_workqueue(system_wq);
|
|
}
|
|
|
|
/**
|
|
* schedule_delayed_work_on - queue work in global workqueue on CPU after delay
|
|
* @cpu: cpu to use
|
|
* @dwork: job to be done
|
|
* @delay: number of jiffies to wait
|
|
*
|
|
* After waiting for a given time this puts a job in the kernel-global
|
|
* workqueue on the specified CPU.
|
|
*/
|
|
static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
|
|
unsigned long delay)
|
|
{
|
|
return queue_delayed_work_on(cpu, system_wq, dwork, delay);
|
|
}
|
|
|
|
/**
|
|
* schedule_delayed_work - put work task in global workqueue after delay
|
|
* @dwork: job to be done
|
|
* @delay: number of jiffies to wait or 0 for immediate execution
|
|
*
|
|
* After waiting for a given time this puts a job in the kernel-global
|
|
* workqueue.
|
|
*/
|
|
static inline bool schedule_delayed_work(struct delayed_work *dwork,
|
|
unsigned long delay)
|
|
{
|
|
return queue_delayed_work(system_wq, dwork, delay);
|
|
}
|
|
|
|
/**
|
|
* keventd_up - is workqueue initialized yet?
|
|
*/
|
|
static inline bool keventd_up(void)
|
|
{
|
|
return system_wq != NULL;
|
|
}
|
|
|
|
#ifndef CONFIG_SMP
|
|
static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
|
|
{
|
|
return fn(arg);
|
|
}
|
|
#else
|
|
long work_on_cpu(int cpu, long (*fn)(void *), void *arg);
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_FREEZER
|
|
extern void freeze_workqueues_begin(void);
|
|
extern bool freeze_workqueues_busy(void);
|
|
extern void thaw_workqueues(void);
|
|
#endif /* CONFIG_FREEZER */
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
int workqueue_sysfs_register(struct workqueue_struct *wq);
|
|
#else /* CONFIG_SYSFS */
|
|
static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
|
|
{ return 0; }
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
#ifdef CONFIG_WQ_WATCHDOG
|
|
void wq_watchdog_touch(int cpu);
|
|
#else /* CONFIG_WQ_WATCHDOG */
|
|
static inline void wq_watchdog_touch(int cpu) { }
|
|
#endif /* CONFIG_WQ_WATCHDOG */
|
|
|
|
#endif
|