Uwe Kleine-König 32a0a94aa0 i2c: Switch back to struct platform_driver::remove()
After commit 0edb555a65d1 ("platform: Make platform_driver::remove()
return void") .remove() is (again) the right callback to implement for
platform drivers.

Convert all platform drivers below drivers/i2c to use .remove(), with
the eventual goal to drop struct platform_driver::remove_new(). As
.remove() and .remove_new() have the same prototypes, conversion is done
by just changing the structure member name in the driver initializer.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Signed-off-by: Andi Shyti <andi.shyti@kernel.org>
2024-11-17 11:58:14 +01:00

609 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2022 Hewlett-Packard Enterprise Development Company, L.P. */
#include <linux/err.h>
#include <linux/io.h>
#include <linux/i2c.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#define GXP_MAX_I2C_ENGINE 10
static const char * const gxp_i2c_name[] = {
"gxp-i2c0", "gxp-i2c1", "gxp-i2c2", "gxp-i2c3",
"gxp-i2c4", "gxp-i2c5", "gxp-i2c6", "gxp-i2c7",
"gxp-i2c8", "gxp-i2c9" };
/* GXP I2C Global interrupt status/enable register*/
#define GXP_I2CINTSTAT 0x00
#define GXP_I2CINTEN 0x04
/* GXP I2C registers */
#define GXP_I2CSTAT 0x00
#define MASK_STOP_EVENT 0x20
#define MASK_ACK 0x08
#define MASK_RW 0x04
#define GXP_I2CEVTERR 0x01
#define MASK_SLAVE_CMD_EVENT 0x01
#define MASK_SLAVE_DATA_EVENT 0x02
#define MASK_MASTER_EVENT 0x10
#define GXP_I2CSNPDAT 0x02
#define GXP_I2CMCMD 0x04
#define GXP_I2CSCMD 0x06
#define GXP_I2CSNPAA 0x09
#define GXP_I2CADVFEAT 0x0A
#define GXP_I2COWNADR 0x0B
#define GXP_I2CFREQDIV 0x0C
#define GXP_I2CFLTFAIR 0x0D
#define GXP_I2CTMOEDG 0x0E
#define GXP_I2CCYCTIM 0x0F
/* I2CSCMD Bits */
#define SNOOP_EVT_CLR 0x80
#define SLAVE_EVT_CLR 0x40
#define SNOOP_EVT_MASK 0x20
#define SLAVE_EVT_MASK 0x10
#define SLAVE_ACK_ENAB 0x08
#define SLAVE_EVT_STALL 0x01
/* I2CMCMD Bits */
#define MASTER_EVT_CLR 0x80
#define MASTER_ACK_ENAB 0x08
#define RW_CMD 0x04
#define STOP_CMD 0x02
#define START_CMD 0x01
/* I2CTMOEDG value */
#define GXP_DATA_EDGE_RST_CTRL 0x0a /* 30ns */
/* I2CFLTFAIR Bits */
#define FILTER_CNT 0x30
#define FAIRNESS_CNT 0x02
enum {
GXP_I2C_IDLE = 0,
GXP_I2C_ADDR_PHASE,
GXP_I2C_RDATA_PHASE,
GXP_I2C_WDATA_PHASE,
GXP_I2C_ADDR_NACK,
GXP_I2C_DATA_NACK,
GXP_I2C_ERROR,
GXP_I2C_COMP
};
struct gxp_i2c_drvdata {
struct device *dev;
void __iomem *base;
struct i2c_timings t;
u32 engine;
int irq;
struct completion completion;
struct i2c_adapter adapter;
struct i2c_msg *curr_msg;
int msgs_remaining;
int msgs_num;
u8 *buf;
size_t buf_remaining;
unsigned char state;
struct i2c_client *slave;
unsigned char stopped;
};
static struct regmap *i2cg_map;
static void gxp_i2c_start(struct gxp_i2c_drvdata *drvdata)
{
u16 value;
drvdata->buf = drvdata->curr_msg->buf;
drvdata->buf_remaining = drvdata->curr_msg->len;
/* Note: Address in struct i2c_msg is 7 bits */
value = drvdata->curr_msg->addr << 9;
/* Read or Write */
value |= drvdata->curr_msg->flags & I2C_M_RD ? RW_CMD | START_CMD : START_CMD;
drvdata->state = GXP_I2C_ADDR_PHASE;
writew(value, drvdata->base + GXP_I2CMCMD);
}
static int gxp_i2c_master_xfer(struct i2c_adapter *adapter,
struct i2c_msg *msgs, int num)
{
int ret;
struct gxp_i2c_drvdata *drvdata = i2c_get_adapdata(adapter);
unsigned long time_left;
drvdata->msgs_remaining = num;
drvdata->curr_msg = msgs;
drvdata->msgs_num = num;
reinit_completion(&drvdata->completion);
gxp_i2c_start(drvdata);
time_left = wait_for_completion_timeout(&drvdata->completion,
adapter->timeout);
ret = num - drvdata->msgs_remaining;
if (time_left == 0)
return -ETIMEDOUT;
if (drvdata->state == GXP_I2C_ADDR_NACK)
return -ENXIO;
if (drvdata->state == GXP_I2C_DATA_NACK)
return -EIO;
return ret;
}
static u32 gxp_i2c_func(struct i2c_adapter *adap)
{
if (IS_ENABLED(CONFIG_I2C_SLAVE))
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SLAVE;
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
#if IS_ENABLED(CONFIG_I2C_SLAVE)
static int gxp_i2c_reg_slave(struct i2c_client *slave)
{
struct gxp_i2c_drvdata *drvdata = i2c_get_adapdata(slave->adapter);
if (drvdata->slave)
return -EBUSY;
if (slave->flags & I2C_CLIENT_TEN)
return -EAFNOSUPPORT;
drvdata->slave = slave;
writeb(slave->addr << 1, drvdata->base + GXP_I2COWNADR);
writeb(SLAVE_EVT_CLR | SNOOP_EVT_MASK | SLAVE_ACK_ENAB |
SLAVE_EVT_STALL, drvdata->base + GXP_I2CSCMD);
return 0;
}
static int gxp_i2c_unreg_slave(struct i2c_client *slave)
{
struct gxp_i2c_drvdata *drvdata = i2c_get_adapdata(slave->adapter);
WARN_ON(!drvdata->slave);
writeb(0x00, drvdata->base + GXP_I2COWNADR);
writeb(SNOOP_EVT_CLR | SLAVE_EVT_CLR | SNOOP_EVT_MASK |
SLAVE_EVT_MASK, drvdata->base + GXP_I2CSCMD);
drvdata->slave = NULL;
return 0;
}
#endif
static const struct i2c_algorithm gxp_i2c_algo = {
.master_xfer = gxp_i2c_master_xfer,
.functionality = gxp_i2c_func,
#if IS_ENABLED(CONFIG_I2C_SLAVE)
.reg_slave = gxp_i2c_reg_slave,
.unreg_slave = gxp_i2c_unreg_slave,
#endif
};
static void gxp_i2c_stop(struct gxp_i2c_drvdata *drvdata)
{
/* Clear event and send stop */
writeb(MASTER_EVT_CLR | STOP_CMD, drvdata->base + GXP_I2CMCMD);
complete(&drvdata->completion);
}
static void gxp_i2c_restart(struct gxp_i2c_drvdata *drvdata)
{
u16 value;
drvdata->buf = drvdata->curr_msg->buf;
drvdata->buf_remaining = drvdata->curr_msg->len;
value = drvdata->curr_msg->addr << 9;
if (drvdata->curr_msg->flags & I2C_M_RD) {
/* Read and clear master event */
value |= MASTER_EVT_CLR | RW_CMD | START_CMD;
} else {
/* Write and clear master event */
value |= MASTER_EVT_CLR | START_CMD;
}
drvdata->state = GXP_I2C_ADDR_PHASE;
writew(value, drvdata->base + GXP_I2CMCMD);
}
static void gxp_i2c_chk_addr_ack(struct gxp_i2c_drvdata *drvdata)
{
u16 value;
value = readb(drvdata->base + GXP_I2CSTAT);
if (!(value & MASK_ACK)) {
/* Got no ack, stop */
drvdata->state = GXP_I2C_ADDR_NACK;
gxp_i2c_stop(drvdata);
return;
}
if (drvdata->curr_msg->flags & I2C_M_RD) {
/* Start to read data from slave */
if (drvdata->buf_remaining == 0) {
/* No more data to read, stop */
drvdata->msgs_remaining--;
drvdata->state = GXP_I2C_COMP;
gxp_i2c_stop(drvdata);
return;
}
drvdata->state = GXP_I2C_RDATA_PHASE;
if (drvdata->buf_remaining == 1) {
/* The last data, do not ack */
writeb(MASTER_EVT_CLR | RW_CMD,
drvdata->base + GXP_I2CMCMD);
} else {
/* Read data and ack it */
writeb(MASTER_EVT_CLR | MASTER_ACK_ENAB |
RW_CMD, drvdata->base + GXP_I2CMCMD);
}
} else {
/* Start to write first data to slave */
if (drvdata->buf_remaining == 0) {
/* No more data to write, stop */
drvdata->msgs_remaining--;
drvdata->state = GXP_I2C_COMP;
gxp_i2c_stop(drvdata);
return;
}
value = *drvdata->buf;
value = value << 8;
/* Clear master event */
value |= MASTER_EVT_CLR;
drvdata->buf++;
drvdata->buf_remaining--;
drvdata->state = GXP_I2C_WDATA_PHASE;
writew(value, drvdata->base + GXP_I2CMCMD);
}
}
static void gxp_i2c_ack_data(struct gxp_i2c_drvdata *drvdata)
{
u8 value;
/* Store the data returned */
value = readb(drvdata->base + GXP_I2CSNPDAT);
*drvdata->buf = value;
drvdata->buf++;
drvdata->buf_remaining--;
if (drvdata->buf_remaining == 0) {
/* No more data, this message is completed. */
drvdata->msgs_remaining--;
if (drvdata->msgs_remaining == 0) {
/* No more messages, stop */
drvdata->state = GXP_I2C_COMP;
gxp_i2c_stop(drvdata);
return;
}
/* Move to next message and start transfer */
drvdata->curr_msg++;
gxp_i2c_restart(drvdata);
return;
}
/* Ack the slave to make it send next byte */
drvdata->state = GXP_I2C_RDATA_PHASE;
if (drvdata->buf_remaining == 1) {
/* The last data, do not ack */
writeb(MASTER_EVT_CLR | RW_CMD,
drvdata->base + GXP_I2CMCMD);
} else {
/* Read data and ack it */
writeb(MASTER_EVT_CLR | MASTER_ACK_ENAB |
RW_CMD, drvdata->base + GXP_I2CMCMD);
}
}
static void gxp_i2c_chk_data_ack(struct gxp_i2c_drvdata *drvdata)
{
u16 value;
value = readb(drvdata->base + GXP_I2CSTAT);
if (!(value & MASK_ACK)) {
/* Received No ack, stop */
drvdata->state = GXP_I2C_DATA_NACK;
gxp_i2c_stop(drvdata);
return;
}
/* Got ack, check if there is more data to write */
if (drvdata->buf_remaining == 0) {
/* No more data, this message is completed */
drvdata->msgs_remaining--;
if (drvdata->msgs_remaining == 0) {
/* No more messages, stop */
drvdata->state = GXP_I2C_COMP;
gxp_i2c_stop(drvdata);
return;
}
/* Move to next message and start transfer */
drvdata->curr_msg++;
gxp_i2c_restart(drvdata);
return;
}
/* Write data to slave */
value = *drvdata->buf;
value = value << 8;
/* Clear master event */
value |= MASTER_EVT_CLR;
drvdata->buf++;
drvdata->buf_remaining--;
drvdata->state = GXP_I2C_WDATA_PHASE;
writew(value, drvdata->base + GXP_I2CMCMD);
}
static bool gxp_i2c_slave_irq_handler(struct gxp_i2c_drvdata *drvdata)
{
u8 value;
u8 buf;
int ret;
value = readb(drvdata->base + GXP_I2CEVTERR);
/* Received start or stop event */
if (value & MASK_SLAVE_CMD_EVENT) {
value = readb(drvdata->base + GXP_I2CSTAT);
/* Master sent stop */
if (value & MASK_STOP_EVENT) {
if (drvdata->stopped == 0)
i2c_slave_event(drvdata->slave, I2C_SLAVE_STOP, &buf);
writeb(SLAVE_EVT_CLR | SNOOP_EVT_MASK |
SLAVE_ACK_ENAB | SLAVE_EVT_STALL, drvdata->base + GXP_I2CSCMD);
drvdata->stopped = 1;
} else {
/* Master sent start and wants to read */
drvdata->stopped = 0;
if (value & MASK_RW) {
i2c_slave_event(drvdata->slave,
I2C_SLAVE_READ_REQUESTED, &buf);
value = buf << 8 | (SLAVE_EVT_CLR | SNOOP_EVT_MASK |
SLAVE_EVT_STALL);
writew(value, drvdata->base + GXP_I2CSCMD);
} else {
/* Master wants to write to us */
ret = i2c_slave_event(drvdata->slave,
I2C_SLAVE_WRITE_REQUESTED, &buf);
if (!ret) {
/* Ack next byte from master */
writeb(SLAVE_EVT_CLR | SNOOP_EVT_MASK |
SLAVE_ACK_ENAB | SLAVE_EVT_STALL,
drvdata->base + GXP_I2CSCMD);
} else {
/* Nack next byte from master */
writeb(SLAVE_EVT_CLR | SNOOP_EVT_MASK |
SLAVE_EVT_STALL, drvdata->base + GXP_I2CSCMD);
}
}
}
} else if (value & MASK_SLAVE_DATA_EVENT) {
value = readb(drvdata->base + GXP_I2CSTAT);
/* Master wants to read */
if (value & MASK_RW) {
/* Master wants another byte */
if (value & MASK_ACK) {
i2c_slave_event(drvdata->slave,
I2C_SLAVE_READ_PROCESSED, &buf);
value = buf << 8 | (SLAVE_EVT_CLR | SNOOP_EVT_MASK |
SLAVE_EVT_STALL);
writew(value, drvdata->base + GXP_I2CSCMD);
} else {
/* No more bytes needed */
writew(SLAVE_EVT_CLR | SNOOP_EVT_MASK |
SLAVE_ACK_ENAB | SLAVE_EVT_STALL,
drvdata->base + GXP_I2CSCMD);
}
} else {
/* Master wants to write to us */
value = readb(drvdata->base + GXP_I2CSNPDAT);
buf = (uint8_t)value;
ret = i2c_slave_event(drvdata->slave,
I2C_SLAVE_WRITE_RECEIVED, &buf);
if (!ret) {
/* Ack next byte from master */
writeb(SLAVE_EVT_CLR | SNOOP_EVT_MASK |
SLAVE_ACK_ENAB | SLAVE_EVT_STALL,
drvdata->base + GXP_I2CSCMD);
} else {
/* Nack next byte from master */
writeb(SLAVE_EVT_CLR | SNOOP_EVT_MASK |
SLAVE_EVT_STALL, drvdata->base + GXP_I2CSCMD);
}
}
} else {
return false;
}
return true;
}
static irqreturn_t gxp_i2c_irq_handler(int irq, void *_drvdata)
{
struct gxp_i2c_drvdata *drvdata = (struct gxp_i2c_drvdata *)_drvdata;
u32 value;
/* Check if the interrupt is for the current engine */
regmap_read(i2cg_map, GXP_I2CINTSTAT, &value);
if (!(value & BIT(drvdata->engine)))
return IRQ_NONE;
value = readb(drvdata->base + GXP_I2CEVTERR);
/* Error */
if (value & ~(MASK_MASTER_EVENT | MASK_SLAVE_CMD_EVENT |
MASK_SLAVE_DATA_EVENT)) {
/* Clear all events */
writeb(0x00, drvdata->base + GXP_I2CEVTERR);
drvdata->state = GXP_I2C_ERROR;
gxp_i2c_stop(drvdata);
return IRQ_HANDLED;
}
if (IS_ENABLED(CONFIG_I2C_SLAVE)) {
/* Slave mode */
if (value & (MASK_SLAVE_CMD_EVENT | MASK_SLAVE_DATA_EVENT)) {
if (gxp_i2c_slave_irq_handler(drvdata))
return IRQ_HANDLED;
return IRQ_NONE;
}
}
/* Master mode */
switch (drvdata->state) {
case GXP_I2C_ADDR_PHASE:
gxp_i2c_chk_addr_ack(drvdata);
break;
case GXP_I2C_RDATA_PHASE:
gxp_i2c_ack_data(drvdata);
break;
case GXP_I2C_WDATA_PHASE:
gxp_i2c_chk_data_ack(drvdata);
break;
}
return IRQ_HANDLED;
}
static void gxp_i2c_init(struct gxp_i2c_drvdata *drvdata)
{
drvdata->state = GXP_I2C_IDLE;
writeb(2000000 / drvdata->t.bus_freq_hz,
drvdata->base + GXP_I2CFREQDIV);
writeb(FILTER_CNT | FAIRNESS_CNT,
drvdata->base + GXP_I2CFLTFAIR);
writeb(GXP_DATA_EDGE_RST_CTRL, drvdata->base + GXP_I2CTMOEDG);
writeb(0x00, drvdata->base + GXP_I2CCYCTIM);
writeb(0x00, drvdata->base + GXP_I2CSNPAA);
writeb(0x00, drvdata->base + GXP_I2CADVFEAT);
writeb(SNOOP_EVT_CLR | SLAVE_EVT_CLR | SNOOP_EVT_MASK |
SLAVE_EVT_MASK, drvdata->base + GXP_I2CSCMD);
writeb(MASTER_EVT_CLR, drvdata->base + GXP_I2CMCMD);
writeb(0x00, drvdata->base + GXP_I2CEVTERR);
writeb(0x00, drvdata->base + GXP_I2COWNADR);
}
static int gxp_i2c_probe(struct platform_device *pdev)
{
struct gxp_i2c_drvdata *drvdata;
int rc;
struct i2c_adapter *adapter;
if (!i2cg_map) {
i2cg_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"hpe,sysreg");
if (IS_ERR(i2cg_map)) {
return dev_err_probe(&pdev->dev, PTR_ERR(i2cg_map),
"failed to map i2cg_handle\n");
}
/* Disable interrupt */
regmap_update_bits(i2cg_map, GXP_I2CINTEN, 0x00000FFF, 0);
}
drvdata = devm_kzalloc(&pdev->dev, sizeof(*drvdata),
GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
platform_set_drvdata(pdev, drvdata);
drvdata->dev = &pdev->dev;
init_completion(&drvdata->completion);
drvdata->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(drvdata->base))
return PTR_ERR(drvdata->base);
/* Use physical memory address to determine which I2C engine this is. */
drvdata->engine = ((size_t)drvdata->base & 0xf00) >> 8;
if (drvdata->engine >= GXP_MAX_I2C_ENGINE) {
return dev_err_probe(&pdev->dev, -EINVAL, "i2c engine% is unsupported\n",
drvdata->engine);
}
rc = platform_get_irq(pdev, 0);
if (rc < 0)
return rc;
drvdata->irq = rc;
rc = devm_request_irq(&pdev->dev, drvdata->irq, gxp_i2c_irq_handler,
IRQF_SHARED, gxp_i2c_name[drvdata->engine], drvdata);
if (rc < 0)
return dev_err_probe(&pdev->dev, rc, "irq request failed\n");
i2c_parse_fw_timings(&pdev->dev, &drvdata->t, true);
gxp_i2c_init(drvdata);
/* Enable interrupt */
regmap_update_bits(i2cg_map, GXP_I2CINTEN, BIT(drvdata->engine),
BIT(drvdata->engine));
adapter = &drvdata->adapter;
i2c_set_adapdata(adapter, drvdata);
adapter->owner = THIS_MODULE;
strscpy(adapter->name, "HPE GXP I2C adapter", sizeof(adapter->name));
adapter->algo = &gxp_i2c_algo;
adapter->dev.parent = &pdev->dev;
adapter->dev.of_node = pdev->dev.of_node;
rc = i2c_add_adapter(adapter);
if (rc)
return dev_err_probe(&pdev->dev, rc, "i2c add adapter failed\n");
return 0;
}
static void gxp_i2c_remove(struct platform_device *pdev)
{
struct gxp_i2c_drvdata *drvdata = platform_get_drvdata(pdev);
/* Disable interrupt */
regmap_update_bits(i2cg_map, GXP_I2CINTEN, BIT(drvdata->engine), 0);
i2c_del_adapter(&drvdata->adapter);
}
static const struct of_device_id gxp_i2c_of_match[] = {
{ .compatible = "hpe,gxp-i2c" },
{},
};
MODULE_DEVICE_TABLE(of, gxp_i2c_of_match);
static struct platform_driver gxp_i2c_driver = {
.probe = gxp_i2c_probe,
.remove = gxp_i2c_remove,
.driver = {
.name = "gxp-i2c",
.of_match_table = gxp_i2c_of_match,
},
};
module_platform_driver(gxp_i2c_driver);
MODULE_AUTHOR("Nick Hawkins <nick.hawkins@hpe.com>");
MODULE_DESCRIPTION("HPE GXP I2C bus driver");
MODULE_LICENSE("GPL");