linux-next/drivers/net/smsc9420.c
Roel Kluin 46578a6913 net: variables reach -1, but 0 tested
while (timeout--) { ... }

timeout becomes -1 if the loop isn't ended otherwise, not 0.

Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-02 21:39:02 -08:00

1745 lines
43 KiB
C

/***************************************************************************
*
* Copyright (C) 2007,2008 SMSC
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
***************************************************************************
*/
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/phy.h>
#include <linux/pci.h>
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
#include <linux/crc32.h>
#include <asm/unaligned.h>
#include "smsc9420.h"
#define DRV_NAME "smsc9420"
#define PFX DRV_NAME ": "
#define DRV_MDIONAME "smsc9420-mdio"
#define DRV_DESCRIPTION "SMSC LAN9420 driver"
#define DRV_VERSION "1.01"
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
struct smsc9420_dma_desc {
u32 status;
u32 length;
u32 buffer1;
u32 buffer2;
};
struct smsc9420_ring_info {
struct sk_buff *skb;
dma_addr_t mapping;
};
struct smsc9420_pdata {
void __iomem *base_addr;
struct pci_dev *pdev;
struct net_device *dev;
struct smsc9420_dma_desc *rx_ring;
struct smsc9420_dma_desc *tx_ring;
struct smsc9420_ring_info *tx_buffers;
struct smsc9420_ring_info *rx_buffers;
dma_addr_t rx_dma_addr;
dma_addr_t tx_dma_addr;
int tx_ring_head, tx_ring_tail;
int rx_ring_head, rx_ring_tail;
spinlock_t int_lock;
spinlock_t phy_lock;
struct napi_struct napi;
bool software_irq_signal;
bool rx_csum;
u32 msg_enable;
struct phy_device *phy_dev;
struct mii_bus *mii_bus;
int phy_irq[PHY_MAX_ADDR];
int last_duplex;
int last_carrier;
};
static const struct pci_device_id smsc9420_id_table[] = {
{ PCI_VENDOR_ID_9420, PCI_DEVICE_ID_9420, PCI_ANY_ID, PCI_ANY_ID, },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, smsc9420_id_table);
#define SMSC_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
static uint smsc_debug;
static uint debug = -1;
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "debug level");
#define smsc_dbg(TYPE, f, a...) \
do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
printk(KERN_DEBUG PFX f "\n", ## a); \
} while (0)
#define smsc_info(TYPE, f, a...) \
do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
printk(KERN_INFO PFX f "\n", ## a); \
} while (0)
#define smsc_warn(TYPE, f, a...) \
do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
printk(KERN_WARNING PFX f "\n", ## a); \
} while (0)
static inline u32 smsc9420_reg_read(struct smsc9420_pdata *pd, u32 offset)
{
return ioread32(pd->base_addr + offset);
}
static inline void
smsc9420_reg_write(struct smsc9420_pdata *pd, u32 offset, u32 value)
{
iowrite32(value, pd->base_addr + offset);
}
static inline void smsc9420_pci_flush_write(struct smsc9420_pdata *pd)
{
/* to ensure PCI write completion, we must perform a PCI read */
smsc9420_reg_read(pd, ID_REV);
}
static int smsc9420_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
{
struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
unsigned long flags;
u32 addr;
int i, reg = -EIO;
spin_lock_irqsave(&pd->phy_lock, flags);
/* confirm MII not busy */
if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
smsc_warn(DRV, "MII is busy???");
goto out;
}
/* set the address, index & direction (read from PHY) */
addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
MII_ACCESS_MII_READ_;
smsc9420_reg_write(pd, MII_ACCESS, addr);
/* wait for read to complete with 50us timeout */
for (i = 0; i < 5; i++) {
if (!(smsc9420_reg_read(pd, MII_ACCESS) &
MII_ACCESS_MII_BUSY_)) {
reg = (u16)smsc9420_reg_read(pd, MII_DATA);
goto out;
}
udelay(10);
}
smsc_warn(DRV, "MII busy timeout!");
out:
spin_unlock_irqrestore(&pd->phy_lock, flags);
return reg;
}
static int smsc9420_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
u16 val)
{
struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
unsigned long flags;
u32 addr;
int i, reg = -EIO;
spin_lock_irqsave(&pd->phy_lock, flags);
/* confirm MII not busy */
if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
smsc_warn(DRV, "MII is busy???");
goto out;
}
/* put the data to write in the MAC */
smsc9420_reg_write(pd, MII_DATA, (u32)val);
/* set the address, index & direction (write to PHY) */
addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
MII_ACCESS_MII_WRITE_;
smsc9420_reg_write(pd, MII_ACCESS, addr);
/* wait for write to complete with 50us timeout */
for (i = 0; i < 5; i++) {
if (!(smsc9420_reg_read(pd, MII_ACCESS) &
MII_ACCESS_MII_BUSY_)) {
reg = 0;
goto out;
}
udelay(10);
}
smsc_warn(DRV, "MII busy timeout!");
out:
spin_unlock_irqrestore(&pd->phy_lock, flags);
return reg;
}
/* Returns hash bit number for given MAC address
* Example:
* 01 00 5E 00 00 01 -> returns bit number 31 */
static u32 smsc9420_hash(u8 addr[ETH_ALEN])
{
return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f;
}
static int smsc9420_eeprom_reload(struct smsc9420_pdata *pd)
{
int timeout = 100000;
BUG_ON(!pd);
if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
smsc_dbg(DRV, "smsc9420_eeprom_reload: Eeprom busy");
return -EIO;
}
smsc9420_reg_write(pd, E2P_CMD,
(E2P_CMD_EPC_BUSY_ | E2P_CMD_EPC_CMD_RELOAD_));
do {
udelay(10);
if (!(smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_))
return 0;
} while (timeout--);
smsc_warn(DRV, "smsc9420_eeprom_reload: Eeprom timed out");
return -EIO;
}
/* Standard ioctls for mii-tool */
static int smsc9420_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
if (!netif_running(dev) || !pd->phy_dev)
return -EINVAL;
return phy_mii_ioctl(pd->phy_dev, if_mii(ifr), cmd);
}
static int smsc9420_ethtool_get_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
cmd->maxtxpkt = 1;
cmd->maxrxpkt = 1;
return phy_ethtool_gset(pd->phy_dev, cmd);
}
static int smsc9420_ethtool_set_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
return phy_ethtool_sset(pd->phy_dev, cmd);
}
static void smsc9420_ethtool_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct smsc9420_pdata *pd = netdev_priv(netdev);
strcpy(drvinfo->driver, DRV_NAME);
strcpy(drvinfo->bus_info, pci_name(pd->pdev));
strcpy(drvinfo->version, DRV_VERSION);
}
static u32 smsc9420_ethtool_get_msglevel(struct net_device *netdev)
{
struct smsc9420_pdata *pd = netdev_priv(netdev);
return pd->msg_enable;
}
static void smsc9420_ethtool_set_msglevel(struct net_device *netdev, u32 data)
{
struct smsc9420_pdata *pd = netdev_priv(netdev);
pd->msg_enable = data;
}
static int smsc9420_ethtool_nway_reset(struct net_device *netdev)
{
struct smsc9420_pdata *pd = netdev_priv(netdev);
return phy_start_aneg(pd->phy_dev);
}
static int smsc9420_ethtool_getregslen(struct net_device *dev)
{
/* all smsc9420 registers plus all phy registers */
return 0x100 + (32 * sizeof(u32));
}
static void
smsc9420_ethtool_getregs(struct net_device *dev, struct ethtool_regs *regs,
void *buf)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
struct phy_device *phy_dev = pd->phy_dev;
unsigned int i, j = 0;
u32 *data = buf;
regs->version = smsc9420_reg_read(pd, ID_REV);
for (i = 0; i < 0x100; i += (sizeof(u32)))
data[j++] = smsc9420_reg_read(pd, i);
for (i = 0; i <= 31; i++)
data[j++] = smsc9420_mii_read(phy_dev->bus, phy_dev->addr, i);
}
static void smsc9420_eeprom_enable_access(struct smsc9420_pdata *pd)
{
unsigned int temp = smsc9420_reg_read(pd, GPIO_CFG);
temp &= ~GPIO_CFG_EEPR_EN_;
smsc9420_reg_write(pd, GPIO_CFG, temp);
msleep(1);
}
static int smsc9420_eeprom_send_cmd(struct smsc9420_pdata *pd, u32 op)
{
int timeout = 100;
u32 e2cmd;
smsc_dbg(HW, "op 0x%08x", op);
if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
smsc_warn(HW, "Busy at start");
return -EBUSY;
}
e2cmd = op | E2P_CMD_EPC_BUSY_;
smsc9420_reg_write(pd, E2P_CMD, e2cmd);
do {
msleep(1);
e2cmd = smsc9420_reg_read(pd, E2P_CMD);
} while ((e2cmd & E2P_CMD_EPC_BUSY_) && (timeout--));
if (!timeout) {
smsc_info(HW, "TIMED OUT");
return -EAGAIN;
}
if (e2cmd & E2P_CMD_EPC_TIMEOUT_) {
smsc_info(HW, "Error occured during eeprom operation");
return -EINVAL;
}
return 0;
}
static int smsc9420_eeprom_read_location(struct smsc9420_pdata *pd,
u8 address, u8 *data)
{
u32 op = E2P_CMD_EPC_CMD_READ_ | address;
int ret;
smsc_dbg(HW, "address 0x%x", address);
ret = smsc9420_eeprom_send_cmd(pd, op);
if (!ret)
data[address] = smsc9420_reg_read(pd, E2P_DATA);
return ret;
}
static int smsc9420_eeprom_write_location(struct smsc9420_pdata *pd,
u8 address, u8 data)
{
u32 op = E2P_CMD_EPC_CMD_ERASE_ | address;
int ret;
smsc_dbg(HW, "address 0x%x, data 0x%x", address, data);
ret = smsc9420_eeprom_send_cmd(pd, op);
if (!ret) {
op = E2P_CMD_EPC_CMD_WRITE_ | address;
smsc9420_reg_write(pd, E2P_DATA, (u32)data);
ret = smsc9420_eeprom_send_cmd(pd, op);
}
return ret;
}
static int smsc9420_ethtool_get_eeprom_len(struct net_device *dev)
{
return SMSC9420_EEPROM_SIZE;
}
static int smsc9420_ethtool_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
u8 eeprom_data[SMSC9420_EEPROM_SIZE];
int len, i;
smsc9420_eeprom_enable_access(pd);
len = min(eeprom->len, SMSC9420_EEPROM_SIZE);
for (i = 0; i < len; i++) {
int ret = smsc9420_eeprom_read_location(pd, i, eeprom_data);
if (ret < 0) {
eeprom->len = 0;
return ret;
}
}
memcpy(data, &eeprom_data[eeprom->offset], len);
eeprom->len = len;
return 0;
}
static int smsc9420_ethtool_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
int ret;
smsc9420_eeprom_enable_access(pd);
smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWEN_);
ret = smsc9420_eeprom_write_location(pd, eeprom->offset, *data);
smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWDS_);
/* Single byte write, according to man page */
eeprom->len = 1;
return ret;
}
static const struct ethtool_ops smsc9420_ethtool_ops = {
.get_settings = smsc9420_ethtool_get_settings,
.set_settings = smsc9420_ethtool_set_settings,
.get_drvinfo = smsc9420_ethtool_get_drvinfo,
.get_msglevel = smsc9420_ethtool_get_msglevel,
.set_msglevel = smsc9420_ethtool_set_msglevel,
.nway_reset = smsc9420_ethtool_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = smsc9420_ethtool_get_eeprom_len,
.get_eeprom = smsc9420_ethtool_get_eeprom,
.set_eeprom = smsc9420_ethtool_set_eeprom,
.get_regs_len = smsc9420_ethtool_getregslen,
.get_regs = smsc9420_ethtool_getregs,
};
/* Sets the device MAC address to dev_addr */
static void smsc9420_set_mac_address(struct net_device *dev)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
u8 *dev_addr = dev->dev_addr;
u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4];
u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) |
(dev_addr[1] << 8) | dev_addr[0];
smsc9420_reg_write(pd, ADDRH, mac_high16);
smsc9420_reg_write(pd, ADDRL, mac_low32);
}
static void smsc9420_check_mac_address(struct net_device *dev)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
/* Check if mac address has been specified when bringing interface up */
if (is_valid_ether_addr(dev->dev_addr)) {
smsc9420_set_mac_address(dev);
smsc_dbg(PROBE, "MAC Address is specified by configuration");
} else {
/* Try reading mac address from device. if EEPROM is present
* it will already have been set */
u32 mac_high16 = smsc9420_reg_read(pd, ADDRH);
u32 mac_low32 = smsc9420_reg_read(pd, ADDRL);
dev->dev_addr[0] = (u8)(mac_low32);
dev->dev_addr[1] = (u8)(mac_low32 >> 8);
dev->dev_addr[2] = (u8)(mac_low32 >> 16);
dev->dev_addr[3] = (u8)(mac_low32 >> 24);
dev->dev_addr[4] = (u8)(mac_high16);
dev->dev_addr[5] = (u8)(mac_high16 >> 8);
if (is_valid_ether_addr(dev->dev_addr)) {
/* eeprom values are valid so use them */
smsc_dbg(PROBE, "Mac Address is read from EEPROM");
} else {
/* eeprom values are invalid, generate random MAC */
random_ether_addr(dev->dev_addr);
smsc9420_set_mac_address(dev);
smsc_dbg(PROBE,
"MAC Address is set to random_ether_addr");
}
}
}
static void smsc9420_stop_tx(struct smsc9420_pdata *pd)
{
u32 dmac_control, mac_cr, dma_intr_ena;
int timeout = 1000;
/* disable TX DMAC */
dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
dmac_control &= (~DMAC_CONTROL_ST_);
smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
/* Wait max 10ms for transmit process to stop */
while (--timeout) {
if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_TS_)
break;
udelay(10);
}
if (!timeout)
smsc_warn(IFDOWN, "TX DMAC failed to stop");
/* ACK Tx DMAC stop bit */
smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_TXPS_);
/* mask TX DMAC interrupts */
dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
dma_intr_ena &= ~(DMAC_INTR_ENA_TX_);
smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
smsc9420_pci_flush_write(pd);
/* stop MAC TX */
mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_TXEN_);
smsc9420_reg_write(pd, MAC_CR, mac_cr);
smsc9420_pci_flush_write(pd);
}
static void smsc9420_free_tx_ring(struct smsc9420_pdata *pd)
{
int i;
BUG_ON(!pd->tx_ring);
if (!pd->tx_buffers)
return;
for (i = 0; i < TX_RING_SIZE; i++) {
struct sk_buff *skb = pd->tx_buffers[i].skb;
if (skb) {
BUG_ON(!pd->tx_buffers[i].mapping);
pci_unmap_single(pd->pdev, pd->tx_buffers[i].mapping,
skb->len, PCI_DMA_TODEVICE);
dev_kfree_skb_any(skb);
}
pd->tx_ring[i].status = 0;
pd->tx_ring[i].length = 0;
pd->tx_ring[i].buffer1 = 0;
pd->tx_ring[i].buffer2 = 0;
}
wmb();
kfree(pd->tx_buffers);
pd->tx_buffers = NULL;
pd->tx_ring_head = 0;
pd->tx_ring_tail = 0;
}
static void smsc9420_free_rx_ring(struct smsc9420_pdata *pd)
{
int i;
BUG_ON(!pd->rx_ring);
if (!pd->rx_buffers)
return;
for (i = 0; i < RX_RING_SIZE; i++) {
if (pd->rx_buffers[i].skb)
dev_kfree_skb_any(pd->rx_buffers[i].skb);
if (pd->rx_buffers[i].mapping)
pci_unmap_single(pd->pdev, pd->rx_buffers[i].mapping,
PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
pd->rx_ring[i].status = 0;
pd->rx_ring[i].length = 0;
pd->rx_ring[i].buffer1 = 0;
pd->rx_ring[i].buffer2 = 0;
}
wmb();
kfree(pd->rx_buffers);
pd->rx_buffers = NULL;
pd->rx_ring_head = 0;
pd->rx_ring_tail = 0;
}
static void smsc9420_stop_rx(struct smsc9420_pdata *pd)
{
int timeout = 1000;
u32 mac_cr, dmac_control, dma_intr_ena;
/* mask RX DMAC interrupts */
dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
smsc9420_pci_flush_write(pd);
/* stop RX MAC prior to stoping DMA */
mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_RXEN_);
smsc9420_reg_write(pd, MAC_CR, mac_cr);
smsc9420_pci_flush_write(pd);
/* stop RX DMAC */
dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
dmac_control &= (~DMAC_CONTROL_SR_);
smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
smsc9420_pci_flush_write(pd);
/* wait up to 10ms for receive to stop */
while (--timeout) {
if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_RS_)
break;
udelay(10);
}
if (!timeout)
smsc_warn(IFDOWN, "RX DMAC did not stop! timeout.");
/* ACK the Rx DMAC stop bit */
smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_RXPS_);
}
static irqreturn_t smsc9420_isr(int irq, void *dev_id)
{
struct smsc9420_pdata *pd = dev_id;
u32 int_cfg, int_sts, int_ctl;
irqreturn_t ret = IRQ_NONE;
ulong flags;
BUG_ON(!pd);
BUG_ON(!pd->base_addr);
int_cfg = smsc9420_reg_read(pd, INT_CFG);
/* check if it's our interrupt */
if ((int_cfg & (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_)) !=
(INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_))
return IRQ_NONE;
int_sts = smsc9420_reg_read(pd, INT_STAT);
if (likely(INT_STAT_DMAC_INT_ & int_sts)) {
u32 status = smsc9420_reg_read(pd, DMAC_STATUS);
u32 ints_to_clear = 0;
if (status & DMAC_STS_TX_) {
ints_to_clear |= (DMAC_STS_TX_ | DMAC_STS_NIS_);
netif_wake_queue(pd->dev);
}
if (status & DMAC_STS_RX_) {
/* mask RX DMAC interrupts */
u32 dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
smsc9420_pci_flush_write(pd);
ints_to_clear |= (DMAC_STS_RX_ | DMAC_STS_NIS_);
netif_rx_schedule(&pd->napi);
}
if (ints_to_clear)
smsc9420_reg_write(pd, DMAC_STATUS, ints_to_clear);
ret = IRQ_HANDLED;
}
if (unlikely(INT_STAT_SW_INT_ & int_sts)) {
/* mask software interrupt */
spin_lock_irqsave(&pd->int_lock, flags);
int_ctl = smsc9420_reg_read(pd, INT_CTL);
int_ctl &= (~INT_CTL_SW_INT_EN_);
smsc9420_reg_write(pd, INT_CTL, int_ctl);
spin_unlock_irqrestore(&pd->int_lock, flags);
smsc9420_reg_write(pd, INT_STAT, INT_STAT_SW_INT_);
pd->software_irq_signal = true;
smp_wmb();
ret = IRQ_HANDLED;
}
/* to ensure PCI write completion, we must perform a PCI read */
smsc9420_pci_flush_write(pd);
return ret;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void smsc9420_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
smsc9420_isr(0, dev);
enable_irq(dev->irq);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static void smsc9420_dmac_soft_reset(struct smsc9420_pdata *pd)
{
smsc9420_reg_write(pd, BUS_MODE, BUS_MODE_SWR_);
smsc9420_reg_read(pd, BUS_MODE);
udelay(2);
if (smsc9420_reg_read(pd, BUS_MODE) & BUS_MODE_SWR_)
smsc_warn(DRV, "Software reset not cleared");
}
static int smsc9420_stop(struct net_device *dev)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
u32 int_cfg;
ulong flags;
BUG_ON(!pd);
BUG_ON(!pd->phy_dev);
/* disable master interrupt */
spin_lock_irqsave(&pd->int_lock, flags);
int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
smsc9420_reg_write(pd, INT_CFG, int_cfg);
spin_unlock_irqrestore(&pd->int_lock, flags);
netif_tx_disable(dev);
napi_disable(&pd->napi);
smsc9420_stop_tx(pd);
smsc9420_free_tx_ring(pd);
smsc9420_stop_rx(pd);
smsc9420_free_rx_ring(pd);
free_irq(dev->irq, pd);
smsc9420_dmac_soft_reset(pd);
phy_stop(pd->phy_dev);
phy_disconnect(pd->phy_dev);
pd->phy_dev = NULL;
mdiobus_unregister(pd->mii_bus);
mdiobus_free(pd->mii_bus);
return 0;
}
static void smsc9420_rx_count_stats(struct net_device *dev, u32 desc_status)
{
if (unlikely(desc_status & RDES0_ERROR_SUMMARY_)) {
dev->stats.rx_errors++;
if (desc_status & RDES0_DESCRIPTOR_ERROR_)
dev->stats.rx_over_errors++;
else if (desc_status & (RDES0_FRAME_TOO_LONG_ |
RDES0_RUNT_FRAME_ | RDES0_COLLISION_SEEN_))
dev->stats.rx_frame_errors++;
else if (desc_status & RDES0_CRC_ERROR_)
dev->stats.rx_crc_errors++;
}
if (unlikely(desc_status & RDES0_LENGTH_ERROR_))
dev->stats.rx_length_errors++;
if (unlikely(!((desc_status & RDES0_LAST_DESCRIPTOR_) &&
(desc_status & RDES0_FIRST_DESCRIPTOR_))))
dev->stats.rx_length_errors++;
if (desc_status & RDES0_MULTICAST_FRAME_)
dev->stats.multicast++;
}
static void smsc9420_rx_handoff(struct smsc9420_pdata *pd, const int index,
const u32 status)
{
struct net_device *dev = pd->dev;
struct sk_buff *skb;
u16 packet_length = (status & RDES0_FRAME_LENGTH_MASK_)
>> RDES0_FRAME_LENGTH_SHFT_;
/* remove crc from packet lendth */
packet_length -= 4;
if (pd->rx_csum)
packet_length -= 2;
dev->stats.rx_packets++;
dev->stats.rx_bytes += packet_length;
pci_unmap_single(pd->pdev, pd->rx_buffers[index].mapping,
PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
pd->rx_buffers[index].mapping = 0;
skb = pd->rx_buffers[index].skb;
pd->rx_buffers[index].skb = NULL;
if (pd->rx_csum) {
u16 hw_csum = get_unaligned_le16(skb_tail_pointer(skb) +
NET_IP_ALIGN + packet_length + 4);
put_unaligned_le16(cpu_to_le16(hw_csum), &skb->csum);
skb->ip_summed = CHECKSUM_COMPLETE;
}
skb_reserve(skb, NET_IP_ALIGN);
skb_put(skb, packet_length);
skb->protocol = eth_type_trans(skb, dev);
netif_receive_skb(skb);
dev->last_rx = jiffies;
}
static int smsc9420_alloc_rx_buffer(struct smsc9420_pdata *pd, int index)
{
struct sk_buff *skb = netdev_alloc_skb(pd->dev, PKT_BUF_SZ);
dma_addr_t mapping;
BUG_ON(pd->rx_buffers[index].skb);
BUG_ON(pd->rx_buffers[index].mapping);
if (unlikely(!skb)) {
smsc_warn(RX_ERR, "Failed to allocate new skb!");
return -ENOMEM;
}
skb->dev = pd->dev;
mapping = pci_map_single(pd->pdev, skb_tail_pointer(skb),
PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(pd->pdev, mapping)) {
dev_kfree_skb_any(skb);
smsc_warn(RX_ERR, "pci_map_single failed!");
return -ENOMEM;
}
pd->rx_buffers[index].skb = skb;
pd->rx_buffers[index].mapping = mapping;
pd->rx_ring[index].buffer1 = mapping + NET_IP_ALIGN;
pd->rx_ring[index].status = RDES0_OWN_;
wmb();
return 0;
}
static void smsc9420_alloc_new_rx_buffers(struct smsc9420_pdata *pd)
{
while (pd->rx_ring_tail != pd->rx_ring_head) {
if (smsc9420_alloc_rx_buffer(pd, pd->rx_ring_tail))
break;
pd->rx_ring_tail = (pd->rx_ring_tail + 1) % RX_RING_SIZE;
}
}
static int smsc9420_rx_poll(struct napi_struct *napi, int budget)
{
struct smsc9420_pdata *pd =
container_of(napi, struct smsc9420_pdata, napi);
struct net_device *dev = pd->dev;
u32 drop_frame_cnt, dma_intr_ena, status;
int work_done;
for (work_done = 0; work_done < budget; work_done++) {
rmb();
status = pd->rx_ring[pd->rx_ring_head].status;
/* stop if DMAC owns this dma descriptor */
if (status & RDES0_OWN_)
break;
smsc9420_rx_count_stats(dev, status);
smsc9420_rx_handoff(pd, pd->rx_ring_head, status);
pd->rx_ring_head = (pd->rx_ring_head + 1) % RX_RING_SIZE;
smsc9420_alloc_new_rx_buffers(pd);
}
drop_frame_cnt = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
dev->stats.rx_dropped +=
(drop_frame_cnt & 0xFFFF) + ((drop_frame_cnt >> 17) & 0x3FF);
/* Kick RXDMA */
smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
smsc9420_pci_flush_write(pd);
if (work_done < budget) {
netif_rx_complete(&pd->napi);
/* re-enable RX DMA interrupts */
dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
dma_intr_ena |= (DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
smsc9420_pci_flush_write(pd);
}
return work_done;
}
static void
smsc9420_tx_update_stats(struct net_device *dev, u32 status, u32 length)
{
if (unlikely(status & TDES0_ERROR_SUMMARY_)) {
dev->stats.tx_errors++;
if (status & (TDES0_EXCESSIVE_DEFERRAL_ |
TDES0_EXCESSIVE_COLLISIONS_))
dev->stats.tx_aborted_errors++;
if (status & (TDES0_LOSS_OF_CARRIER_ | TDES0_NO_CARRIER_))
dev->stats.tx_carrier_errors++;
} else {
dev->stats.tx_packets++;
dev->stats.tx_bytes += (length & 0x7FF);
}
if (unlikely(status & TDES0_EXCESSIVE_COLLISIONS_)) {
dev->stats.collisions += 16;
} else {
dev->stats.collisions +=
(status & TDES0_COLLISION_COUNT_MASK_) >>
TDES0_COLLISION_COUNT_SHFT_;
}
if (unlikely(status & TDES0_HEARTBEAT_FAIL_))
dev->stats.tx_heartbeat_errors++;
}
/* Check for completed dma transfers, update stats and free skbs */
static void smsc9420_complete_tx(struct net_device *dev)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
while (pd->tx_ring_tail != pd->tx_ring_head) {
int index = pd->tx_ring_tail;
u32 status, length;
rmb();
status = pd->tx_ring[index].status;
length = pd->tx_ring[index].length;
/* Check if DMA still owns this descriptor */
if (unlikely(TDES0_OWN_ & status))
break;
smsc9420_tx_update_stats(dev, status, length);
BUG_ON(!pd->tx_buffers[index].skb);
BUG_ON(!pd->tx_buffers[index].mapping);
pci_unmap_single(pd->pdev, pd->tx_buffers[index].mapping,
pd->tx_buffers[index].skb->len, PCI_DMA_TODEVICE);
pd->tx_buffers[index].mapping = 0;
dev_kfree_skb_any(pd->tx_buffers[index].skb);
pd->tx_buffers[index].skb = NULL;
pd->tx_ring[index].buffer1 = 0;
wmb();
pd->tx_ring_tail = (pd->tx_ring_tail + 1) % TX_RING_SIZE;
}
}
static int smsc9420_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
dma_addr_t mapping;
int index = pd->tx_ring_head;
u32 tmp_desc1;
bool about_to_take_last_desc =
(((pd->tx_ring_head + 2) % TX_RING_SIZE) == pd->tx_ring_tail);
smsc9420_complete_tx(dev);
rmb();
BUG_ON(pd->tx_ring[index].status & TDES0_OWN_);
BUG_ON(pd->tx_buffers[index].skb);
BUG_ON(pd->tx_buffers[index].mapping);
mapping = pci_map_single(pd->pdev, skb->data,
skb->len, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(pd->pdev, mapping)) {
smsc_warn(TX_ERR, "pci_map_single failed, dropping packet");
return NETDEV_TX_BUSY;
}
pd->tx_buffers[index].skb = skb;
pd->tx_buffers[index].mapping = mapping;
tmp_desc1 = (TDES1_LS_ | ((u32)skb->len & 0x7FF));
if (unlikely(about_to_take_last_desc)) {
tmp_desc1 |= TDES1_IC_;
netif_stop_queue(pd->dev);
}
/* check if we are at the last descriptor and need to set EOR */
if (unlikely(index == (TX_RING_SIZE - 1)))
tmp_desc1 |= TDES1_TER_;
pd->tx_ring[index].buffer1 = mapping;
pd->tx_ring[index].length = tmp_desc1;
wmb();
/* increment head */
pd->tx_ring_head = (pd->tx_ring_head + 1) % TX_RING_SIZE;
/* assign ownership to DMAC */
pd->tx_ring[index].status = TDES0_OWN_;
wmb();
/* kick the DMA */
smsc9420_reg_write(pd, TX_POLL_DEMAND, 1);
smsc9420_pci_flush_write(pd);
dev->trans_start = jiffies;
return NETDEV_TX_OK;
}
static struct net_device_stats *smsc9420_get_stats(struct net_device *dev)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
u32 counter = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
dev->stats.rx_dropped +=
(counter & 0x0000FFFF) + ((counter >> 17) & 0x000003FF);
return &dev->stats;
}
static void smsc9420_set_multicast_list(struct net_device *dev)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
if (dev->flags & IFF_PROMISC) {
smsc_dbg(HW, "Promiscuous Mode Enabled");
mac_cr |= MAC_CR_PRMS_;
mac_cr &= (~MAC_CR_MCPAS_);
mac_cr &= (~MAC_CR_HPFILT_);
} else if (dev->flags & IFF_ALLMULTI) {
smsc_dbg(HW, "Receive all Multicast Enabled");
mac_cr &= (~MAC_CR_PRMS_);
mac_cr |= MAC_CR_MCPAS_;
mac_cr &= (~MAC_CR_HPFILT_);
} else if (dev->mc_count > 0) {
struct dev_mc_list *mc_list = dev->mc_list;
u32 hash_lo = 0, hash_hi = 0;
smsc_dbg(HW, "Multicast filter enabled");
while (mc_list) {
u32 bit_num = smsc9420_hash(mc_list->dmi_addr);
u32 mask = 1 << (bit_num & 0x1F);
if (bit_num & 0x20)
hash_hi |= mask;
else
hash_lo |= mask;
mc_list = mc_list->next;
}
smsc9420_reg_write(pd, HASHH, hash_hi);
smsc9420_reg_write(pd, HASHL, hash_lo);
mac_cr &= (~MAC_CR_PRMS_);
mac_cr &= (~MAC_CR_MCPAS_);
mac_cr |= MAC_CR_HPFILT_;
} else {
smsc_dbg(HW, "Receive own packets only.");
smsc9420_reg_write(pd, HASHH, 0);
smsc9420_reg_write(pd, HASHL, 0);
mac_cr &= (~MAC_CR_PRMS_);
mac_cr &= (~MAC_CR_MCPAS_);
mac_cr &= (~MAC_CR_HPFILT_);
}
smsc9420_reg_write(pd, MAC_CR, mac_cr);
smsc9420_pci_flush_write(pd);
}
static void smsc9420_phy_update_flowcontrol(struct smsc9420_pdata *pd)
{
struct phy_device *phy_dev = pd->phy_dev;
u32 flow;
if (phy_dev->duplex == DUPLEX_FULL) {
u16 lcladv = phy_read(phy_dev, MII_ADVERTISE);
u16 rmtadv = phy_read(phy_dev, MII_LPA);
u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
if (cap & FLOW_CTRL_RX)
flow = 0xFFFF0002;
else
flow = 0;
smsc_info(LINK, "rx pause %s, tx pause %s",
(cap & FLOW_CTRL_RX ? "enabled" : "disabled"),
(cap & FLOW_CTRL_TX ? "enabled" : "disabled"));
} else {
smsc_info(LINK, "half duplex");
flow = 0;
}
smsc9420_reg_write(pd, FLOW, flow);
}
/* Update link mode if anything has changed. Called periodically when the
* PHY is in polling mode, even if nothing has changed. */
static void smsc9420_phy_adjust_link(struct net_device *dev)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
struct phy_device *phy_dev = pd->phy_dev;
int carrier;
if (phy_dev->duplex != pd->last_duplex) {
u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
if (phy_dev->duplex) {
smsc_dbg(LINK, "full duplex mode");
mac_cr |= MAC_CR_FDPX_;
} else {
smsc_dbg(LINK, "half duplex mode");
mac_cr &= ~MAC_CR_FDPX_;
}
smsc9420_reg_write(pd, MAC_CR, mac_cr);
smsc9420_phy_update_flowcontrol(pd);
pd->last_duplex = phy_dev->duplex;
}
carrier = netif_carrier_ok(dev);
if (carrier != pd->last_carrier) {
if (carrier)
smsc_dbg(LINK, "carrier OK");
else
smsc_dbg(LINK, "no carrier");
pd->last_carrier = carrier;
}
}
static int smsc9420_mii_probe(struct net_device *dev)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
struct phy_device *phydev = NULL;
BUG_ON(pd->phy_dev);
/* Device only supports internal PHY at address 1 */
if (!pd->mii_bus->phy_map[1]) {
pr_err("%s: no PHY found at address 1\n", dev->name);
return -ENODEV;
}
phydev = pd->mii_bus->phy_map[1];
smsc_info(PROBE, "PHY addr %d, phy_id 0x%08X", phydev->addr,
phydev->phy_id);
phydev = phy_connect(dev, phydev->dev.bus_id,
&smsc9420_phy_adjust_link, 0, PHY_INTERFACE_MODE_MII);
if (IS_ERR(phydev)) {
pr_err("%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(phydev);
}
pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);
/* mask with MAC supported features */
phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
phydev->advertising = phydev->supported;
pd->phy_dev = phydev;
pd->last_duplex = -1;
pd->last_carrier = -1;
return 0;
}
static int smsc9420_mii_init(struct net_device *dev)
{
struct smsc9420_pdata *pd = netdev_priv(dev);
int err = -ENXIO, i;
pd->mii_bus = mdiobus_alloc();
if (!pd->mii_bus) {
err = -ENOMEM;
goto err_out_1;
}
pd->mii_bus->name = DRV_MDIONAME;
snprintf(pd->mii_bus->id, MII_BUS_ID_SIZE, "%x",
(pd->pdev->bus->number << 8) | pd->pdev->devfn);
pd->mii_bus->priv = pd;
pd->mii_bus->read = smsc9420_mii_read;
pd->mii_bus->write = smsc9420_mii_write;
pd->mii_bus->irq = pd->phy_irq;
for (i = 0; i < PHY_MAX_ADDR; ++i)
pd->mii_bus->irq[i] = PHY_POLL;
/* Mask all PHYs except ID 1 (internal) */
pd->mii_bus->phy_mask = ~(1 << 1);
if (mdiobus_register(pd->mii_bus)) {
smsc_warn(PROBE, "Error registering mii bus");
goto err_out_free_bus_2;
}
if (smsc9420_mii_probe(dev) < 0) {
smsc_warn(PROBE, "Error probing mii bus");
goto err_out_unregister_bus_3;
}
return 0;
err_out_unregister_bus_3:
mdiobus_unregister(pd->mii_bus);
err_out_free_bus_2:
mdiobus_free(pd->mii_bus);
err_out_1:
return err;
}
static int smsc9420_alloc_tx_ring(struct smsc9420_pdata *pd)
{
int i;
BUG_ON(!pd->tx_ring);
pd->tx_buffers = kmalloc((sizeof(struct smsc9420_ring_info) *
TX_RING_SIZE), GFP_KERNEL);
if (!pd->tx_buffers) {
smsc_warn(IFUP, "Failed to allocated tx_buffers");
return -ENOMEM;
}
/* Initialize the TX Ring */
for (i = 0; i < TX_RING_SIZE; i++) {
pd->tx_buffers[i].skb = NULL;
pd->tx_buffers[i].mapping = 0;
pd->tx_ring[i].status = 0;
pd->tx_ring[i].length = 0;
pd->tx_ring[i].buffer1 = 0;
pd->tx_ring[i].buffer2 = 0;
}
pd->tx_ring[TX_RING_SIZE - 1].length = TDES1_TER_;
wmb();
pd->tx_ring_head = 0;
pd->tx_ring_tail = 0;
smsc9420_reg_write(pd, TX_BASE_ADDR, pd->tx_dma_addr);
smsc9420_pci_flush_write(pd);
return 0;
}
static int smsc9420_alloc_rx_ring(struct smsc9420_pdata *pd)
{
int i;
BUG_ON(!pd->rx_ring);
pd->rx_buffers = kmalloc((sizeof(struct smsc9420_ring_info) *
RX_RING_SIZE), GFP_KERNEL);
if (pd->rx_buffers == NULL) {
smsc_warn(IFUP, "Failed to allocated rx_buffers");
goto out;
}
/* initialize the rx ring */
for (i = 0; i < RX_RING_SIZE; i++) {
pd->rx_ring[i].status = 0;
pd->rx_ring[i].length = PKT_BUF_SZ;
pd->rx_ring[i].buffer2 = 0;
pd->rx_buffers[i].skb = NULL;
pd->rx_buffers[i].mapping = 0;
}
pd->rx_ring[RX_RING_SIZE - 1].length = (PKT_BUF_SZ | RDES1_RER_);
/* now allocate the entire ring of skbs */
for (i = 0; i < RX_RING_SIZE; i++) {
if (smsc9420_alloc_rx_buffer(pd, i)) {
smsc_warn(IFUP, "failed to allocate rx skb %d", i);
goto out_free_rx_skbs;
}
}
pd->rx_ring_head = 0;
pd->rx_ring_tail = 0;
smsc9420_reg_write(pd, VLAN1, ETH_P_8021Q);
smsc_dbg(IFUP, "VLAN1 = 0x%08x", smsc9420_reg_read(pd, VLAN1));
if (pd->rx_csum) {
/* Enable RX COE */
u32 coe = smsc9420_reg_read(pd, COE_CR) | RX_COE_EN;
smsc9420_reg_write(pd, COE_CR, coe);
smsc_dbg(IFUP, "COE_CR = 0x%08x", coe);
}
smsc9420_reg_write(pd, RX_BASE_ADDR, pd->rx_dma_addr);
smsc9420_pci_flush_write(pd);
return 0;
out_free_rx_skbs:
smsc9420_free_rx_ring(pd);
out:
return -ENOMEM;
}
static int smsc9420_open(struct net_device *dev)
{
struct smsc9420_pdata *pd;
u32 bus_mode, mac_cr, dmac_control, int_cfg, dma_intr_ena, int_ctl;
unsigned long flags;
int result = 0, timeout;
BUG_ON(!dev);
pd = netdev_priv(dev);
BUG_ON(!pd);
if (!is_valid_ether_addr(dev->dev_addr)) {
smsc_warn(IFUP, "dev_addr is not a valid MAC address");
result = -EADDRNOTAVAIL;
goto out_0;
}
netif_carrier_off(dev);
/* disable, mask and acknowlege all interrupts */
spin_lock_irqsave(&pd->int_lock, flags);
int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
smsc9420_reg_write(pd, INT_CFG, int_cfg);
smsc9420_reg_write(pd, INT_CTL, 0);
spin_unlock_irqrestore(&pd->int_lock, flags);
smsc9420_reg_write(pd, DMAC_INTR_ENA, 0);
smsc9420_reg_write(pd, INT_STAT, 0xFFFFFFFF);
smsc9420_pci_flush_write(pd);
if (request_irq(dev->irq, smsc9420_isr, IRQF_SHARED | IRQF_DISABLED,
DRV_NAME, pd)) {
smsc_warn(IFUP, "Unable to use IRQ = %d", dev->irq);
result = -ENODEV;
goto out_0;
}
smsc9420_dmac_soft_reset(pd);
/* make sure MAC_CR is sane */
smsc9420_reg_write(pd, MAC_CR, 0);
smsc9420_set_mac_address(dev);
/* Configure GPIO pins to drive LEDs */
smsc9420_reg_write(pd, GPIO_CFG,
(GPIO_CFG_LED_3_ | GPIO_CFG_LED_2_ | GPIO_CFG_LED_1_));
bus_mode = BUS_MODE_DMA_BURST_LENGTH_16;
#ifdef __BIG_ENDIAN
bus_mode |= BUS_MODE_DBO_;
#endif
smsc9420_reg_write(pd, BUS_MODE, bus_mode);
smsc9420_pci_flush_write(pd);
/* set bus master bridge arbitration priority for Rx and TX DMA */
smsc9420_reg_write(pd, BUS_CFG, BUS_CFG_RXTXWEIGHT_4_1);
smsc9420_reg_write(pd, DMAC_CONTROL,
(DMAC_CONTROL_SF_ | DMAC_CONTROL_OSF_));
smsc9420_pci_flush_write(pd);
/* test the IRQ connection to the ISR */
smsc_dbg(IFUP, "Testing ISR using IRQ %d", dev->irq);
pd->software_irq_signal = false;
spin_lock_irqsave(&pd->int_lock, flags);
/* configure interrupt deassertion timer and enable interrupts */
int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
int_cfg &= ~(INT_CFG_INT_DEAS_MASK);
int_cfg |= (INT_DEAS_TIME & INT_CFG_INT_DEAS_MASK);
smsc9420_reg_write(pd, INT_CFG, int_cfg);
/* unmask software interrupt */
int_ctl = smsc9420_reg_read(pd, INT_CTL) | INT_CTL_SW_INT_EN_;
smsc9420_reg_write(pd, INT_CTL, int_ctl);
spin_unlock_irqrestore(&pd->int_lock, flags);
smsc9420_pci_flush_write(pd);
timeout = 1000;
while (timeout--) {
if (pd->software_irq_signal)
break;
msleep(1);
}
/* disable interrupts */
spin_lock_irqsave(&pd->int_lock, flags);
int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
smsc9420_reg_write(pd, INT_CFG, int_cfg);
spin_unlock_irqrestore(&pd->int_lock, flags);
if (!pd->software_irq_signal) {
smsc_warn(IFUP, "ISR failed signaling test");
result = -ENODEV;
goto out_free_irq_1;
}
smsc_dbg(IFUP, "ISR passed test using IRQ %d", dev->irq);
result = smsc9420_alloc_tx_ring(pd);
if (result) {
smsc_warn(IFUP, "Failed to Initialize tx dma ring");
result = -ENOMEM;
goto out_free_irq_1;
}
result = smsc9420_alloc_rx_ring(pd);
if (result) {
smsc_warn(IFUP, "Failed to Initialize rx dma ring");
result = -ENOMEM;
goto out_free_tx_ring_2;
}
result = smsc9420_mii_init(dev);
if (result) {
smsc_warn(IFUP, "Failed to initialize Phy");
result = -ENODEV;
goto out_free_rx_ring_3;
}
/* Bring the PHY up */
phy_start(pd->phy_dev);
napi_enable(&pd->napi);
/* start tx and rx */
mac_cr = smsc9420_reg_read(pd, MAC_CR) | MAC_CR_TXEN_ | MAC_CR_RXEN_;
smsc9420_reg_write(pd, MAC_CR, mac_cr);
dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
dmac_control |= DMAC_CONTROL_ST_ | DMAC_CONTROL_SR_;
smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
smsc9420_pci_flush_write(pd);
dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
dma_intr_ena |=
(DMAC_INTR_ENA_TX_ | DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
smsc9420_pci_flush_write(pd);
netif_wake_queue(dev);
smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
/* enable interrupts */
spin_lock_irqsave(&pd->int_lock, flags);
int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
smsc9420_reg_write(pd, INT_CFG, int_cfg);
spin_unlock_irqrestore(&pd->int_lock, flags);
return 0;
out_free_rx_ring_3:
smsc9420_free_rx_ring(pd);
out_free_tx_ring_2:
smsc9420_free_tx_ring(pd);
out_free_irq_1:
free_irq(dev->irq, pd);
out_0:
return result;
}
#ifdef CONFIG_PM
static int smsc9420_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct smsc9420_pdata *pd = netdev_priv(dev);
u32 int_cfg;
ulong flags;
/* disable interrupts */
spin_lock_irqsave(&pd->int_lock, flags);
int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
smsc9420_reg_write(pd, INT_CFG, int_cfg);
spin_unlock_irqrestore(&pd->int_lock, flags);
if (netif_running(dev)) {
netif_tx_disable(dev);
smsc9420_stop_tx(pd);
smsc9420_free_tx_ring(pd);
napi_disable(&pd->napi);
smsc9420_stop_rx(pd);
smsc9420_free_rx_ring(pd);
free_irq(dev->irq, pd);
netif_device_detach(dev);
}
pci_save_state(pdev);
pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int smsc9420_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct smsc9420_pdata *pd = netdev_priv(dev);
int err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
err = pci_enable_wake(pdev, 0, 0);
if (err)
smsc_warn(IFUP, "pci_enable_wake failed: %d", err);
if (netif_running(dev)) {
err = smsc9420_open(dev);
netif_device_attach(dev);
}
return err;
}
#endif /* CONFIG_PM */
static const struct net_device_ops smsc9420_netdev_ops = {
.ndo_open = smsc9420_open,
.ndo_stop = smsc9420_stop,
.ndo_start_xmit = smsc9420_hard_start_xmit,
.ndo_get_stats = smsc9420_get_stats,
.ndo_set_multicast_list = smsc9420_set_multicast_list,
.ndo_do_ioctl = smsc9420_do_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = smsc9420_poll_controller,
#endif /* CONFIG_NET_POLL_CONTROLLER */
};
static int __devinit
smsc9420_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct net_device *dev;
struct smsc9420_pdata *pd;
void __iomem *virt_addr;
int result = 0;
u32 id_rev;
printk(KERN_INFO DRV_DESCRIPTION " version " DRV_VERSION "\n");
/* First do the PCI initialisation */
result = pci_enable_device(pdev);
if (unlikely(result)) {
printk(KERN_ERR "Cannot enable smsc9420\n");
goto out_0;
}
pci_set_master(pdev);
dev = alloc_etherdev(sizeof(*pd));
if (!dev) {
printk(KERN_ERR "ether device alloc failed\n");
goto out_disable_pci_device_1;
}
SET_NETDEV_DEV(dev, &pdev->dev);
if (!(pci_resource_flags(pdev, SMSC_BAR) & IORESOURCE_MEM)) {
printk(KERN_ERR "Cannot find PCI device base address\n");
goto out_free_netdev_2;
}
if ((pci_request_regions(pdev, DRV_NAME))) {
printk(KERN_ERR "Cannot obtain PCI resources, aborting.\n");
goto out_free_netdev_2;
}
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
printk(KERN_ERR "No usable DMA configuration, aborting.\n");
goto out_free_regions_3;
}
virt_addr = ioremap(pci_resource_start(pdev, SMSC_BAR),
pci_resource_len(pdev, SMSC_BAR));
if (!virt_addr) {
printk(KERN_ERR "Cannot map device registers, aborting.\n");
goto out_free_regions_3;
}
/* registers are double mapped with 0 offset for LE and 0x200 for BE */
virt_addr += LAN9420_CPSR_ENDIAN_OFFSET;
dev->base_addr = (ulong)virt_addr;
pd = netdev_priv(dev);
/* pci descriptors are created in the PCI consistent area */
pd->rx_ring = pci_alloc_consistent(pdev,
sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE +
sizeof(struct smsc9420_dma_desc) * TX_RING_SIZE,
&pd->rx_dma_addr);
if (!pd->rx_ring)
goto out_free_io_4;
/* descriptors are aligned due to the nature of pci_alloc_consistent */
pd->tx_ring = (struct smsc9420_dma_desc *)
(pd->rx_ring + RX_RING_SIZE);
pd->tx_dma_addr = pd->rx_dma_addr +
sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE;
pd->pdev = pdev;
pd->dev = dev;
pd->base_addr = virt_addr;
pd->msg_enable = smsc_debug;
pd->rx_csum = true;
smsc_dbg(PROBE, "lan_base=0x%08lx", (ulong)virt_addr);
id_rev = smsc9420_reg_read(pd, ID_REV);
switch (id_rev & 0xFFFF0000) {
case 0x94200000:
smsc_info(PROBE, "LAN9420 identified, ID_REV=0x%08X", id_rev);
break;
default:
smsc_warn(PROBE, "LAN9420 NOT identified");
smsc_warn(PROBE, "ID_REV=0x%08X", id_rev);
goto out_free_dmadesc_5;
}
smsc9420_dmac_soft_reset(pd);
smsc9420_eeprom_reload(pd);
smsc9420_check_mac_address(dev);
dev->netdev_ops = &smsc9420_netdev_ops;
dev->ethtool_ops = &smsc9420_ethtool_ops;
dev->irq = pdev->irq;
netif_napi_add(dev, &pd->napi, smsc9420_rx_poll, NAPI_WEIGHT);
result = register_netdev(dev);
if (result) {
smsc_warn(PROBE, "error %i registering device", result);
goto out_free_dmadesc_5;
}
pci_set_drvdata(pdev, dev);
spin_lock_init(&pd->int_lock);
spin_lock_init(&pd->phy_lock);
dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr);
return 0;
out_free_dmadesc_5:
pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
(RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
out_free_io_4:
iounmap(virt_addr - LAN9420_CPSR_ENDIAN_OFFSET);
out_free_regions_3:
pci_release_regions(pdev);
out_free_netdev_2:
free_netdev(dev);
out_disable_pci_device_1:
pci_disable_device(pdev);
out_0:
return -ENODEV;
}
static void __devexit smsc9420_remove(struct pci_dev *pdev)
{
struct net_device *dev;
struct smsc9420_pdata *pd;
dev = pci_get_drvdata(pdev);
if (!dev)
return;
pci_set_drvdata(pdev, NULL);
pd = netdev_priv(dev);
unregister_netdev(dev);
/* tx_buffers and rx_buffers are freed in stop */
BUG_ON(pd->tx_buffers);
BUG_ON(pd->rx_buffers);
BUG_ON(!pd->tx_ring);
BUG_ON(!pd->rx_ring);
pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
(RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
iounmap(pd->base_addr - LAN9420_CPSR_ENDIAN_OFFSET);
pci_release_regions(pdev);
free_netdev(dev);
pci_disable_device(pdev);
}
static struct pci_driver smsc9420_driver = {
.name = DRV_NAME,
.id_table = smsc9420_id_table,
.probe = smsc9420_probe,
.remove = __devexit_p(smsc9420_remove),
#ifdef CONFIG_PM
.suspend = smsc9420_suspend,
.resume = smsc9420_resume,
#endif /* CONFIG_PM */
};
static int __init smsc9420_init_module(void)
{
smsc_debug = netif_msg_init(debug, SMSC_MSG_DEFAULT);
return pci_register_driver(&smsc9420_driver);
}
static void __exit smsc9420_exit_module(void)
{
pci_unregister_driver(&smsc9420_driver);
}
module_init(smsc9420_init_module);
module_exit(smsc9420_exit_module);