mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-16 18:26:42 +00:00
1223 lines
48 KiB
ArmAsm
1223 lines
48 KiB
ArmAsm
|
/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
|
||
|
//
|
||
|
// VAES and VPCLMULQDQ optimized AES-GCM for x86_64
|
||
|
//
|
||
|
// Copyright 2024 Google LLC
|
||
|
//
|
||
|
// Author: Eric Biggers <ebiggers@google.com>
|
||
|
//
|
||
|
//------------------------------------------------------------------------------
|
||
|
//
|
||
|
// This file is dual-licensed, meaning that you can use it under your choice of
|
||
|
// either of the following two licenses:
|
||
|
//
|
||
|
// Licensed under the Apache License 2.0 (the "License"). You may obtain a copy
|
||
|
// of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
//
|
||
|
// or
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// 1. Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// 2. Redistributions in binary form must reproduce the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer in the
|
||
|
// documentation and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
//------------------------------------------------------------------------------
|
||
|
//
|
||
|
// This file implements AES-GCM (Galois/Counter Mode) for x86_64 CPUs that
|
||
|
// support VAES (vector AES), VPCLMULQDQ (vector carryless multiplication), and
|
||
|
// either AVX512 or AVX10. Some of the functions, notably the encryption and
|
||
|
// decryption update functions which are the most performance-critical, are
|
||
|
// provided in two variants generated from a macro: one using 256-bit vectors
|
||
|
// (suffix: vaes_avx10_256) and one using 512-bit vectors (vaes_avx10_512). The
|
||
|
// other, "shared" functions (vaes_avx10) use at most 256-bit vectors.
|
||
|
//
|
||
|
// The functions that use 512-bit vectors are intended for CPUs that support
|
||
|
// 512-bit vectors *and* where using them doesn't cause significant
|
||
|
// downclocking. They require the following CPU features:
|
||
|
//
|
||
|
// VAES && VPCLMULQDQ && BMI2 && ((AVX512BW && AVX512VL) || AVX10/512)
|
||
|
//
|
||
|
// The other functions require the following CPU features:
|
||
|
//
|
||
|
// VAES && VPCLMULQDQ && BMI2 && ((AVX512BW && AVX512VL) || AVX10/256)
|
||
|
//
|
||
|
// All functions use the "System V" ABI. The Windows ABI is not supported.
|
||
|
//
|
||
|
// Note that we use "avx10" in the names of the functions as a shorthand to
|
||
|
// really mean "AVX10 or a certain set of AVX512 features". Due to Intel's
|
||
|
// introduction of AVX512 and then its replacement by AVX10, there doesn't seem
|
||
|
// to be a simple way to name things that makes sense on all CPUs.
|
||
|
//
|
||
|
// Note that the macros that support both 256-bit and 512-bit vectors could
|
||
|
// fairly easily be changed to support 128-bit too. However, this would *not*
|
||
|
// be sufficient to allow the code to run on CPUs without AVX512 or AVX10,
|
||
|
// because the code heavily uses several features of these extensions other than
|
||
|
// the vector length: the increase in the number of SIMD registers from 16 to
|
||
|
// 32, masking support, and new instructions such as vpternlogd (which can do a
|
||
|
// three-argument XOR). These features are very useful for AES-GCM.
|
||
|
|
||
|
#include <linux/linkage.h>
|
||
|
|
||
|
.section .rodata
|
||
|
.p2align 6
|
||
|
|
||
|
// A shuffle mask that reflects the bytes of 16-byte blocks
|
||
|
.Lbswap_mask:
|
||
|
.octa 0x000102030405060708090a0b0c0d0e0f
|
||
|
|
||
|
// This is the GHASH reducing polynomial without its constant term, i.e.
|
||
|
// x^128 + x^7 + x^2 + x, represented using the backwards mapping
|
||
|
// between bits and polynomial coefficients.
|
||
|
//
|
||
|
// Alternatively, it can be interpreted as the naturally-ordered
|
||
|
// representation of the polynomial x^127 + x^126 + x^121 + 1, i.e. the
|
||
|
// "reversed" GHASH reducing polynomial without its x^128 term.
|
||
|
.Lgfpoly:
|
||
|
.octa 0xc2000000000000000000000000000001
|
||
|
|
||
|
// Same as above, but with the (1 << 64) bit set.
|
||
|
.Lgfpoly_and_internal_carrybit:
|
||
|
.octa 0xc2000000000000010000000000000001
|
||
|
|
||
|
// The below constants are used for incrementing the counter blocks.
|
||
|
// ctr_pattern points to the four 128-bit values [0, 1, 2, 3].
|
||
|
// inc_2blocks and inc_4blocks point to the single 128-bit values 2 and
|
||
|
// 4. Note that the same '2' is reused in ctr_pattern and inc_2blocks.
|
||
|
.Lctr_pattern:
|
||
|
.octa 0
|
||
|
.octa 1
|
||
|
.Linc_2blocks:
|
||
|
.octa 2
|
||
|
.octa 3
|
||
|
.Linc_4blocks:
|
||
|
.octa 4
|
||
|
|
||
|
// Number of powers of the hash key stored in the key struct. The powers are
|
||
|
// stored from highest (H^NUM_H_POWERS) to lowest (H^1).
|
||
|
#define NUM_H_POWERS 16
|
||
|
|
||
|
// Offset to AES key length (in bytes) in the key struct
|
||
|
#define OFFSETOF_AESKEYLEN 480
|
||
|
|
||
|
// Offset to start of hash key powers array in the key struct
|
||
|
#define OFFSETOF_H_POWERS 512
|
||
|
|
||
|
// Offset to end of hash key powers array in the key struct.
|
||
|
//
|
||
|
// This is immediately followed by three zeroized padding blocks, which are
|
||
|
// included so that partial vectors can be handled more easily. E.g. if VL=64
|
||
|
// and two blocks remain, we load the 4 values [H^2, H^1, 0, 0]. The most
|
||
|
// padding blocks needed is 3, which occurs if [H^1, 0, 0, 0] is loaded.
|
||
|
#define OFFSETOFEND_H_POWERS (OFFSETOF_H_POWERS + (NUM_H_POWERS * 16))
|
||
|
|
||
|
.text
|
||
|
|
||
|
// Set the vector length in bytes. This sets the VL variable and defines
|
||
|
// register aliases V0-V31 that map to the ymm or zmm registers.
|
||
|
.macro _set_veclen vl
|
||
|
.set VL, \vl
|
||
|
.irp i, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, \
|
||
|
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
|
||
|
.if VL == 32
|
||
|
.set V\i, %ymm\i
|
||
|
.elseif VL == 64
|
||
|
.set V\i, %zmm\i
|
||
|
.else
|
||
|
.error "Unsupported vector length"
|
||
|
.endif
|
||
|
.endr
|
||
|
.endm
|
||
|
|
||
|
// The _ghash_mul_step macro does one step of GHASH multiplication of the
|
||
|
// 128-bit lanes of \a by the corresponding 128-bit lanes of \b and storing the
|
||
|
// reduced products in \dst. \t0, \t1, and \t2 are temporary registers of the
|
||
|
// same size as \a and \b. To complete all steps, this must invoked with \i=0
|
||
|
// through \i=9. The division into steps allows users of this macro to
|
||
|
// optionally interleave the computation with other instructions. Users of this
|
||
|
// macro must preserve the parameter registers across steps.
|
||
|
//
|
||
|
// The multiplications are done in GHASH's representation of the finite field
|
||
|
// GF(2^128). Elements of GF(2^128) are represented as binary polynomials
|
||
|
// (i.e. polynomials whose coefficients are bits) modulo a reducing polynomial
|
||
|
// G. The GCM specification uses G = x^128 + x^7 + x^2 + x + 1. Addition is
|
||
|
// just XOR, while multiplication is more complex and has two parts: (a) do
|
||
|
// carryless multiplication of two 128-bit input polynomials to get a 256-bit
|
||
|
// intermediate product polynomial, and (b) reduce the intermediate product to
|
||
|
// 128 bits by adding multiples of G that cancel out terms in it. (Adding
|
||
|
// multiples of G doesn't change which field element the polynomial represents.)
|
||
|
//
|
||
|
// Unfortunately, the GCM specification maps bits to/from polynomial
|
||
|
// coefficients backwards from the natural order. In each byte it specifies the
|
||
|
// highest bit to be the lowest order polynomial coefficient, *not* the highest!
|
||
|
// This makes it nontrivial to work with the GHASH polynomials. We could
|
||
|
// reflect the bits, but x86 doesn't have an instruction that does that.
|
||
|
//
|
||
|
// Instead, we operate on the values without bit-reflecting them. This *mostly*
|
||
|
// just works, since XOR and carryless multiplication are symmetric with respect
|
||
|
// to bit order, but it has some consequences. First, due to GHASH's byte
|
||
|
// order, by skipping bit reflection, *byte* reflection becomes necessary to
|
||
|
// give the polynomial terms a consistent order. E.g., considering an N-bit
|
||
|
// value interpreted using the G = x^128 + x^7 + x^2 + x + 1 convention, bits 0
|
||
|
// through N-1 of the byte-reflected value represent the coefficients of x^(N-1)
|
||
|
// through x^0, whereas bits 0 through N-1 of the non-byte-reflected value
|
||
|
// represent x^7...x^0, x^15...x^8, ..., x^(N-1)...x^(N-8) which can't be worked
|
||
|
// with. Fortunately, x86's vpshufb instruction can do byte reflection.
|
||
|
//
|
||
|
// Second, forgoing the bit reflection causes an extra multiple of x (still
|
||
|
// using the G = x^128 + x^7 + x^2 + x + 1 convention) to be introduced by each
|
||
|
// multiplication. This is because an M-bit by N-bit carryless multiplication
|
||
|
// really produces a (M+N-1)-bit product, but in practice it's zero-extended to
|
||
|
// M+N bits. In the G = x^128 + x^7 + x^2 + x + 1 convention, which maps bits
|
||
|
// to polynomial coefficients backwards, this zero-extension actually changes
|
||
|
// the product by introducing an extra factor of x. Therefore, users of this
|
||
|
// macro must ensure that one of the inputs has an extra factor of x^-1, i.e.
|
||
|
// the multiplicative inverse of x, to cancel out the extra x.
|
||
|
//
|
||
|
// Third, the backwards coefficients convention is just confusing to work with,
|
||
|
// since it makes "low" and "high" in the polynomial math mean the opposite of
|
||
|
// their normal meaning in computer programming. This can be solved by using an
|
||
|
// alternative interpretation: the polynomial coefficients are understood to be
|
||
|
// in the natural order, and the multiplication is actually \a * \b * x^-128 mod
|
||
|
// x^128 + x^127 + x^126 + x^121 + 1. This doesn't change the inputs, outputs,
|
||
|
// or the implementation at all; it just changes the mathematical interpretation
|
||
|
// of what each instruction is doing. Starting from here, we'll use this
|
||
|
// alternative interpretation, as it's easier to understand the code that way.
|
||
|
//
|
||
|
// Moving onto the implementation, the vpclmulqdq instruction does 64 x 64 =>
|
||
|
// 128-bit carryless multiplication, so we break the 128 x 128 multiplication
|
||
|
// into parts as follows (the _L and _H suffixes denote low and high 64 bits):
|
||
|
//
|
||
|
// LO = a_L * b_L
|
||
|
// MI = (a_L * b_H) + (a_H * b_L)
|
||
|
// HI = a_H * b_H
|
||
|
//
|
||
|
// The 256-bit product is x^128*HI + x^64*MI + LO. LO, MI, and HI are 128-bit.
|
||
|
// Note that MI "overlaps" with LO and HI. We don't consolidate MI into LO and
|
||
|
// HI right away, since the way the reduction works makes that unnecessary.
|
||
|
//
|
||
|
// For the reduction, we cancel out the low 128 bits by adding multiples of G =
|
||
|
// x^128 + x^127 + x^126 + x^121 + 1. This is done by two iterations, each of
|
||
|
// which cancels out the next lowest 64 bits. Consider a value x^64*A + B,
|
||
|
// where A and B are 128-bit. Adding B_L*G to that value gives:
|
||
|
//
|
||
|
// x^64*A + B + B_L*G
|
||
|
// = x^64*A + x^64*B_H + B_L + B_L*(x^128 + x^127 + x^126 + x^121 + 1)
|
||
|
// = x^64*A + x^64*B_H + B_L + x^128*B_L + x^64*B_L*(x^63 + x^62 + x^57) + B_L
|
||
|
// = x^64*A + x^64*B_H + x^128*B_L + x^64*B_L*(x^63 + x^62 + x^57) + B_L + B_L
|
||
|
// = x^64*(A + B_H + x^64*B_L + B_L*(x^63 + x^62 + x^57))
|
||
|
//
|
||
|
// So: if we sum A, B with its halves swapped, and the low half of B times x^63
|
||
|
// + x^62 + x^57, we get a 128-bit value C where x^64*C is congruent to the
|
||
|
// original value x^64*A + B. I.e., the low 64 bits got canceled out.
|
||
|
//
|
||
|
// We just need to apply this twice: first to fold LO into MI, and second to
|
||
|
// fold the updated MI into HI.
|
||
|
//
|
||
|
// The needed three-argument XORs are done using the vpternlogd instruction with
|
||
|
// immediate 0x96, since this is faster than two vpxord instructions.
|
||
|
//
|
||
|
// A potential optimization, assuming that b is fixed per-key (if a is fixed
|
||
|
// per-key it would work the other way around), is to use one iteration of the
|
||
|
// reduction described above to precompute a value c such that x^64*c = b mod G,
|
||
|
// and then multiply a_L by c (and implicitly by x^64) instead of by b:
|
||
|
//
|
||
|
// MI = (a_L * c_L) + (a_H * b_L)
|
||
|
// HI = (a_L * c_H) + (a_H * b_H)
|
||
|
//
|
||
|
// This would eliminate the LO part of the intermediate product, which would
|
||
|
// eliminate the need to fold LO into MI. This would save two instructions,
|
||
|
// including a vpclmulqdq. However, we currently don't use this optimization
|
||
|
// because it would require twice as many per-key precomputed values.
|
||
|
//
|
||
|
// Using Karatsuba multiplication instead of "schoolbook" multiplication
|
||
|
// similarly would save a vpclmulqdq but does not seem to be worth it.
|
||
|
.macro _ghash_mul_step i, a, b, dst, gfpoly, t0, t1, t2
|
||
|
.if \i == 0
|
||
|
vpclmulqdq $0x00, \a, \b, \t0 // LO = a_L * b_L
|
||
|
vpclmulqdq $0x01, \a, \b, \t1 // MI_0 = a_L * b_H
|
||
|
.elseif \i == 1
|
||
|
vpclmulqdq $0x10, \a, \b, \t2 // MI_1 = a_H * b_L
|
||
|
.elseif \i == 2
|
||
|
vpxord \t2, \t1, \t1 // MI = MI_0 + MI_1
|
||
|
.elseif \i == 3
|
||
|
vpclmulqdq $0x01, \t0, \gfpoly, \t2 // LO_L*(x^63 + x^62 + x^57)
|
||
|
.elseif \i == 4
|
||
|
vpshufd $0x4e, \t0, \t0 // Swap halves of LO
|
||
|
.elseif \i == 5
|
||
|
vpternlogd $0x96, \t2, \t0, \t1 // Fold LO into MI
|
||
|
.elseif \i == 6
|
||
|
vpclmulqdq $0x11, \a, \b, \dst // HI = a_H * b_H
|
||
|
.elseif \i == 7
|
||
|
vpclmulqdq $0x01, \t1, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57)
|
||
|
.elseif \i == 8
|
||
|
vpshufd $0x4e, \t1, \t1 // Swap halves of MI
|
||
|
.elseif \i == 9
|
||
|
vpternlogd $0x96, \t0, \t1, \dst // Fold MI into HI
|
||
|
.endif
|
||
|
.endm
|
||
|
|
||
|
// GHASH-multiply the 128-bit lanes of \a by the 128-bit lanes of \b and store
|
||
|
// the reduced products in \dst. See _ghash_mul_step for full explanation.
|
||
|
.macro _ghash_mul a, b, dst, gfpoly, t0, t1, t2
|
||
|
.irp i, 0,1,2,3,4,5,6,7,8,9
|
||
|
_ghash_mul_step \i, \a, \b, \dst, \gfpoly, \t0, \t1, \t2
|
||
|
.endr
|
||
|
.endm
|
||
|
|
||
|
// GHASH-multiply the 128-bit lanes of \a by the 128-bit lanes of \b and add the
|
||
|
// *unreduced* products to \lo, \mi, and \hi.
|
||
|
.macro _ghash_mul_noreduce a, b, lo, mi, hi, t0, t1, t2, t3
|
||
|
vpclmulqdq $0x00, \a, \b, \t0 // a_L * b_L
|
||
|
vpclmulqdq $0x01, \a, \b, \t1 // a_L * b_H
|
||
|
vpclmulqdq $0x10, \a, \b, \t2 // a_H * b_L
|
||
|
vpclmulqdq $0x11, \a, \b, \t3 // a_H * b_H
|
||
|
vpxord \t0, \lo, \lo
|
||
|
vpternlogd $0x96, \t2, \t1, \mi
|
||
|
vpxord \t3, \hi, \hi
|
||
|
.endm
|
||
|
|
||
|
// Reduce the unreduced products from \lo, \mi, and \hi and store the 128-bit
|
||
|
// reduced products in \hi. See _ghash_mul_step for explanation of reduction.
|
||
|
.macro _ghash_reduce lo, mi, hi, gfpoly, t0
|
||
|
vpclmulqdq $0x01, \lo, \gfpoly, \t0
|
||
|
vpshufd $0x4e, \lo, \lo
|
||
|
vpternlogd $0x96, \t0, \lo, \mi
|
||
|
vpclmulqdq $0x01, \mi, \gfpoly, \t0
|
||
|
vpshufd $0x4e, \mi, \mi
|
||
|
vpternlogd $0x96, \t0, \mi, \hi
|
||
|
.endm
|
||
|
|
||
|
// void aes_gcm_precompute_##suffix(struct aes_gcm_key_avx10 *key);
|
||
|
//
|
||
|
// Given the expanded AES key |key->aes_key|, this function derives the GHASH
|
||
|
// subkey and initializes |key->ghash_key_powers| with powers of it.
|
||
|
//
|
||
|
// The number of key powers initialized is NUM_H_POWERS, and they are stored in
|
||
|
// the order H^NUM_H_POWERS to H^1. The zeroized padding blocks after the key
|
||
|
// powers themselves are also initialized.
|
||
|
//
|
||
|
// This macro supports both VL=32 and VL=64. _set_veclen must have been invoked
|
||
|
// with the desired length. In the VL=32 case, the function computes twice as
|
||
|
// many key powers than are actually used by the VL=32 GCM update functions.
|
||
|
// This is done to keep the key format the same regardless of vector length.
|
||
|
.macro _aes_gcm_precompute
|
||
|
|
||
|
// Function arguments
|
||
|
.set KEY, %rdi
|
||
|
|
||
|
// Additional local variables. V0-V2 and %rax are used as temporaries.
|
||
|
.set POWERS_PTR, %rsi
|
||
|
.set RNDKEYLAST_PTR, %rdx
|
||
|
.set H_CUR, V3
|
||
|
.set H_CUR_YMM, %ymm3
|
||
|
.set H_CUR_XMM, %xmm3
|
||
|
.set H_INC, V4
|
||
|
.set H_INC_YMM, %ymm4
|
||
|
.set H_INC_XMM, %xmm4
|
||
|
.set GFPOLY, V5
|
||
|
.set GFPOLY_YMM, %ymm5
|
||
|
.set GFPOLY_XMM, %xmm5
|
||
|
|
||
|
// Get pointer to lowest set of key powers (located at end of array).
|
||
|
lea OFFSETOFEND_H_POWERS-VL(KEY), POWERS_PTR
|
||
|
|
||
|
// Encrypt an all-zeroes block to get the raw hash subkey.
|
||
|
movl OFFSETOF_AESKEYLEN(KEY), %eax
|
||
|
lea 6*16(KEY,%rax,4), RNDKEYLAST_PTR
|
||
|
vmovdqu (KEY), %xmm0 // Zero-th round key XOR all-zeroes block
|
||
|
add $16, KEY
|
||
|
1:
|
||
|
vaesenc (KEY), %xmm0, %xmm0
|
||
|
add $16, KEY
|
||
|
cmp KEY, RNDKEYLAST_PTR
|
||
|
jne 1b
|
||
|
vaesenclast (RNDKEYLAST_PTR), %xmm0, %xmm0
|
||
|
|
||
|
// Reflect the bytes of the raw hash subkey.
|
||
|
vpshufb .Lbswap_mask(%rip), %xmm0, H_CUR_XMM
|
||
|
|
||
|
// Zeroize the padding blocks.
|
||
|
vpxor %xmm0, %xmm0, %xmm0
|
||
|
vmovdqu %ymm0, VL(POWERS_PTR)
|
||
|
vmovdqu %xmm0, VL+2*16(POWERS_PTR)
|
||
|
|
||
|
// Finish preprocessing the first key power, H^1. Since this GHASH
|
||
|
// implementation operates directly on values with the backwards bit
|
||
|
// order specified by the GCM standard, it's necessary to preprocess the
|
||
|
// raw key as follows. First, reflect its bytes. Second, multiply it
|
||
|
// by x^-1 mod x^128 + x^7 + x^2 + x + 1 (if using the backwards
|
||
|
// interpretation of polynomial coefficients), which can also be
|
||
|
// interpreted as multiplication by x mod x^128 + x^127 + x^126 + x^121
|
||
|
// + 1 using the alternative, natural interpretation of polynomial
|
||
|
// coefficients. For details, see the comment above _ghash_mul_step.
|
||
|
//
|
||
|
// Either way, for the multiplication the concrete operation performed
|
||
|
// is a left shift of the 128-bit value by 1 bit, then an XOR with (0xc2
|
||
|
// << 120) | 1 if a 1 bit was carried out. However, there's no 128-bit
|
||
|
// wide shift instruction, so instead double each of the two 64-bit
|
||
|
// halves and incorporate the internal carry bit into the value XOR'd.
|
||
|
vpshufd $0xd3, H_CUR_XMM, %xmm0
|
||
|
vpsrad $31, %xmm0, %xmm0
|
||
|
vpaddq H_CUR_XMM, H_CUR_XMM, H_CUR_XMM
|
||
|
vpand .Lgfpoly_and_internal_carrybit(%rip), %xmm0, %xmm0
|
||
|
vpxor %xmm0, H_CUR_XMM, H_CUR_XMM
|
||
|
|
||
|
// Load the gfpoly constant.
|
||
|
vbroadcasti32x4 .Lgfpoly(%rip), GFPOLY
|
||
|
|
||
|
// Square H^1 to get H^2.
|
||
|
//
|
||
|
// Note that as with H^1, all higher key powers also need an extra
|
||
|
// factor of x^-1 (or x using the natural interpretation). Nothing
|
||
|
// special needs to be done to make this happen, though: H^1 * H^1 would
|
||
|
// end up with two factors of x^-1, but the multiplication consumes one.
|
||
|
// So the product H^2 ends up with the desired one factor of x^-1.
|
||
|
_ghash_mul H_CUR_XMM, H_CUR_XMM, H_INC_XMM, GFPOLY_XMM, \
|
||
|
%xmm0, %xmm1, %xmm2
|
||
|
|
||
|
// Create H_CUR_YMM = [H^2, H^1] and H_INC_YMM = [H^2, H^2].
|
||
|
vinserti128 $1, H_CUR_XMM, H_INC_YMM, H_CUR_YMM
|
||
|
vinserti128 $1, H_INC_XMM, H_INC_YMM, H_INC_YMM
|
||
|
|
||
|
.if VL == 64
|
||
|
// Create H_CUR = [H^4, H^3, H^2, H^1] and H_INC = [H^4, H^4, H^4, H^4].
|
||
|
_ghash_mul H_INC_YMM, H_CUR_YMM, H_INC_YMM, GFPOLY_YMM, \
|
||
|
%ymm0, %ymm1, %ymm2
|
||
|
vinserti64x4 $1, H_CUR_YMM, H_INC, H_CUR
|
||
|
vshufi64x2 $0, H_INC, H_INC, H_INC
|
||
|
.endif
|
||
|
|
||
|
// Store the lowest set of key powers.
|
||
|
vmovdqu8 H_CUR, (POWERS_PTR)
|
||
|
|
||
|
// Compute and store the remaining key powers. With VL=32, repeatedly
|
||
|
// multiply [H^(i+1), H^i] by [H^2, H^2] to get [H^(i+3), H^(i+2)].
|
||
|
// With VL=64, repeatedly multiply [H^(i+3), H^(i+2), H^(i+1), H^i] by
|
||
|
// [H^4, H^4, H^4, H^4] to get [H^(i+7), H^(i+6), H^(i+5), H^(i+4)].
|
||
|
mov $(NUM_H_POWERS*16/VL) - 1, %eax
|
||
|
.Lprecompute_next\@:
|
||
|
sub $VL, POWERS_PTR
|
||
|
_ghash_mul H_INC, H_CUR, H_CUR, GFPOLY, V0, V1, V2
|
||
|
vmovdqu8 H_CUR, (POWERS_PTR)
|
||
|
dec %eax
|
||
|
jnz .Lprecompute_next\@
|
||
|
|
||
|
vzeroupper // This is needed after using ymm or zmm registers.
|
||
|
RET
|
||
|
.endm
|
||
|
|
||
|
// XOR together the 128-bit lanes of \src (whose low lane is \src_xmm) and store
|
||
|
// the result in \dst_xmm. This implicitly zeroizes the other lanes of dst.
|
||
|
.macro _horizontal_xor src, src_xmm, dst_xmm, t0_xmm, t1_xmm, t2_xmm
|
||
|
vextracti32x4 $1, \src, \t0_xmm
|
||
|
.if VL == 32
|
||
|
vpxord \t0_xmm, \src_xmm, \dst_xmm
|
||
|
.elseif VL == 64
|
||
|
vextracti32x4 $2, \src, \t1_xmm
|
||
|
vextracti32x4 $3, \src, \t2_xmm
|
||
|
vpxord \t0_xmm, \src_xmm, \dst_xmm
|
||
|
vpternlogd $0x96, \t1_xmm, \t2_xmm, \dst_xmm
|
||
|
.else
|
||
|
.error "Unsupported vector length"
|
||
|
.endif
|
||
|
.endm
|
||
|
|
||
|
// Do one step of the GHASH update of the data blocks given in the vector
|
||
|
// registers GHASHDATA[0-3]. \i specifies the step to do, 0 through 9. The
|
||
|
// division into steps allows users of this macro to optionally interleave the
|
||
|
// computation with other instructions. This macro uses the vector register
|
||
|
// GHASH_ACC as input/output; GHASHDATA[0-3] as inputs that are clobbered;
|
||
|
// H_POW[4-1], GFPOLY, and BSWAP_MASK as inputs that aren't clobbered; and
|
||
|
// GHASHTMP[0-2] as temporaries. This macro handles the byte-reflection of the
|
||
|
// data blocks. The parameter registers must be preserved across steps.
|
||
|
//
|
||
|
// The GHASH update does: GHASH_ACC = H_POW4*(GHASHDATA0 + GHASH_ACC) +
|
||
|
// H_POW3*GHASHDATA1 + H_POW2*GHASHDATA2 + H_POW1*GHASHDATA3, where the
|
||
|
// operations are vectorized operations on vectors of 16-byte blocks. E.g.,
|
||
|
// with VL=32 there are 2 blocks per vector and the vectorized terms correspond
|
||
|
// to the following non-vectorized terms:
|
||
|
//
|
||
|
// H_POW4*(GHASHDATA0 + GHASH_ACC) => H^8*(blk0 + GHASH_ACC_XMM) and H^7*(blk1 + 0)
|
||
|
// H_POW3*GHASHDATA1 => H^6*blk2 and H^5*blk3
|
||
|
// H_POW2*GHASHDATA2 => H^4*blk4 and H^3*blk5
|
||
|
// H_POW1*GHASHDATA3 => H^2*blk6 and H^1*blk7
|
||
|
//
|
||
|
// With VL=64, we use 4 blocks/vector, H^16 through H^1, and blk0 through blk15.
|
||
|
//
|
||
|
// More concretely, this code does:
|
||
|
// - Do vectorized "schoolbook" multiplications to compute the intermediate
|
||
|
// 256-bit product of each block and its corresponding hash key power.
|
||
|
// There are 4*VL/16 of these intermediate products.
|
||
|
// - Sum (XOR) the intermediate 256-bit products across vectors. This leaves
|
||
|
// VL/16 256-bit intermediate values.
|
||
|
// - Do a vectorized reduction of these 256-bit intermediate values to
|
||
|
// 128-bits each. This leaves VL/16 128-bit intermediate values.
|
||
|
// - Sum (XOR) these values and store the 128-bit result in GHASH_ACC_XMM.
|
||
|
//
|
||
|
// See _ghash_mul_step for the full explanation of the operations performed for
|
||
|
// each individual finite field multiplication and reduction.
|
||
|
.macro _ghash_step_4x i
|
||
|
.if \i == 0
|
||
|
vpshufb BSWAP_MASK, GHASHDATA0, GHASHDATA0
|
||
|
vpxord GHASH_ACC, GHASHDATA0, GHASHDATA0
|
||
|
vpshufb BSWAP_MASK, GHASHDATA1, GHASHDATA1
|
||
|
vpshufb BSWAP_MASK, GHASHDATA2, GHASHDATA2
|
||
|
.elseif \i == 1
|
||
|
vpshufb BSWAP_MASK, GHASHDATA3, GHASHDATA3
|
||
|
vpclmulqdq $0x00, H_POW4, GHASHDATA0, GHASH_ACC // LO_0
|
||
|
vpclmulqdq $0x00, H_POW3, GHASHDATA1, GHASHTMP0 // LO_1
|
||
|
vpclmulqdq $0x00, H_POW2, GHASHDATA2, GHASHTMP1 // LO_2
|
||
|
.elseif \i == 2
|
||
|
vpxord GHASHTMP0, GHASH_ACC, GHASH_ACC // sum(LO_{1,0})
|
||
|
vpclmulqdq $0x00, H_POW1, GHASHDATA3, GHASHTMP2 // LO_3
|
||
|
vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASH_ACC // LO = sum(LO_{3,2,1,0})
|
||
|
vpclmulqdq $0x01, H_POW4, GHASHDATA0, GHASHTMP0 // MI_0
|
||
|
.elseif \i == 3
|
||
|
vpclmulqdq $0x01, H_POW3, GHASHDATA1, GHASHTMP1 // MI_1
|
||
|
vpclmulqdq $0x01, H_POW2, GHASHDATA2, GHASHTMP2 // MI_2
|
||
|
vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASHTMP0 // sum(MI_{2,1,0})
|
||
|
vpclmulqdq $0x01, H_POW1, GHASHDATA3, GHASHTMP1 // MI_3
|
||
|
.elseif \i == 4
|
||
|
vpclmulqdq $0x10, H_POW4, GHASHDATA0, GHASHTMP2 // MI_4
|
||
|
vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASHTMP0 // sum(MI_{4,3,2,1,0})
|
||
|
vpclmulqdq $0x10, H_POW3, GHASHDATA1, GHASHTMP1 // MI_5
|
||
|
vpclmulqdq $0x10, H_POW2, GHASHDATA2, GHASHTMP2 // MI_6
|
||
|
.elseif \i == 5
|
||
|
vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASHTMP0 // sum(MI_{6,5,4,3,2,1,0})
|
||
|
vpclmulqdq $0x01, GHASH_ACC, GFPOLY, GHASHTMP2 // LO_L*(x^63 + x^62 + x^57)
|
||
|
vpclmulqdq $0x10, H_POW1, GHASHDATA3, GHASHTMP1 // MI_7
|
||
|
vpxord GHASHTMP1, GHASHTMP0, GHASHTMP0 // MI = sum(MI_{7,6,5,4,3,2,1,0})
|
||
|
.elseif \i == 6
|
||
|
vpshufd $0x4e, GHASH_ACC, GHASH_ACC // Swap halves of LO
|
||
|
vpclmulqdq $0x11, H_POW4, GHASHDATA0, GHASHDATA0 // HI_0
|
||
|
vpclmulqdq $0x11, H_POW3, GHASHDATA1, GHASHDATA1 // HI_1
|
||
|
vpclmulqdq $0x11, H_POW2, GHASHDATA2, GHASHDATA2 // HI_2
|
||
|
.elseif \i == 7
|
||
|
vpternlogd $0x96, GHASHTMP2, GHASH_ACC, GHASHTMP0 // Fold LO into MI
|
||
|
vpclmulqdq $0x11, H_POW1, GHASHDATA3, GHASHDATA3 // HI_3
|
||
|
vpternlogd $0x96, GHASHDATA2, GHASHDATA1, GHASHDATA0 // sum(HI_{2,1,0})
|
||
|
vpclmulqdq $0x01, GHASHTMP0, GFPOLY, GHASHTMP1 // MI_L*(x^63 + x^62 + x^57)
|
||
|
.elseif \i == 8
|
||
|
vpxord GHASHDATA3, GHASHDATA0, GHASH_ACC // HI = sum(HI_{3,2,1,0})
|
||
|
vpshufd $0x4e, GHASHTMP0, GHASHTMP0 // Swap halves of MI
|
||
|
vpternlogd $0x96, GHASHTMP1, GHASHTMP0, GHASH_ACC // Fold MI into HI
|
||
|
.elseif \i == 9
|
||
|
_horizontal_xor GHASH_ACC, GHASH_ACC_XMM, GHASH_ACC_XMM, \
|
||
|
GHASHDATA0_XMM, GHASHDATA1_XMM, GHASHDATA2_XMM
|
||
|
.endif
|
||
|
.endm
|
||
|
|
||
|
// Do one non-last round of AES encryption on the counter blocks in V0-V3 using
|
||
|
// the round key that has been broadcast to all 128-bit lanes of \round_key.
|
||
|
.macro _vaesenc_4x round_key
|
||
|
vaesenc \round_key, V0, V0
|
||
|
vaesenc \round_key, V1, V1
|
||
|
vaesenc \round_key, V2, V2
|
||
|
vaesenc \round_key, V3, V3
|
||
|
.endm
|
||
|
|
||
|
// Start the AES encryption of four vectors of counter blocks.
|
||
|
.macro _ctr_begin_4x
|
||
|
|
||
|
// Increment LE_CTR four times to generate four vectors of little-endian
|
||
|
// counter blocks, swap each to big-endian, and store them in V0-V3.
|
||
|
vpshufb BSWAP_MASK, LE_CTR, V0
|
||
|
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
|
||
|
vpshufb BSWAP_MASK, LE_CTR, V1
|
||
|
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
|
||
|
vpshufb BSWAP_MASK, LE_CTR, V2
|
||
|
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
|
||
|
vpshufb BSWAP_MASK, LE_CTR, V3
|
||
|
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
|
||
|
|
||
|
// AES "round zero": XOR in the zero-th round key.
|
||
|
vpxord RNDKEY0, V0, V0
|
||
|
vpxord RNDKEY0, V1, V1
|
||
|
vpxord RNDKEY0, V2, V2
|
||
|
vpxord RNDKEY0, V3, V3
|
||
|
.endm
|
||
|
|
||
|
// void aes_gcm_{enc,dec}_update_##suffix(const struct aes_gcm_key_avx10 *key,
|
||
|
// const u32 le_ctr[4], u8 ghash_acc[16],
|
||
|
// const u8 *src, u8 *dst, int datalen);
|
||
|
//
|
||
|
// This macro generates a GCM encryption or decryption update function with the
|
||
|
// above prototype (with \enc selecting which one). This macro supports both
|
||
|
// VL=32 and VL=64. _set_veclen must have been invoked with the desired length.
|
||
|
//
|
||
|
// This function computes the next portion of the CTR keystream, XOR's it with
|
||
|
// |datalen| bytes from |src|, and writes the resulting encrypted or decrypted
|
||
|
// data to |dst|. It also updates the GHASH accumulator |ghash_acc| using the
|
||
|
// next |datalen| ciphertext bytes.
|
||
|
//
|
||
|
// |datalen| must be a multiple of 16, except on the last call where it can be
|
||
|
// any length. The caller must do any buffering needed to ensure this. Both
|
||
|
// in-place and out-of-place en/decryption are supported.
|
||
|
//
|
||
|
// |le_ctr| must give the current counter in little-endian format. For a new
|
||
|
// message, the low word of the counter must be 2. This function loads the
|
||
|
// counter from |le_ctr| and increments the loaded counter as needed, but it
|
||
|
// does *not* store the updated counter back to |le_ctr|. The caller must
|
||
|
// update |le_ctr| if any more data segments follow. Internally, only the low
|
||
|
// 32-bit word of the counter is incremented, following the GCM standard.
|
||
|
.macro _aes_gcm_update enc
|
||
|
|
||
|
// Function arguments
|
||
|
.set KEY, %rdi
|
||
|
.set LE_CTR_PTR, %rsi
|
||
|
.set GHASH_ACC_PTR, %rdx
|
||
|
.set SRC, %rcx
|
||
|
.set DST, %r8
|
||
|
.set DATALEN, %r9d
|
||
|
.set DATALEN64, %r9 // Zero-extend DATALEN before using!
|
||
|
|
||
|
// Additional local variables
|
||
|
|
||
|
// %rax and %k1 are used as temporary registers. LE_CTR_PTR is also
|
||
|
// available as a temporary register after the counter is loaded.
|
||
|
|
||
|
// AES key length in bytes
|
||
|
.set AESKEYLEN, %r10d
|
||
|
.set AESKEYLEN64, %r10
|
||
|
|
||
|
// Pointer to the last AES round key for the chosen AES variant
|
||
|
.set RNDKEYLAST_PTR, %r11
|
||
|
|
||
|
// In the main loop, V0-V3 are used as AES input and output. Elsewhere
|
||
|
// they are used as temporary registers.
|
||
|
|
||
|
// GHASHDATA[0-3] hold the ciphertext blocks and GHASH input data.
|
||
|
.set GHASHDATA0, V4
|
||
|
.set GHASHDATA0_XMM, %xmm4
|
||
|
.set GHASHDATA1, V5
|
||
|
.set GHASHDATA1_XMM, %xmm5
|
||
|
.set GHASHDATA2, V6
|
||
|
.set GHASHDATA2_XMM, %xmm6
|
||
|
.set GHASHDATA3, V7
|
||
|
|
||
|
// BSWAP_MASK is the shuffle mask for byte-reflecting 128-bit values
|
||
|
// using vpshufb, copied to all 128-bit lanes.
|
||
|
.set BSWAP_MASK, V8
|
||
|
|
||
|
// RNDKEY temporarily holds the next AES round key.
|
||
|
.set RNDKEY, V9
|
||
|
|
||
|
// GHASH_ACC is the accumulator variable for GHASH. When fully reduced,
|
||
|
// only the lowest 128-bit lane can be nonzero. When not fully reduced,
|
||
|
// more than one lane may be used, and they need to be XOR'd together.
|
||
|
.set GHASH_ACC, V10
|
||
|
.set GHASH_ACC_XMM, %xmm10
|
||
|
|
||
|
// LE_CTR_INC is the vector of 32-bit words that need to be added to a
|
||
|
// vector of little-endian counter blocks to advance it forwards.
|
||
|
.set LE_CTR_INC, V11
|
||
|
|
||
|
// LE_CTR contains the next set of little-endian counter blocks.
|
||
|
.set LE_CTR, V12
|
||
|
|
||
|
// RNDKEY0, RNDKEYLAST, and RNDKEY_M[9-5] contain cached AES round keys,
|
||
|
// copied to all 128-bit lanes. RNDKEY0 is the zero-th round key,
|
||
|
// RNDKEYLAST the last, and RNDKEY_M\i the one \i-th from the last.
|
||
|
.set RNDKEY0, V13
|
||
|
.set RNDKEYLAST, V14
|
||
|
.set RNDKEY_M9, V15
|
||
|
.set RNDKEY_M8, V16
|
||
|
.set RNDKEY_M7, V17
|
||
|
.set RNDKEY_M6, V18
|
||
|
.set RNDKEY_M5, V19
|
||
|
|
||
|
// RNDKEYLAST[0-3] temporarily store the last AES round key XOR'd with
|
||
|
// the corresponding block of source data. This is useful because
|
||
|
// vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a), and key ^ b can
|
||
|
// be computed in parallel with the AES rounds.
|
||
|
.set RNDKEYLAST0, V20
|
||
|
.set RNDKEYLAST1, V21
|
||
|
.set RNDKEYLAST2, V22
|
||
|
.set RNDKEYLAST3, V23
|
||
|
|
||
|
// GHASHTMP[0-2] are temporary variables used by _ghash_step_4x. These
|
||
|
// cannot coincide with anything used for AES encryption, since for
|
||
|
// performance reasons GHASH and AES encryption are interleaved.
|
||
|
.set GHASHTMP0, V24
|
||
|
.set GHASHTMP1, V25
|
||
|
.set GHASHTMP2, V26
|
||
|
|
||
|
// H_POW[4-1] contain the powers of the hash key H^(4*VL/16)...H^1. The
|
||
|
// descending numbering reflects the order of the key powers.
|
||
|
.set H_POW4, V27
|
||
|
.set H_POW3, V28
|
||
|
.set H_POW2, V29
|
||
|
.set H_POW1, V30
|
||
|
|
||
|
// GFPOLY contains the .Lgfpoly constant, copied to all 128-bit lanes.
|
||
|
.set GFPOLY, V31
|
||
|
|
||
|
// Load some constants.
|
||
|
vbroadcasti32x4 .Lbswap_mask(%rip), BSWAP_MASK
|
||
|
vbroadcasti32x4 .Lgfpoly(%rip), GFPOLY
|
||
|
|
||
|
// Load the GHASH accumulator and the starting counter.
|
||
|
vmovdqu (GHASH_ACC_PTR), GHASH_ACC_XMM
|
||
|
vbroadcasti32x4 (LE_CTR_PTR), LE_CTR
|
||
|
|
||
|
// Load the AES key length in bytes.
|
||
|
movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
|
||
|
|
||
|
// Make RNDKEYLAST_PTR point to the last AES round key. This is the
|
||
|
// round key with index 10, 12, or 14 for AES-128, AES-192, or AES-256
|
||
|
// respectively. Then load the zero-th and last round keys.
|
||
|
lea 6*16(KEY,AESKEYLEN64,4), RNDKEYLAST_PTR
|
||
|
vbroadcasti32x4 (KEY), RNDKEY0
|
||
|
vbroadcasti32x4 (RNDKEYLAST_PTR), RNDKEYLAST
|
||
|
|
||
|
// Finish initializing LE_CTR by adding [0, 1, ...] to its low words.
|
||
|
vpaddd .Lctr_pattern(%rip), LE_CTR, LE_CTR
|
||
|
|
||
|
// Initialize LE_CTR_INC to contain VL/16 in all 128-bit lanes.
|
||
|
.if VL == 32
|
||
|
vbroadcasti32x4 .Linc_2blocks(%rip), LE_CTR_INC
|
||
|
.elseif VL == 64
|
||
|
vbroadcasti32x4 .Linc_4blocks(%rip), LE_CTR_INC
|
||
|
.else
|
||
|
.error "Unsupported vector length"
|
||
|
.endif
|
||
|
|
||
|
// If there are at least 4*VL bytes of data, then continue into the loop
|
||
|
// that processes 4*VL bytes of data at a time. Otherwise skip it.
|
||
|
//
|
||
|
// Pre-subtracting 4*VL from DATALEN saves an instruction from the main
|
||
|
// loop and also ensures that at least one write always occurs to
|
||
|
// DATALEN, zero-extending it and allowing DATALEN64 to be used later.
|
||
|
sub $4*VL, DATALEN
|
||
|
jl .Lcrypt_loop_4x_done\@
|
||
|
|
||
|
// Load powers of the hash key.
|
||
|
vmovdqu8 OFFSETOFEND_H_POWERS-4*VL(KEY), H_POW4
|
||
|
vmovdqu8 OFFSETOFEND_H_POWERS-3*VL(KEY), H_POW3
|
||
|
vmovdqu8 OFFSETOFEND_H_POWERS-2*VL(KEY), H_POW2
|
||
|
vmovdqu8 OFFSETOFEND_H_POWERS-1*VL(KEY), H_POW1
|
||
|
|
||
|
// Main loop: en/decrypt and hash 4 vectors at a time.
|
||
|
//
|
||
|
// When possible, interleave the AES encryption of the counter blocks
|
||
|
// with the GHASH update of the ciphertext blocks. This improves
|
||
|
// performance on many CPUs because the execution ports used by the VAES
|
||
|
// instructions often differ from those used by vpclmulqdq and other
|
||
|
// instructions used in GHASH. For example, many Intel CPUs dispatch
|
||
|
// vaesenc to ports 0 and 1 and vpclmulqdq to port 5.
|
||
|
//
|
||
|
// The interleaving is easiest to do during decryption, since during
|
||
|
// decryption the ciphertext blocks are immediately available. For
|
||
|
// encryption, instead encrypt the first set of blocks, then hash those
|
||
|
// blocks while encrypting the next set of blocks, repeat that as
|
||
|
// needed, and finally hash the last set of blocks.
|
||
|
|
||
|
.if \enc
|
||
|
// Encrypt the first 4 vectors of plaintext blocks. Leave the resulting
|
||
|
// ciphertext in GHASHDATA[0-3] for GHASH.
|
||
|
_ctr_begin_4x
|
||
|
lea 16(KEY), %rax
|
||
|
1:
|
||
|
vbroadcasti32x4 (%rax), RNDKEY
|
||
|
_vaesenc_4x RNDKEY
|
||
|
add $16, %rax
|
||
|
cmp %rax, RNDKEYLAST_PTR
|
||
|
jne 1b
|
||
|
vpxord 0*VL(SRC), RNDKEYLAST, RNDKEYLAST0
|
||
|
vpxord 1*VL(SRC), RNDKEYLAST, RNDKEYLAST1
|
||
|
vpxord 2*VL(SRC), RNDKEYLAST, RNDKEYLAST2
|
||
|
vpxord 3*VL(SRC), RNDKEYLAST, RNDKEYLAST3
|
||
|
vaesenclast RNDKEYLAST0, V0, GHASHDATA0
|
||
|
vaesenclast RNDKEYLAST1, V1, GHASHDATA1
|
||
|
vaesenclast RNDKEYLAST2, V2, GHASHDATA2
|
||
|
vaesenclast RNDKEYLAST3, V3, GHASHDATA3
|
||
|
vmovdqu8 GHASHDATA0, 0*VL(DST)
|
||
|
vmovdqu8 GHASHDATA1, 1*VL(DST)
|
||
|
vmovdqu8 GHASHDATA2, 2*VL(DST)
|
||
|
vmovdqu8 GHASHDATA3, 3*VL(DST)
|
||
|
add $4*VL, SRC
|
||
|
add $4*VL, DST
|
||
|
sub $4*VL, DATALEN
|
||
|
jl .Lghash_last_ciphertext_4x\@
|
||
|
.endif
|
||
|
|
||
|
// Cache as many additional AES round keys as possible.
|
||
|
.irp i, 9,8,7,6,5
|
||
|
vbroadcasti32x4 -\i*16(RNDKEYLAST_PTR), RNDKEY_M\i
|
||
|
.endr
|
||
|
|
||
|
.Lcrypt_loop_4x\@:
|
||
|
|
||
|
// If decrypting, load more ciphertext blocks into GHASHDATA[0-3]. If
|
||
|
// encrypting, GHASHDATA[0-3] already contain the previous ciphertext.
|
||
|
.if !\enc
|
||
|
vmovdqu8 0*VL(SRC), GHASHDATA0
|
||
|
vmovdqu8 1*VL(SRC), GHASHDATA1
|
||
|
vmovdqu8 2*VL(SRC), GHASHDATA2
|
||
|
vmovdqu8 3*VL(SRC), GHASHDATA3
|
||
|
.endif
|
||
|
|
||
|
// Start the AES encryption of the counter blocks.
|
||
|
_ctr_begin_4x
|
||
|
cmp $24, AESKEYLEN
|
||
|
jl 128f // AES-128?
|
||
|
je 192f // AES-192?
|
||
|
// AES-256
|
||
|
vbroadcasti32x4 -13*16(RNDKEYLAST_PTR), RNDKEY
|
||
|
_vaesenc_4x RNDKEY
|
||
|
vbroadcasti32x4 -12*16(RNDKEYLAST_PTR), RNDKEY
|
||
|
_vaesenc_4x RNDKEY
|
||
|
192:
|
||
|
vbroadcasti32x4 -11*16(RNDKEYLAST_PTR), RNDKEY
|
||
|
_vaesenc_4x RNDKEY
|
||
|
vbroadcasti32x4 -10*16(RNDKEYLAST_PTR), RNDKEY
|
||
|
_vaesenc_4x RNDKEY
|
||
|
128:
|
||
|
|
||
|
// XOR the source data with the last round key, saving the result in
|
||
|
// RNDKEYLAST[0-3]. This reduces latency by taking advantage of the
|
||
|
// property vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a).
|
||
|
.if \enc
|
||
|
vpxord 0*VL(SRC), RNDKEYLAST, RNDKEYLAST0
|
||
|
vpxord 1*VL(SRC), RNDKEYLAST, RNDKEYLAST1
|
||
|
vpxord 2*VL(SRC), RNDKEYLAST, RNDKEYLAST2
|
||
|
vpxord 3*VL(SRC), RNDKEYLAST, RNDKEYLAST3
|
||
|
.else
|
||
|
vpxord GHASHDATA0, RNDKEYLAST, RNDKEYLAST0
|
||
|
vpxord GHASHDATA1, RNDKEYLAST, RNDKEYLAST1
|
||
|
vpxord GHASHDATA2, RNDKEYLAST, RNDKEYLAST2
|
||
|
vpxord GHASHDATA3, RNDKEYLAST, RNDKEYLAST3
|
||
|
.endif
|
||
|
|
||
|
// Finish the AES encryption of the counter blocks in V0-V3, interleaved
|
||
|
// with the GHASH update of the ciphertext blocks in GHASHDATA[0-3].
|
||
|
.irp i, 9,8,7,6,5
|
||
|
_vaesenc_4x RNDKEY_M\i
|
||
|
_ghash_step_4x (9 - \i)
|
||
|
.endr
|
||
|
.irp i, 4,3,2,1
|
||
|
vbroadcasti32x4 -\i*16(RNDKEYLAST_PTR), RNDKEY
|
||
|
_vaesenc_4x RNDKEY
|
||
|
_ghash_step_4x (9 - \i)
|
||
|
.endr
|
||
|
_ghash_step_4x 9
|
||
|
|
||
|
// Do the last AES round. This handles the XOR with the source data
|
||
|
// too, as per the optimization described above.
|
||
|
vaesenclast RNDKEYLAST0, V0, GHASHDATA0
|
||
|
vaesenclast RNDKEYLAST1, V1, GHASHDATA1
|
||
|
vaesenclast RNDKEYLAST2, V2, GHASHDATA2
|
||
|
vaesenclast RNDKEYLAST3, V3, GHASHDATA3
|
||
|
|
||
|
// Store the en/decrypted data to DST.
|
||
|
vmovdqu8 GHASHDATA0, 0*VL(DST)
|
||
|
vmovdqu8 GHASHDATA1, 1*VL(DST)
|
||
|
vmovdqu8 GHASHDATA2, 2*VL(DST)
|
||
|
vmovdqu8 GHASHDATA3, 3*VL(DST)
|
||
|
|
||
|
add $4*VL, SRC
|
||
|
add $4*VL, DST
|
||
|
sub $4*VL, DATALEN
|
||
|
jge .Lcrypt_loop_4x\@
|
||
|
|
||
|
.if \enc
|
||
|
.Lghash_last_ciphertext_4x\@:
|
||
|
// Update GHASH with the last set of ciphertext blocks.
|
||
|
.irp i, 0,1,2,3,4,5,6,7,8,9
|
||
|
_ghash_step_4x \i
|
||
|
.endr
|
||
|
.endif
|
||
|
|
||
|
.Lcrypt_loop_4x_done\@:
|
||
|
|
||
|
// Undo the extra subtraction by 4*VL and check whether data remains.
|
||
|
add $4*VL, DATALEN
|
||
|
jz .Ldone\@
|
||
|
|
||
|
// The data length isn't a multiple of 4*VL. Process the remaining data
|
||
|
// of length 1 <= DATALEN < 4*VL, up to one vector (VL bytes) at a time.
|
||
|
// Going one vector at a time may seem inefficient compared to having
|
||
|
// separate code paths for each possible number of vectors remaining.
|
||
|
// However, using a loop keeps the code size down, and it performs
|
||
|
// surprising well; modern CPUs will start executing the next iteration
|
||
|
// before the previous one finishes and also predict the number of loop
|
||
|
// iterations. For a similar reason, we roll up the AES rounds.
|
||
|
//
|
||
|
// On the last iteration, the remaining length may be less than VL.
|
||
|
// Handle this using masking.
|
||
|
//
|
||
|
// Since there are enough key powers available for all remaining data,
|
||
|
// there is no need to do a GHASH reduction after each iteration.
|
||
|
// Instead, multiply each remaining block by its own key power, and only
|
||
|
// do a GHASH reduction at the very end.
|
||
|
|
||
|
// Make POWERS_PTR point to the key powers [H^N, H^(N-1), ...] where N
|
||
|
// is the number of blocks that remain.
|
||
|
.set POWERS_PTR, LE_CTR_PTR // LE_CTR_PTR is free to be reused.
|
||
|
mov DATALEN, %eax
|
||
|
neg %rax
|
||
|
and $~15, %rax // -round_up(DATALEN, 16)
|
||
|
lea OFFSETOFEND_H_POWERS(KEY,%rax), POWERS_PTR
|
||
|
|
||
|
// Start collecting the unreduced GHASH intermediate value LO, MI, HI.
|
||
|
.set LO, GHASHDATA0
|
||
|
.set LO_XMM, GHASHDATA0_XMM
|
||
|
.set MI, GHASHDATA1
|
||
|
.set MI_XMM, GHASHDATA1_XMM
|
||
|
.set HI, GHASHDATA2
|
||
|
.set HI_XMM, GHASHDATA2_XMM
|
||
|
vpxor LO_XMM, LO_XMM, LO_XMM
|
||
|
vpxor MI_XMM, MI_XMM, MI_XMM
|
||
|
vpxor HI_XMM, HI_XMM, HI_XMM
|
||
|
|
||
|
.Lcrypt_loop_1x\@:
|
||
|
|
||
|
// Select the appropriate mask for this iteration: all 1's if
|
||
|
// DATALEN >= VL, otherwise DATALEN 1's. Do this branchlessly using the
|
||
|
// bzhi instruction from BMI2. (This relies on DATALEN <= 255.)
|
||
|
.if VL < 64
|
||
|
mov $-1, %eax
|
||
|
bzhi DATALEN, %eax, %eax
|
||
|
kmovd %eax, %k1
|
||
|
.else
|
||
|
mov $-1, %rax
|
||
|
bzhi DATALEN64, %rax, %rax
|
||
|
kmovq %rax, %k1
|
||
|
.endif
|
||
|
|
||
|
// Encrypt a vector of counter blocks. This does not need to be masked.
|
||
|
vpshufb BSWAP_MASK, LE_CTR, V0
|
||
|
vpaddd LE_CTR_INC, LE_CTR, LE_CTR
|
||
|
vpxord RNDKEY0, V0, V0
|
||
|
lea 16(KEY), %rax
|
||
|
1:
|
||
|
vbroadcasti32x4 (%rax), RNDKEY
|
||
|
vaesenc RNDKEY, V0, V0
|
||
|
add $16, %rax
|
||
|
cmp %rax, RNDKEYLAST_PTR
|
||
|
jne 1b
|
||
|
vaesenclast RNDKEYLAST, V0, V0
|
||
|
|
||
|
// XOR the data with the appropriate number of keystream bytes.
|
||
|
vmovdqu8 (SRC), V1{%k1}{z}
|
||
|
vpxord V1, V0, V0
|
||
|
vmovdqu8 V0, (DST){%k1}
|
||
|
|
||
|
// Update GHASH with the ciphertext block(s), without reducing.
|
||
|
//
|
||
|
// In the case of DATALEN < VL, the ciphertext is zero-padded to VL.
|
||
|
// (If decrypting, it's done by the above masked load. If encrypting,
|
||
|
// it's done by the below masked register-to-register move.) Note that
|
||
|
// if DATALEN <= VL - 16, there will be additional padding beyond the
|
||
|
// padding of the last block specified by GHASH itself; i.e., there may
|
||
|
// be whole block(s) that get processed by the GHASH multiplication and
|
||
|
// reduction instructions but should not actually be included in the
|
||
|
// GHASH. However, any such blocks are all-zeroes, and the values that
|
||
|
// they're multiplied with are also all-zeroes. Therefore they just add
|
||
|
// 0 * 0 = 0 to the final GHASH result, which makes no difference.
|
||
|
vmovdqu8 (POWERS_PTR), H_POW1
|
||
|
.if \enc
|
||
|
vmovdqu8 V0, V1{%k1}{z}
|
||
|
.endif
|
||
|
vpshufb BSWAP_MASK, V1, V0
|
||
|
vpxord GHASH_ACC, V0, V0
|
||
|
_ghash_mul_noreduce H_POW1, V0, LO, MI, HI, GHASHDATA3, V1, V2, V3
|
||
|
vpxor GHASH_ACC_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
|
||
|
|
||
|
add $VL, POWERS_PTR
|
||
|
add $VL, SRC
|
||
|
add $VL, DST
|
||
|
sub $VL, DATALEN
|
||
|
jg .Lcrypt_loop_1x\@
|
||
|
|
||
|
// Finally, do the GHASH reduction.
|
||
|
_ghash_reduce LO, MI, HI, GFPOLY, V0
|
||
|
_horizontal_xor HI, HI_XMM, GHASH_ACC_XMM, %xmm0, %xmm1, %xmm2
|
||
|
|
||
|
.Ldone\@:
|
||
|
// Store the updated GHASH accumulator back to memory.
|
||
|
vmovdqu GHASH_ACC_XMM, (GHASH_ACC_PTR)
|
||
|
|
||
|
vzeroupper // This is needed after using ymm or zmm registers.
|
||
|
RET
|
||
|
.endm
|
||
|
|
||
|
// void aes_gcm_enc_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
|
||
|
// const u32 le_ctr[4], u8 ghash_acc[16],
|
||
|
// u64 total_aadlen, u64 total_datalen);
|
||
|
// bool aes_gcm_dec_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
|
||
|
// const u32 le_ctr[4],
|
||
|
// const u8 ghash_acc[16],
|
||
|
// u64 total_aadlen, u64 total_datalen,
|
||
|
// const u8 tag[16], int taglen);
|
||
|
//
|
||
|
// This macro generates one of the above two functions (with \enc selecting
|
||
|
// which one). Both functions finish computing the GCM authentication tag by
|
||
|
// updating GHASH with the lengths block and encrypting the GHASH accumulator.
|
||
|
// |total_aadlen| and |total_datalen| must be the total length of the additional
|
||
|
// authenticated data and the en/decrypted data in bytes, respectively.
|
||
|
//
|
||
|
// The encryption function then stores the full-length (16-byte) computed
|
||
|
// authentication tag to |ghash_acc|. The decryption function instead loads the
|
||
|
// expected authentication tag (the one that was transmitted) from the 16-byte
|
||
|
// buffer |tag|, compares the first 4 <= |taglen| <= 16 bytes of it to the
|
||
|
// computed tag in constant time, and returns true if and only if they match.
|
||
|
.macro _aes_gcm_final enc
|
||
|
|
||
|
// Function arguments
|
||
|
.set KEY, %rdi
|
||
|
.set LE_CTR_PTR, %rsi
|
||
|
.set GHASH_ACC_PTR, %rdx
|
||
|
.set TOTAL_AADLEN, %rcx
|
||
|
.set TOTAL_DATALEN, %r8
|
||
|
.set TAG, %r9
|
||
|
.set TAGLEN, %r10d // Originally at 8(%rsp)
|
||
|
|
||
|
// Additional local variables.
|
||
|
// %rax, %xmm0-%xmm3, and %k1 are used as temporary registers.
|
||
|
.set AESKEYLEN, %r11d
|
||
|
.set AESKEYLEN64, %r11
|
||
|
.set GFPOLY, %xmm4
|
||
|
.set BSWAP_MASK, %xmm5
|
||
|
.set LE_CTR, %xmm6
|
||
|
.set GHASH_ACC, %xmm7
|
||
|
.set H_POW1, %xmm8
|
||
|
|
||
|
// Load some constants.
|
||
|
vmovdqa .Lgfpoly(%rip), GFPOLY
|
||
|
vmovdqa .Lbswap_mask(%rip), BSWAP_MASK
|
||
|
|
||
|
// Load the AES key length in bytes.
|
||
|
movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
|
||
|
|
||
|
// Set up a counter block with 1 in the low 32-bit word. This is the
|
||
|
// counter that produces the ciphertext needed to encrypt the auth tag.
|
||
|
// GFPOLY has 1 in the low word, so grab the 1 from there using a blend.
|
||
|
vpblendd $0xe, (LE_CTR_PTR), GFPOLY, LE_CTR
|
||
|
|
||
|
// Build the lengths block and XOR it with the GHASH accumulator.
|
||
|
// Although the lengths block is defined as the AAD length followed by
|
||
|
// the en/decrypted data length, both in big-endian byte order, a byte
|
||
|
// reflection of the full block is needed because of the way we compute
|
||
|
// GHASH (see _ghash_mul_step). By using little-endian values in the
|
||
|
// opposite order, we avoid having to reflect any bytes here.
|
||
|
vmovq TOTAL_DATALEN, %xmm0
|
||
|
vpinsrq $1, TOTAL_AADLEN, %xmm0, %xmm0
|
||
|
vpsllq $3, %xmm0, %xmm0 // Bytes to bits
|
||
|
vpxor (GHASH_ACC_PTR), %xmm0, GHASH_ACC
|
||
|
|
||
|
// Load the first hash key power (H^1), which is stored last.
|
||
|
vmovdqu8 OFFSETOFEND_H_POWERS-16(KEY), H_POW1
|
||
|
|
||
|
.if !\enc
|
||
|
// Prepare a mask of TAGLEN one bits.
|
||
|
movl 8(%rsp), TAGLEN
|
||
|
mov $-1, %eax
|
||
|
bzhi TAGLEN, %eax, %eax
|
||
|
kmovd %eax, %k1
|
||
|
.endif
|
||
|
|
||
|
// Make %rax point to the last AES round key for the chosen AES variant.
|
||
|
lea 6*16(KEY,AESKEYLEN64,4), %rax
|
||
|
|
||
|
// Start the AES encryption of the counter block by swapping the counter
|
||
|
// block to big-endian and XOR-ing it with the zero-th AES round key.
|
||
|
vpshufb BSWAP_MASK, LE_CTR, %xmm0
|
||
|
vpxor (KEY), %xmm0, %xmm0
|
||
|
|
||
|
// Complete the AES encryption and multiply GHASH_ACC by H^1.
|
||
|
// Interleave the AES and GHASH instructions to improve performance.
|
||
|
cmp $24, AESKEYLEN
|
||
|
jl 128f // AES-128?
|
||
|
je 192f // AES-192?
|
||
|
// AES-256
|
||
|
vaesenc -13*16(%rax), %xmm0, %xmm0
|
||
|
vaesenc -12*16(%rax), %xmm0, %xmm0
|
||
|
192:
|
||
|
vaesenc -11*16(%rax), %xmm0, %xmm0
|
||
|
vaesenc -10*16(%rax), %xmm0, %xmm0
|
||
|
128:
|
||
|
.irp i, 0,1,2,3,4,5,6,7,8
|
||
|
_ghash_mul_step \i, H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
|
||
|
%xmm1, %xmm2, %xmm3
|
||
|
vaesenc (\i-9)*16(%rax), %xmm0, %xmm0
|
||
|
.endr
|
||
|
_ghash_mul_step 9, H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
|
||
|
%xmm1, %xmm2, %xmm3
|
||
|
|
||
|
// Undo the byte reflection of the GHASH accumulator.
|
||
|
vpshufb BSWAP_MASK, GHASH_ACC, GHASH_ACC
|
||
|
|
||
|
// Do the last AES round and XOR the resulting keystream block with the
|
||
|
// GHASH accumulator to produce the full computed authentication tag.
|
||
|
//
|
||
|
// Reduce latency by taking advantage of the property vaesenclast(key,
|
||
|
// a) ^ b == vaesenclast(key ^ b, a). I.e., XOR GHASH_ACC into the last
|
||
|
// round key, instead of XOR'ing the final AES output with GHASH_ACC.
|
||
|
//
|
||
|
// enc_final then returns the computed auth tag, while dec_final
|
||
|
// compares it with the transmitted one and returns a bool. To compare
|
||
|
// the tags, dec_final XORs them together and uses vptest to check
|
||
|
// whether the result is all-zeroes. This should be constant-time.
|
||
|
// dec_final applies the vaesenclast optimization to this additional
|
||
|
// value XOR'd too, using vpternlogd to XOR the last round key, GHASH
|
||
|
// accumulator, and transmitted auth tag together in one instruction.
|
||
|
.if \enc
|
||
|
vpxor (%rax), GHASH_ACC, %xmm1
|
||
|
vaesenclast %xmm1, %xmm0, GHASH_ACC
|
||
|
vmovdqu GHASH_ACC, (GHASH_ACC_PTR)
|
||
|
.else
|
||
|
vmovdqu (TAG), %xmm1
|
||
|
vpternlogd $0x96, (%rax), GHASH_ACC, %xmm1
|
||
|
vaesenclast %xmm1, %xmm0, %xmm0
|
||
|
xor %eax, %eax
|
||
|
vmovdqu8 %xmm0, %xmm0{%k1}{z} // Truncate to TAGLEN bytes
|
||
|
vptest %xmm0, %xmm0
|
||
|
sete %al
|
||
|
.endif
|
||
|
// No need for vzeroupper here, since only used xmm registers were used.
|
||
|
RET
|
||
|
.endm
|
||
|
|
||
|
_set_veclen 32
|
||
|
SYM_FUNC_START(aes_gcm_precompute_vaes_avx10_256)
|
||
|
_aes_gcm_precompute
|
||
|
SYM_FUNC_END(aes_gcm_precompute_vaes_avx10_256)
|
||
|
SYM_FUNC_START(aes_gcm_enc_update_vaes_avx10_256)
|
||
|
_aes_gcm_update 1
|
||
|
SYM_FUNC_END(aes_gcm_enc_update_vaes_avx10_256)
|
||
|
SYM_FUNC_START(aes_gcm_dec_update_vaes_avx10_256)
|
||
|
_aes_gcm_update 0
|
||
|
SYM_FUNC_END(aes_gcm_dec_update_vaes_avx10_256)
|
||
|
|
||
|
_set_veclen 64
|
||
|
SYM_FUNC_START(aes_gcm_precompute_vaes_avx10_512)
|
||
|
_aes_gcm_precompute
|
||
|
SYM_FUNC_END(aes_gcm_precompute_vaes_avx10_512)
|
||
|
SYM_FUNC_START(aes_gcm_enc_update_vaes_avx10_512)
|
||
|
_aes_gcm_update 1
|
||
|
SYM_FUNC_END(aes_gcm_enc_update_vaes_avx10_512)
|
||
|
SYM_FUNC_START(aes_gcm_dec_update_vaes_avx10_512)
|
||
|
_aes_gcm_update 0
|
||
|
SYM_FUNC_END(aes_gcm_dec_update_vaes_avx10_512)
|
||
|
|
||
|
// void aes_gcm_aad_update_vaes_avx10(const struct aes_gcm_key_avx10 *key,
|
||
|
// u8 ghash_acc[16],
|
||
|
// const u8 *aad, int aadlen);
|
||
|
//
|
||
|
// This function processes the AAD (Additional Authenticated Data) in GCM.
|
||
|
// Using the key |key|, it updates the GHASH accumulator |ghash_acc| with the
|
||
|
// data given by |aad| and |aadlen|. |key->ghash_key_powers| must have been
|
||
|
// initialized. On the first call, |ghash_acc| must be all zeroes. |aadlen|
|
||
|
// must be a multiple of 16, except on the last call where it can be any length.
|
||
|
// The caller must do any buffering needed to ensure this.
|
||
|
//
|
||
|
// AES-GCM is almost always used with small amounts of AAD, less than 32 bytes.
|
||
|
// Therefore, for AAD processing we currently only provide this implementation
|
||
|
// which uses 256-bit vectors (ymm registers) and only has a 1x-wide loop. This
|
||
|
// keeps the code size down, and it enables some micro-optimizations, e.g. using
|
||
|
// VEX-coded instructions instead of EVEX-coded to save some instruction bytes.
|
||
|
// To optimize for large amounts of AAD, we could implement a 4x-wide loop and
|
||
|
// provide a version using 512-bit vectors, but that doesn't seem to be useful.
|
||
|
SYM_FUNC_START(aes_gcm_aad_update_vaes_avx10)
|
||
|
|
||
|
// Function arguments
|
||
|
.set KEY, %rdi
|
||
|
.set GHASH_ACC_PTR, %rsi
|
||
|
.set AAD, %rdx
|
||
|
.set AADLEN, %ecx
|
||
|
.set AADLEN64, %rcx // Zero-extend AADLEN before using!
|
||
|
|
||
|
// Additional local variables.
|
||
|
// %rax, %ymm0-%ymm3, and %k1 are used as temporary registers.
|
||
|
.set BSWAP_MASK, %ymm4
|
||
|
.set GFPOLY, %ymm5
|
||
|
.set GHASH_ACC, %ymm6
|
||
|
.set GHASH_ACC_XMM, %xmm6
|
||
|
.set H_POW1, %ymm7
|
||
|
|
||
|
// Load some constants.
|
||
|
vbroadcasti128 .Lbswap_mask(%rip), BSWAP_MASK
|
||
|
vbroadcasti128 .Lgfpoly(%rip), GFPOLY
|
||
|
|
||
|
// Load the GHASH accumulator.
|
||
|
vmovdqu (GHASH_ACC_PTR), GHASH_ACC_XMM
|
||
|
|
||
|
// Update GHASH with 32 bytes of AAD at a time.
|
||
|
//
|
||
|
// Pre-subtracting 32 from AADLEN saves an instruction from the loop and
|
||
|
// also ensures that at least one write always occurs to AADLEN,
|
||
|
// zero-extending it and allowing AADLEN64 to be used later.
|
||
|
sub $32, AADLEN
|
||
|
jl .Laad_loop_1x_done
|
||
|
vmovdqu8 OFFSETOFEND_H_POWERS-32(KEY), H_POW1 // [H^2, H^1]
|
||
|
.Laad_loop_1x:
|
||
|
vmovdqu (AAD), %ymm0
|
||
|
vpshufb BSWAP_MASK, %ymm0, %ymm0
|
||
|
vpxor %ymm0, GHASH_ACC, GHASH_ACC
|
||
|
_ghash_mul H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
|
||
|
%ymm0, %ymm1, %ymm2
|
||
|
vextracti128 $1, GHASH_ACC, %xmm0
|
||
|
vpxor %xmm0, GHASH_ACC_XMM, GHASH_ACC_XMM
|
||
|
add $32, AAD
|
||
|
sub $32, AADLEN
|
||
|
jge .Laad_loop_1x
|
||
|
.Laad_loop_1x_done:
|
||
|
add $32, AADLEN
|
||
|
jz .Laad_done
|
||
|
|
||
|
// Update GHASH with the remaining 1 <= AADLEN < 32 bytes of AAD.
|
||
|
mov $-1, %eax
|
||
|
bzhi AADLEN, %eax, %eax
|
||
|
kmovd %eax, %k1
|
||
|
vmovdqu8 (AAD), %ymm0{%k1}{z}
|
||
|
neg AADLEN64
|
||
|
and $~15, AADLEN64 // -round_up(AADLEN, 16)
|
||
|
vmovdqu8 OFFSETOFEND_H_POWERS(KEY,AADLEN64), H_POW1
|
||
|
vpshufb BSWAP_MASK, %ymm0, %ymm0
|
||
|
vpxor %ymm0, GHASH_ACC, GHASH_ACC
|
||
|
_ghash_mul H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
|
||
|
%ymm0, %ymm1, %ymm2
|
||
|
vextracti128 $1, GHASH_ACC, %xmm0
|
||
|
vpxor %xmm0, GHASH_ACC_XMM, GHASH_ACC_XMM
|
||
|
|
||
|
.Laad_done:
|
||
|
// Store the updated GHASH accumulator back to memory.
|
||
|
vmovdqu GHASH_ACC_XMM, (GHASH_ACC_PTR)
|
||
|
|
||
|
vzeroupper // This is needed after using ymm or zmm registers.
|
||
|
RET
|
||
|
SYM_FUNC_END(aes_gcm_aad_update_vaes_avx10)
|
||
|
|
||
|
SYM_FUNC_START(aes_gcm_enc_final_vaes_avx10)
|
||
|
_aes_gcm_final 1
|
||
|
SYM_FUNC_END(aes_gcm_enc_final_vaes_avx10)
|
||
|
SYM_FUNC_START(aes_gcm_dec_final_vaes_avx10)
|
||
|
_aes_gcm_final 0
|
||
|
SYM_FUNC_END(aes_gcm_dec_final_vaes_avx10)
|