linux-next/arch/sparc/kernel/etrap_32.S
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

282 lines
8.2 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0 */
/*
* etrap.S: Sparc trap window preparation for entry into the
* Linux kernel.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
*/
#include <asm/head.h>
#include <asm/asi.h>
#include <asm/contregs.h>
#include <asm/page.h>
#include <asm/psr.h>
#include <asm/ptrace.h>
#include <asm/winmacro.h>
#include <asm/asmmacro.h>
#include <asm/thread_info.h>
/* Registers to not touch at all. */
#define t_psr l0 /* Set by caller */
#define t_pc l1 /* Set by caller */
#define t_npc l2 /* Set by caller */
#define t_wim l3 /* Set by caller */
#define t_twinmask l4 /* Set at beginning of this entry routine. */
#define t_kstack l5 /* Set right before pt_regs frame is built */
#define t_retpc l6 /* If you change this, change winmacro.h header file */
#define t_systable l7 /* Never touch this, could be the syscall table ptr. */
#define curptr g6 /* Set after pt_regs frame is built */
.text
.align 4
/* SEVEN WINDOW PATCH INSTRUCTIONS */
.globl tsetup_7win_patch1, tsetup_7win_patch2
.globl tsetup_7win_patch3, tsetup_7win_patch4
.globl tsetup_7win_patch5, tsetup_7win_patch6
tsetup_7win_patch1: sll %t_wim, 0x6, %t_wim
tsetup_7win_patch2: and %g2, 0x7f, %g2
tsetup_7win_patch3: and %g2, 0x7f, %g2
tsetup_7win_patch4: and %g1, 0x7f, %g1
tsetup_7win_patch5: sll %t_wim, 0x6, %t_wim
tsetup_7win_patch6: and %g2, 0x7f, %g2
/* END OF PATCH INSTRUCTIONS */
/* At trap time, interrupts and all generic traps do the
* following:
*
* rd %psr, %l0
* b some_handler
* rd %wim, %l3
* nop
*
* Then 'some_handler' if it needs a trap frame (ie. it has
* to call c-code and the trap cannot be handled in-window)
* then it does the SAVE_ALL macro in entry.S which does
*
* sethi %hi(trap_setup), %l4
* jmpl %l4 + %lo(trap_setup), %l6
* nop
*/
/* 2 3 4 window number
* -----
* O T S mnemonic
*
* O == Current window before trap
* T == Window entered when trap occurred
* S == Window we will need to save if (1<<T) == %wim
*
* Before execution gets here, it must be guaranteed that
* %l0 contains trap time %psr, %l1 and %l2 contain the
* trap pc and npc, and %l3 contains the trap time %wim.
*/
.globl trap_setup, tsetup_patch1, tsetup_patch2
.globl tsetup_patch3, tsetup_patch4
.globl tsetup_patch5, tsetup_patch6
trap_setup:
/* Calculate mask of trap window. See if from user
* or kernel and branch conditionally.
*/
mov 1, %t_twinmask
andcc %t_psr, PSR_PS, %g0 ! fromsupv_p = (psr & PSR_PS)
be trap_setup_from_user ! nope, from user mode
sll %t_twinmask, %t_psr, %t_twinmask ! t_twinmask = (1 << psr)
/* From kernel, allocate more kernel stack and
* build a pt_regs trap frame.
*/
sub %fp, (STACKFRAME_SZ + TRACEREG_SZ), %t_kstack
STORE_PT_ALL(t_kstack, t_psr, t_pc, t_npc, g2)
/* See if we are in the trap window. */
andcc %t_twinmask, %t_wim, %g0
bne trap_setup_kernel_spill ! in trap window, clean up
nop
/* Trap from kernel with a window available.
* Just do it...
*/
jmpl %t_retpc + 0x8, %g0 ! return to caller
mov %t_kstack, %sp ! jump onto new stack
trap_setup_kernel_spill:
ld [%curptr + TI_UWINMASK], %g1
orcc %g0, %g1, %g0
bne trap_setup_user_spill ! there are some user windows, yuck
/* Spill from kernel, but only kernel windows, adjust
* %wim and go.
*/
srl %t_wim, 0x1, %g2 ! begin computation of new %wim
tsetup_patch1:
sll %t_wim, 0x7, %t_wim ! patched on 7 window Sparcs
or %t_wim, %g2, %g2
tsetup_patch2:
and %g2, 0xff, %g2 ! patched on 7 window Sparcs
save %g0, %g0, %g0
/* Set new %wim value */
wr %g2, 0x0, %wim
/* Save the kernel window onto the corresponding stack. */
STORE_WINDOW(sp)
restore %g0, %g0, %g0
jmpl %t_retpc + 0x8, %g0 ! return to caller
mov %t_kstack, %sp ! and onto new kernel stack
#define STACK_OFFSET (THREAD_SIZE - TRACEREG_SZ - STACKFRAME_SZ)
trap_setup_from_user:
/* We can't use %curptr yet. */
LOAD_CURRENT(t_kstack, t_twinmask)
sethi %hi(STACK_OFFSET), %t_twinmask
or %t_twinmask, %lo(STACK_OFFSET), %t_twinmask
add %t_kstack, %t_twinmask, %t_kstack
mov 1, %t_twinmask
sll %t_twinmask, %t_psr, %t_twinmask ! t_twinmask = (1 << psr)
/* Build pt_regs frame. */
STORE_PT_ALL(t_kstack, t_psr, t_pc, t_npc, g2)
#if 0
/* If we're sure every task_struct is THREAD_SIZE aligned,
we can speed this up. */
sethi %hi(STACK_OFFSET), %curptr
or %curptr, %lo(STACK_OFFSET), %curptr
sub %t_kstack, %curptr, %curptr
#else
sethi %hi(~(THREAD_SIZE - 1)), %curptr
and %t_kstack, %curptr, %curptr
#endif
/* Clear current_thread_info->w_saved */
st %g0, [%curptr + TI_W_SAVED]
/* See if we are in the trap window. */
andcc %t_twinmask, %t_wim, %g0
bne trap_setup_user_spill ! yep we are
orn %g0, %t_twinmask, %g1 ! negate trap win mask into %g1
/* Trap from user, but not into the invalid window.
* Calculate new umask. The way this works is,
* any window from the %wim at trap time until
* the window right before the one we are in now,
* is a user window. A diagram:
*
* 7 6 5 4 3 2 1 0 window number
* ---------------
* I L T mnemonic
*
* Window 'I' is the invalid window in our example,
* window 'L' is the window the user was in when
* the trap occurred, window T is the trap window
* we are in now. So therefore, windows 5, 4 and
* 3 are user windows. The following sequence
* computes the user winmask to represent this.
*/
subcc %t_wim, %t_twinmask, %g2
bneg,a 1f
sub %g2, 0x1, %g2
1:
andn %g2, %t_twinmask, %g2
tsetup_patch3:
and %g2, 0xff, %g2 ! patched on 7win Sparcs
st %g2, [%curptr + TI_UWINMASK] ! store new umask
jmpl %t_retpc + 0x8, %g0 ! return to caller
mov %t_kstack, %sp ! and onto kernel stack
trap_setup_user_spill:
/* A spill occurred from either kernel or user mode
* and there exist some user windows to deal with.
* A mask of the currently valid user windows
* is in %g1 upon entry to here.
*/
tsetup_patch4:
and %g1, 0xff, %g1 ! patched on 7win Sparcs, mask
srl %t_wim, 0x1, %g2 ! compute new %wim
tsetup_patch5:
sll %t_wim, 0x7, %t_wim ! patched on 7win Sparcs
or %t_wim, %g2, %g2 ! %g2 is new %wim
tsetup_patch6:
and %g2, 0xff, %g2 ! patched on 7win Sparcs
andn %g1, %g2, %g1 ! clear this bit in %g1
st %g1, [%curptr + TI_UWINMASK]
save %g0, %g0, %g0
wr %g2, 0x0, %wim
/* Call MMU-architecture dependent stack checking
* routine.
*/
b tsetup_srmmu_stackchk
andcc %sp, 0x7, %g0
/* Architecture specific stack checking routines. When either
* of these routines are called, the globals are free to use
* as they have been safely stashed on the new kernel stack
* pointer. Thus the definition below for simplicity.
*/
#define glob_tmp g1
.globl tsetup_srmmu_stackchk
tsetup_srmmu_stackchk:
/* Check results of callers andcc %sp, 0x7, %g0 */
bne trap_setup_user_stack_is_bolixed
sethi %hi(PAGE_OFFSET), %glob_tmp
cmp %glob_tmp, %sp
bleu,a 1f
LEON_PI( lda [%g0] ASI_LEON_MMUREGS, %glob_tmp) ! read MMU control
SUN_PI_( lda [%g0] ASI_M_MMUREGS, %glob_tmp) ! read MMU control
trap_setup_user_stack_is_bolixed:
/* From user/kernel into invalid window w/bad user
* stack. Save bad user stack, and return to caller.
*/
SAVE_BOLIXED_USER_STACK(curptr, g3)
restore %g0, %g0, %g0
jmpl %t_retpc + 0x8, %g0
mov %t_kstack, %sp
1:
/* Clear the fault status and turn on the no_fault bit. */
or %glob_tmp, 0x2, %glob_tmp ! or in no_fault bit
LEON_PI(sta %glob_tmp, [%g0] ASI_LEON_MMUREGS) ! set it
SUN_PI_(sta %glob_tmp, [%g0] ASI_M_MMUREGS) ! set it
/* Dump the registers and cross fingers. */
STORE_WINDOW(sp)
/* Clear the no_fault bit and check the status. */
andn %glob_tmp, 0x2, %glob_tmp
LEON_PI(sta %glob_tmp, [%g0] ASI_LEON_MMUREGS)
SUN_PI_(sta %glob_tmp, [%g0] ASI_M_MMUREGS)
mov AC_M_SFAR, %glob_tmp
LEON_PI(lda [%glob_tmp] ASI_LEON_MMUREGS, %g0)
SUN_PI_(lda [%glob_tmp] ASI_M_MMUREGS, %g0)
mov AC_M_SFSR, %glob_tmp
LEON_PI(lda [%glob_tmp] ASI_LEON_MMUREGS, %glob_tmp)! save away status of winstore
SUN_PI_(lda [%glob_tmp] ASI_M_MMUREGS, %glob_tmp) ! save away status of winstore
andcc %glob_tmp, 0x2, %g0 ! did we fault?
bne trap_setup_user_stack_is_bolixed ! failure
nop
restore %g0, %g0, %g0
jmpl %t_retpc + 0x8, %g0
mov %t_kstack, %sp