mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-04 04:02:26 +00:00
5e0a760b44
commit 23baf831a3
("mm, treewide: redefine MAX_ORDER sanely") has
changed the definition of MAX_ORDER to be inclusive. This has caused
issues with code that was not yet upstream and depended on the previous
definition.
To draw attention to the altered meaning of the define, rename MAX_ORDER
to MAX_PAGE_ORDER.
Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
883 lines
20 KiB
C
883 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2005,2006,2007,2008 IBM Corporation
|
|
*
|
|
* Authors:
|
|
* Mimi Zohar <zohar@us.ibm.com>
|
|
* Kylene Hall <kjhall@us.ibm.com>
|
|
*
|
|
* File: ima_crypto.c
|
|
* Calculates md5/sha1 file hash, template hash, boot-aggreate hash
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/file.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <crypto/hash.h>
|
|
|
|
#include "ima.h"
|
|
|
|
/* minimum file size for ahash use */
|
|
static unsigned long ima_ahash_minsize;
|
|
module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
|
|
MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
|
|
|
|
/* default is 0 - 1 page. */
|
|
static int ima_maxorder;
|
|
static unsigned int ima_bufsize = PAGE_SIZE;
|
|
|
|
static int param_set_bufsize(const char *val, const struct kernel_param *kp)
|
|
{
|
|
unsigned long long size;
|
|
int order;
|
|
|
|
size = memparse(val, NULL);
|
|
order = get_order(size);
|
|
if (order > MAX_PAGE_ORDER)
|
|
return -EINVAL;
|
|
ima_maxorder = order;
|
|
ima_bufsize = PAGE_SIZE << order;
|
|
return 0;
|
|
}
|
|
|
|
static const struct kernel_param_ops param_ops_bufsize = {
|
|
.set = param_set_bufsize,
|
|
.get = param_get_uint,
|
|
};
|
|
#define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
|
|
|
|
module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
|
|
MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
|
|
|
|
static struct crypto_shash *ima_shash_tfm;
|
|
static struct crypto_ahash *ima_ahash_tfm;
|
|
|
|
struct ima_algo_desc {
|
|
struct crypto_shash *tfm;
|
|
enum hash_algo algo;
|
|
};
|
|
|
|
int ima_sha1_idx __ro_after_init;
|
|
int ima_hash_algo_idx __ro_after_init;
|
|
/*
|
|
* Additional number of slots reserved, as needed, for SHA1
|
|
* and IMA default algo.
|
|
*/
|
|
int ima_extra_slots __ro_after_init;
|
|
|
|
static struct ima_algo_desc *ima_algo_array;
|
|
|
|
static int __init ima_init_ima_crypto(void)
|
|
{
|
|
long rc;
|
|
|
|
ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
|
|
if (IS_ERR(ima_shash_tfm)) {
|
|
rc = PTR_ERR(ima_shash_tfm);
|
|
pr_err("Can not allocate %s (reason: %ld)\n",
|
|
hash_algo_name[ima_hash_algo], rc);
|
|
return rc;
|
|
}
|
|
pr_info("Allocated hash algorithm: %s\n",
|
|
hash_algo_name[ima_hash_algo]);
|
|
return 0;
|
|
}
|
|
|
|
static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
|
|
{
|
|
struct crypto_shash *tfm = ima_shash_tfm;
|
|
int rc, i;
|
|
|
|
if (algo < 0 || algo >= HASH_ALGO__LAST)
|
|
algo = ima_hash_algo;
|
|
|
|
if (algo == ima_hash_algo)
|
|
return tfm;
|
|
|
|
for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
|
|
if (ima_algo_array[i].tfm && ima_algo_array[i].algo == algo)
|
|
return ima_algo_array[i].tfm;
|
|
|
|
tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
|
|
if (IS_ERR(tfm)) {
|
|
rc = PTR_ERR(tfm);
|
|
pr_err("Can not allocate %s (reason: %d)\n",
|
|
hash_algo_name[algo], rc);
|
|
}
|
|
return tfm;
|
|
}
|
|
|
|
int __init ima_init_crypto(void)
|
|
{
|
|
enum hash_algo algo;
|
|
long rc;
|
|
int i;
|
|
|
|
rc = ima_init_ima_crypto();
|
|
if (rc)
|
|
return rc;
|
|
|
|
ima_sha1_idx = -1;
|
|
ima_hash_algo_idx = -1;
|
|
|
|
for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
|
|
algo = ima_tpm_chip->allocated_banks[i].crypto_id;
|
|
if (algo == HASH_ALGO_SHA1)
|
|
ima_sha1_idx = i;
|
|
|
|
if (algo == ima_hash_algo)
|
|
ima_hash_algo_idx = i;
|
|
}
|
|
|
|
if (ima_sha1_idx < 0) {
|
|
ima_sha1_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
|
|
if (ima_hash_algo == HASH_ALGO_SHA1)
|
|
ima_hash_algo_idx = ima_sha1_idx;
|
|
}
|
|
|
|
if (ima_hash_algo_idx < 0)
|
|
ima_hash_algo_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
|
|
|
|
ima_algo_array = kcalloc(NR_BANKS(ima_tpm_chip) + ima_extra_slots,
|
|
sizeof(*ima_algo_array), GFP_KERNEL);
|
|
if (!ima_algo_array) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
|
|
algo = ima_tpm_chip->allocated_banks[i].crypto_id;
|
|
ima_algo_array[i].algo = algo;
|
|
|
|
/* unknown TPM algorithm */
|
|
if (algo == HASH_ALGO__LAST)
|
|
continue;
|
|
|
|
if (algo == ima_hash_algo) {
|
|
ima_algo_array[i].tfm = ima_shash_tfm;
|
|
continue;
|
|
}
|
|
|
|
ima_algo_array[i].tfm = ima_alloc_tfm(algo);
|
|
if (IS_ERR(ima_algo_array[i].tfm)) {
|
|
if (algo == HASH_ALGO_SHA1) {
|
|
rc = PTR_ERR(ima_algo_array[i].tfm);
|
|
ima_algo_array[i].tfm = NULL;
|
|
goto out_array;
|
|
}
|
|
|
|
ima_algo_array[i].tfm = NULL;
|
|
}
|
|
}
|
|
|
|
if (ima_sha1_idx >= NR_BANKS(ima_tpm_chip)) {
|
|
if (ima_hash_algo == HASH_ALGO_SHA1) {
|
|
ima_algo_array[ima_sha1_idx].tfm = ima_shash_tfm;
|
|
} else {
|
|
ima_algo_array[ima_sha1_idx].tfm =
|
|
ima_alloc_tfm(HASH_ALGO_SHA1);
|
|
if (IS_ERR(ima_algo_array[ima_sha1_idx].tfm)) {
|
|
rc = PTR_ERR(ima_algo_array[ima_sha1_idx].tfm);
|
|
goto out_array;
|
|
}
|
|
}
|
|
|
|
ima_algo_array[ima_sha1_idx].algo = HASH_ALGO_SHA1;
|
|
}
|
|
|
|
if (ima_hash_algo_idx >= NR_BANKS(ima_tpm_chip) &&
|
|
ima_hash_algo_idx != ima_sha1_idx) {
|
|
ima_algo_array[ima_hash_algo_idx].tfm = ima_shash_tfm;
|
|
ima_algo_array[ima_hash_algo_idx].algo = ima_hash_algo;
|
|
}
|
|
|
|
return 0;
|
|
out_array:
|
|
for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
|
|
if (!ima_algo_array[i].tfm ||
|
|
ima_algo_array[i].tfm == ima_shash_tfm)
|
|
continue;
|
|
|
|
crypto_free_shash(ima_algo_array[i].tfm);
|
|
}
|
|
kfree(ima_algo_array);
|
|
out:
|
|
crypto_free_shash(ima_shash_tfm);
|
|
return rc;
|
|
}
|
|
|
|
static void ima_free_tfm(struct crypto_shash *tfm)
|
|
{
|
|
int i;
|
|
|
|
if (tfm == ima_shash_tfm)
|
|
return;
|
|
|
|
for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
|
|
if (ima_algo_array[i].tfm == tfm)
|
|
return;
|
|
|
|
crypto_free_shash(tfm);
|
|
}
|
|
|
|
/**
|
|
* ima_alloc_pages() - Allocate contiguous pages.
|
|
* @max_size: Maximum amount of memory to allocate.
|
|
* @allocated_size: Returned size of actual allocation.
|
|
* @last_warn: Should the min_size allocation warn or not.
|
|
*
|
|
* Tries to do opportunistic allocation for memory first trying to allocate
|
|
* max_size amount of memory and then splitting that until zero order is
|
|
* reached. Allocation is tried without generating allocation warnings unless
|
|
* last_warn is set. Last_warn set affects only last allocation of zero order.
|
|
*
|
|
* By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
|
|
*
|
|
* Return pointer to allocated memory, or NULL on failure.
|
|
*/
|
|
static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
|
|
int last_warn)
|
|
{
|
|
void *ptr;
|
|
int order = ima_maxorder;
|
|
gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
|
|
|
|
if (order)
|
|
order = min(get_order(max_size), order);
|
|
|
|
for (; order; order--) {
|
|
ptr = (void *)__get_free_pages(gfp_mask, order);
|
|
if (ptr) {
|
|
*allocated_size = PAGE_SIZE << order;
|
|
return ptr;
|
|
}
|
|
}
|
|
|
|
/* order is zero - one page */
|
|
|
|
gfp_mask = GFP_KERNEL;
|
|
|
|
if (!last_warn)
|
|
gfp_mask |= __GFP_NOWARN;
|
|
|
|
ptr = (void *)__get_free_pages(gfp_mask, 0);
|
|
if (ptr) {
|
|
*allocated_size = PAGE_SIZE;
|
|
return ptr;
|
|
}
|
|
|
|
*allocated_size = 0;
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ima_free_pages() - Free pages allocated by ima_alloc_pages().
|
|
* @ptr: Pointer to allocated pages.
|
|
* @size: Size of allocated buffer.
|
|
*/
|
|
static void ima_free_pages(void *ptr, size_t size)
|
|
{
|
|
if (!ptr)
|
|
return;
|
|
free_pages((unsigned long)ptr, get_order(size));
|
|
}
|
|
|
|
static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
|
|
{
|
|
struct crypto_ahash *tfm = ima_ahash_tfm;
|
|
int rc;
|
|
|
|
if (algo < 0 || algo >= HASH_ALGO__LAST)
|
|
algo = ima_hash_algo;
|
|
|
|
if (algo != ima_hash_algo || !tfm) {
|
|
tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
|
|
if (!IS_ERR(tfm)) {
|
|
if (algo == ima_hash_algo)
|
|
ima_ahash_tfm = tfm;
|
|
} else {
|
|
rc = PTR_ERR(tfm);
|
|
pr_err("Can not allocate %s (reason: %d)\n",
|
|
hash_algo_name[algo], rc);
|
|
}
|
|
}
|
|
return tfm;
|
|
}
|
|
|
|
static void ima_free_atfm(struct crypto_ahash *tfm)
|
|
{
|
|
if (tfm != ima_ahash_tfm)
|
|
crypto_free_ahash(tfm);
|
|
}
|
|
|
|
static inline int ahash_wait(int err, struct crypto_wait *wait)
|
|
{
|
|
|
|
err = crypto_wait_req(err, wait);
|
|
|
|
if (err)
|
|
pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int ima_calc_file_hash_atfm(struct file *file,
|
|
struct ima_digest_data *hash,
|
|
struct crypto_ahash *tfm)
|
|
{
|
|
loff_t i_size, offset;
|
|
char *rbuf[2] = { NULL, };
|
|
int rc, rbuf_len, active = 0, ahash_rc = 0;
|
|
struct ahash_request *req;
|
|
struct scatterlist sg[1];
|
|
struct crypto_wait wait;
|
|
size_t rbuf_size[2];
|
|
|
|
hash->length = crypto_ahash_digestsize(tfm);
|
|
|
|
req = ahash_request_alloc(tfm, GFP_KERNEL);
|
|
if (!req)
|
|
return -ENOMEM;
|
|
|
|
crypto_init_wait(&wait);
|
|
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
|
|
CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
crypto_req_done, &wait);
|
|
|
|
rc = ahash_wait(crypto_ahash_init(req), &wait);
|
|
if (rc)
|
|
goto out1;
|
|
|
|
i_size = i_size_read(file_inode(file));
|
|
|
|
if (i_size == 0)
|
|
goto out2;
|
|
|
|
/*
|
|
* Try to allocate maximum size of memory.
|
|
* Fail if even a single page cannot be allocated.
|
|
*/
|
|
rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
|
|
if (!rbuf[0]) {
|
|
rc = -ENOMEM;
|
|
goto out1;
|
|
}
|
|
|
|
/* Only allocate one buffer if that is enough. */
|
|
if (i_size > rbuf_size[0]) {
|
|
/*
|
|
* Try to allocate secondary buffer. If that fails fallback to
|
|
* using single buffering. Use previous memory allocation size
|
|
* as baseline for possible allocation size.
|
|
*/
|
|
rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
|
|
&rbuf_size[1], 0);
|
|
}
|
|
|
|
for (offset = 0; offset < i_size; offset += rbuf_len) {
|
|
if (!rbuf[1] && offset) {
|
|
/* Not using two buffers, and it is not the first
|
|
* read/request, wait for the completion of the
|
|
* previous ahash_update() request.
|
|
*/
|
|
rc = ahash_wait(ahash_rc, &wait);
|
|
if (rc)
|
|
goto out3;
|
|
}
|
|
/* read buffer */
|
|
rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
|
|
rc = integrity_kernel_read(file, offset, rbuf[active],
|
|
rbuf_len);
|
|
if (rc != rbuf_len) {
|
|
if (rc >= 0)
|
|
rc = -EINVAL;
|
|
/*
|
|
* Forward current rc, do not overwrite with return value
|
|
* from ahash_wait()
|
|
*/
|
|
ahash_wait(ahash_rc, &wait);
|
|
goto out3;
|
|
}
|
|
|
|
if (rbuf[1] && offset) {
|
|
/* Using two buffers, and it is not the first
|
|
* read/request, wait for the completion of the
|
|
* previous ahash_update() request.
|
|
*/
|
|
rc = ahash_wait(ahash_rc, &wait);
|
|
if (rc)
|
|
goto out3;
|
|
}
|
|
|
|
sg_init_one(&sg[0], rbuf[active], rbuf_len);
|
|
ahash_request_set_crypt(req, sg, NULL, rbuf_len);
|
|
|
|
ahash_rc = crypto_ahash_update(req);
|
|
|
|
if (rbuf[1])
|
|
active = !active; /* swap buffers, if we use two */
|
|
}
|
|
/* wait for the last update request to complete */
|
|
rc = ahash_wait(ahash_rc, &wait);
|
|
out3:
|
|
ima_free_pages(rbuf[0], rbuf_size[0]);
|
|
ima_free_pages(rbuf[1], rbuf_size[1]);
|
|
out2:
|
|
if (!rc) {
|
|
ahash_request_set_crypt(req, NULL, hash->digest, 0);
|
|
rc = ahash_wait(crypto_ahash_final(req), &wait);
|
|
}
|
|
out1:
|
|
ahash_request_free(req);
|
|
return rc;
|
|
}
|
|
|
|
static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
|
|
{
|
|
struct crypto_ahash *tfm;
|
|
int rc;
|
|
|
|
tfm = ima_alloc_atfm(hash->algo);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
rc = ima_calc_file_hash_atfm(file, hash, tfm);
|
|
|
|
ima_free_atfm(tfm);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int ima_calc_file_hash_tfm(struct file *file,
|
|
struct ima_digest_data *hash,
|
|
struct crypto_shash *tfm)
|
|
{
|
|
loff_t i_size, offset = 0;
|
|
char *rbuf;
|
|
int rc;
|
|
SHASH_DESC_ON_STACK(shash, tfm);
|
|
|
|
shash->tfm = tfm;
|
|
|
|
hash->length = crypto_shash_digestsize(tfm);
|
|
|
|
rc = crypto_shash_init(shash);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
i_size = i_size_read(file_inode(file));
|
|
|
|
if (i_size == 0)
|
|
goto out;
|
|
|
|
rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!rbuf)
|
|
return -ENOMEM;
|
|
|
|
while (offset < i_size) {
|
|
int rbuf_len;
|
|
|
|
rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
|
|
if (rbuf_len < 0) {
|
|
rc = rbuf_len;
|
|
break;
|
|
}
|
|
if (rbuf_len == 0) { /* unexpected EOF */
|
|
rc = -EINVAL;
|
|
break;
|
|
}
|
|
offset += rbuf_len;
|
|
|
|
rc = crypto_shash_update(shash, rbuf, rbuf_len);
|
|
if (rc)
|
|
break;
|
|
}
|
|
kfree(rbuf);
|
|
out:
|
|
if (!rc)
|
|
rc = crypto_shash_final(shash, hash->digest);
|
|
return rc;
|
|
}
|
|
|
|
static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
int rc;
|
|
|
|
tfm = ima_alloc_tfm(hash->algo);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
rc = ima_calc_file_hash_tfm(file, hash, tfm);
|
|
|
|
ima_free_tfm(tfm);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* ima_calc_file_hash - calculate file hash
|
|
*
|
|
* Asynchronous hash (ahash) allows using HW acceleration for calculating
|
|
* a hash. ahash performance varies for different data sizes on different
|
|
* crypto accelerators. shash performance might be better for smaller files.
|
|
* The 'ima.ahash_minsize' module parameter allows specifying the best
|
|
* minimum file size for using ahash on the system.
|
|
*
|
|
* If the ima.ahash_minsize parameter is not specified, this function uses
|
|
* shash for the hash calculation. If ahash fails, it falls back to using
|
|
* shash.
|
|
*/
|
|
int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
|
|
{
|
|
loff_t i_size;
|
|
int rc;
|
|
struct file *f = file;
|
|
bool new_file_instance = false;
|
|
|
|
/*
|
|
* For consistency, fail file's opened with the O_DIRECT flag on
|
|
* filesystems mounted with/without DAX option.
|
|
*/
|
|
if (file->f_flags & O_DIRECT) {
|
|
hash->length = hash_digest_size[ima_hash_algo];
|
|
hash->algo = ima_hash_algo;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Open a new file instance in O_RDONLY if we cannot read */
|
|
if (!(file->f_mode & FMODE_READ)) {
|
|
int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
|
|
O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
|
|
flags |= O_RDONLY;
|
|
f = dentry_open(&file->f_path, flags, file->f_cred);
|
|
if (IS_ERR(f))
|
|
return PTR_ERR(f);
|
|
|
|
new_file_instance = true;
|
|
}
|
|
|
|
i_size = i_size_read(file_inode(f));
|
|
|
|
if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
|
|
rc = ima_calc_file_ahash(f, hash);
|
|
if (!rc)
|
|
goto out;
|
|
}
|
|
|
|
rc = ima_calc_file_shash(f, hash);
|
|
out:
|
|
if (new_file_instance)
|
|
fput(f);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Calculate the hash of template data
|
|
*/
|
|
static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
|
|
struct ima_template_entry *entry,
|
|
int tfm_idx)
|
|
{
|
|
SHASH_DESC_ON_STACK(shash, ima_algo_array[tfm_idx].tfm);
|
|
struct ima_template_desc *td = entry->template_desc;
|
|
int num_fields = entry->template_desc->num_fields;
|
|
int rc, i;
|
|
|
|
shash->tfm = ima_algo_array[tfm_idx].tfm;
|
|
|
|
rc = crypto_shash_init(shash);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
for (i = 0; i < num_fields; i++) {
|
|
u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
|
|
u8 *data_to_hash = field_data[i].data;
|
|
u32 datalen = field_data[i].len;
|
|
u32 datalen_to_hash = !ima_canonical_fmt ?
|
|
datalen : (__force u32)cpu_to_le32(datalen);
|
|
|
|
if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
|
|
rc = crypto_shash_update(shash,
|
|
(const u8 *) &datalen_to_hash,
|
|
sizeof(datalen_to_hash));
|
|
if (rc)
|
|
break;
|
|
} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
|
|
memcpy(buffer, data_to_hash, datalen);
|
|
data_to_hash = buffer;
|
|
datalen = IMA_EVENT_NAME_LEN_MAX + 1;
|
|
}
|
|
rc = crypto_shash_update(shash, data_to_hash, datalen);
|
|
if (rc)
|
|
break;
|
|
}
|
|
|
|
if (!rc)
|
|
rc = crypto_shash_final(shash, entry->digests[tfm_idx].digest);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int ima_calc_field_array_hash(struct ima_field_data *field_data,
|
|
struct ima_template_entry *entry)
|
|
{
|
|
u16 alg_id;
|
|
int rc, i;
|
|
|
|
rc = ima_calc_field_array_hash_tfm(field_data, entry, ima_sha1_idx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
entry->digests[ima_sha1_idx].alg_id = TPM_ALG_SHA1;
|
|
|
|
for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
|
|
if (i == ima_sha1_idx)
|
|
continue;
|
|
|
|
if (i < NR_BANKS(ima_tpm_chip)) {
|
|
alg_id = ima_tpm_chip->allocated_banks[i].alg_id;
|
|
entry->digests[i].alg_id = alg_id;
|
|
}
|
|
|
|
/* for unmapped TPM algorithms digest is still a padded SHA1 */
|
|
if (!ima_algo_array[i].tfm) {
|
|
memcpy(entry->digests[i].digest,
|
|
entry->digests[ima_sha1_idx].digest,
|
|
TPM_DIGEST_SIZE);
|
|
continue;
|
|
}
|
|
|
|
rc = ima_calc_field_array_hash_tfm(field_data, entry, i);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
|
|
struct ima_digest_data *hash,
|
|
struct crypto_ahash *tfm)
|
|
{
|
|
struct ahash_request *req;
|
|
struct scatterlist sg;
|
|
struct crypto_wait wait;
|
|
int rc, ahash_rc = 0;
|
|
|
|
hash->length = crypto_ahash_digestsize(tfm);
|
|
|
|
req = ahash_request_alloc(tfm, GFP_KERNEL);
|
|
if (!req)
|
|
return -ENOMEM;
|
|
|
|
crypto_init_wait(&wait);
|
|
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
|
|
CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
crypto_req_done, &wait);
|
|
|
|
rc = ahash_wait(crypto_ahash_init(req), &wait);
|
|
if (rc)
|
|
goto out;
|
|
|
|
sg_init_one(&sg, buf, len);
|
|
ahash_request_set_crypt(req, &sg, NULL, len);
|
|
|
|
ahash_rc = crypto_ahash_update(req);
|
|
|
|
/* wait for the update request to complete */
|
|
rc = ahash_wait(ahash_rc, &wait);
|
|
if (!rc) {
|
|
ahash_request_set_crypt(req, NULL, hash->digest, 0);
|
|
rc = ahash_wait(crypto_ahash_final(req), &wait);
|
|
}
|
|
out:
|
|
ahash_request_free(req);
|
|
return rc;
|
|
}
|
|
|
|
static int calc_buffer_ahash(const void *buf, loff_t len,
|
|
struct ima_digest_data *hash)
|
|
{
|
|
struct crypto_ahash *tfm;
|
|
int rc;
|
|
|
|
tfm = ima_alloc_atfm(hash->algo);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
|
|
|
|
ima_free_atfm(tfm);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int calc_buffer_shash_tfm(const void *buf, loff_t size,
|
|
struct ima_digest_data *hash,
|
|
struct crypto_shash *tfm)
|
|
{
|
|
SHASH_DESC_ON_STACK(shash, tfm);
|
|
unsigned int len;
|
|
int rc;
|
|
|
|
shash->tfm = tfm;
|
|
|
|
hash->length = crypto_shash_digestsize(tfm);
|
|
|
|
rc = crypto_shash_init(shash);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
while (size) {
|
|
len = size < PAGE_SIZE ? size : PAGE_SIZE;
|
|
rc = crypto_shash_update(shash, buf, len);
|
|
if (rc)
|
|
break;
|
|
buf += len;
|
|
size -= len;
|
|
}
|
|
|
|
if (!rc)
|
|
rc = crypto_shash_final(shash, hash->digest);
|
|
return rc;
|
|
}
|
|
|
|
static int calc_buffer_shash(const void *buf, loff_t len,
|
|
struct ima_digest_data *hash)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
int rc;
|
|
|
|
tfm = ima_alloc_tfm(hash->algo);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
|
|
|
|
ima_free_tfm(tfm);
|
|
return rc;
|
|
}
|
|
|
|
int ima_calc_buffer_hash(const void *buf, loff_t len,
|
|
struct ima_digest_data *hash)
|
|
{
|
|
int rc;
|
|
|
|
if (ima_ahash_minsize && len >= ima_ahash_minsize) {
|
|
rc = calc_buffer_ahash(buf, len, hash);
|
|
if (!rc)
|
|
return 0;
|
|
}
|
|
|
|
return calc_buffer_shash(buf, len, hash);
|
|
}
|
|
|
|
static void ima_pcrread(u32 idx, struct tpm_digest *d)
|
|
{
|
|
if (!ima_tpm_chip)
|
|
return;
|
|
|
|
if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0)
|
|
pr_err("Error Communicating to TPM chip\n");
|
|
}
|
|
|
|
/*
|
|
* The boot_aggregate is a cumulative hash over TPM registers 0 - 7. With
|
|
* TPM 1.2 the boot_aggregate was based on reading the SHA1 PCRs, but with
|
|
* TPM 2.0 hash agility, TPM chips could support multiple TPM PCR banks,
|
|
* allowing firmware to configure and enable different banks.
|
|
*
|
|
* Knowing which TPM bank is read to calculate the boot_aggregate digest
|
|
* needs to be conveyed to a verifier. For this reason, use the same
|
|
* hash algorithm for reading the TPM PCRs as for calculating the boot
|
|
* aggregate digest as stored in the measurement list.
|
|
*/
|
|
static int ima_calc_boot_aggregate_tfm(char *digest, u16 alg_id,
|
|
struct crypto_shash *tfm)
|
|
{
|
|
struct tpm_digest d = { .alg_id = alg_id, .digest = {0} };
|
|
int rc;
|
|
u32 i;
|
|
SHASH_DESC_ON_STACK(shash, tfm);
|
|
|
|
shash->tfm = tfm;
|
|
|
|
pr_devel("calculating the boot-aggregate based on TPM bank: %04x\n",
|
|
d.alg_id);
|
|
|
|
rc = crypto_shash_init(shash);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/* cumulative digest over TPM registers 0-7 */
|
|
for (i = TPM_PCR0; i < TPM_PCR8; i++) {
|
|
ima_pcrread(i, &d);
|
|
/* now accumulate with current aggregate */
|
|
rc = crypto_shash_update(shash, d.digest,
|
|
crypto_shash_digestsize(tfm));
|
|
if (rc != 0)
|
|
return rc;
|
|
}
|
|
/*
|
|
* Extend cumulative digest over TPM registers 8-9, which contain
|
|
* measurement for the kernel command line (reg. 8) and image (reg. 9)
|
|
* in a typical PCR allocation. Registers 8-9 are only included in
|
|
* non-SHA1 boot_aggregate digests to avoid ambiguity.
|
|
*/
|
|
if (alg_id != TPM_ALG_SHA1) {
|
|
for (i = TPM_PCR8; i < TPM_PCR10; i++) {
|
|
ima_pcrread(i, &d);
|
|
rc = crypto_shash_update(shash, d.digest,
|
|
crypto_shash_digestsize(tfm));
|
|
}
|
|
}
|
|
if (!rc)
|
|
crypto_shash_final(shash, digest);
|
|
return rc;
|
|
}
|
|
|
|
int ima_calc_boot_aggregate(struct ima_digest_data *hash)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
u16 crypto_id, alg_id;
|
|
int rc, i, bank_idx = -1;
|
|
|
|
for (i = 0; i < ima_tpm_chip->nr_allocated_banks; i++) {
|
|
crypto_id = ima_tpm_chip->allocated_banks[i].crypto_id;
|
|
if (crypto_id == hash->algo) {
|
|
bank_idx = i;
|
|
break;
|
|
}
|
|
|
|
if (crypto_id == HASH_ALGO_SHA256)
|
|
bank_idx = i;
|
|
|
|
if (bank_idx == -1 && crypto_id == HASH_ALGO_SHA1)
|
|
bank_idx = i;
|
|
}
|
|
|
|
if (bank_idx == -1) {
|
|
pr_err("No suitable TPM algorithm for boot aggregate\n");
|
|
return 0;
|
|
}
|
|
|
|
hash->algo = ima_tpm_chip->allocated_banks[bank_idx].crypto_id;
|
|
|
|
tfm = ima_alloc_tfm(hash->algo);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
hash->length = crypto_shash_digestsize(tfm);
|
|
alg_id = ima_tpm_chip->allocated_banks[bank_idx].alg_id;
|
|
rc = ima_calc_boot_aggregate_tfm(hash->digest, alg_id, tfm);
|
|
|
|
ima_free_tfm(tfm);
|
|
|
|
return rc;
|
|
}
|