linux-stable/drivers/perf/apple_m1_cpu_pmu.c

650 lines
18 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* CPU PMU driver for the Apple M1 and derivatives
*
* Copyright (C) 2021 Google LLC
*
* Author: Marc Zyngier <maz@kernel.org>
*
* Most of the information used in this driver was provided by the
* Asahi Linux project. The rest was experimentally discovered.
*/
#include <linux/of.h>
#include <linux/perf/arm_pmu.h>
#include <linux/platform_device.h>
#include <asm/apple_m1_pmu.h>
#include <asm/irq_regs.h>
#include <asm/perf_event.h>
#define M1_PMU_NR_COUNTERS 10
#define M1_PMU_CFG_EVENT GENMASK(7, 0)
#define ANY_BUT_0_1 GENMASK(9, 2)
#define ONLY_2_TO_7 GENMASK(7, 2)
#define ONLY_2_4_6 (BIT(2) | BIT(4) | BIT(6))
#define ONLY_5_6_7 (BIT(5) | BIT(6) | BIT(7))
/*
* Description of the events we actually know about, as well as those with
* a specific counter affinity. Yes, this is a grand total of two known
* counters, and the rest is anybody's guess.
*
* Not all counters can count all events. Counters #0 and #1 are wired to
* count cycles and instructions respectively, and some events have
* bizarre mappings (every other counter, or even *one* counter). These
* restrictions equally apply to both P and E cores.
*
* It is worth noting that the PMUs attached to P and E cores are likely
* to be different because the underlying uarches are different. At the
* moment, we don't really need to distinguish between the two because we
* know next to nothing about the events themselves, and we already have
* per cpu-type PMU abstractions.
*
* If we eventually find out that the events are different across
* implementations, we'll have to introduce per cpu-type tables.
*/
enum m1_pmu_events {
M1_PMU_PERFCTR_RETIRE_UOP = 0x1,
M1_PMU_PERFCTR_CORE_ACTIVE_CYCLE = 0x2,
M1_PMU_PERFCTR_L1I_TLB_FILL = 0x4,
M1_PMU_PERFCTR_L1D_TLB_FILL = 0x5,
M1_PMU_PERFCTR_MMU_TABLE_WALK_INSTRUCTION = 0x7,
M1_PMU_PERFCTR_MMU_TABLE_WALK_DATA = 0x8,
M1_PMU_PERFCTR_L2_TLB_MISS_INSTRUCTION = 0xa,
M1_PMU_PERFCTR_L2_TLB_MISS_DATA = 0xb,
M1_PMU_PERFCTR_MMU_VIRTUAL_MEMORY_FAULT_NONSPEC = 0xd,
M1_PMU_PERFCTR_SCHEDULE_UOP = 0x52,
M1_PMU_PERFCTR_INTERRUPT_PENDING = 0x6c,
M1_PMU_PERFCTR_MAP_STALL_DISPATCH = 0x70,
M1_PMU_PERFCTR_MAP_REWIND = 0x75,
M1_PMU_PERFCTR_MAP_STALL = 0x76,
M1_PMU_PERFCTR_MAP_INT_UOP = 0x7c,
M1_PMU_PERFCTR_MAP_LDST_UOP = 0x7d,
M1_PMU_PERFCTR_MAP_SIMD_UOP = 0x7e,
M1_PMU_PERFCTR_FLUSH_RESTART_OTHER_NONSPEC = 0x84,
M1_PMU_PERFCTR_INST_ALL = 0x8c,
M1_PMU_PERFCTR_INST_BRANCH = 0x8d,
M1_PMU_PERFCTR_INST_BRANCH_CALL = 0x8e,
M1_PMU_PERFCTR_INST_BRANCH_RET = 0x8f,
M1_PMU_PERFCTR_INST_BRANCH_TAKEN = 0x90,
M1_PMU_PERFCTR_INST_BRANCH_INDIR = 0x93,
M1_PMU_PERFCTR_INST_BRANCH_COND = 0x94,
M1_PMU_PERFCTR_INST_INT_LD = 0x95,
M1_PMU_PERFCTR_INST_INT_ST = 0x96,
M1_PMU_PERFCTR_INST_INT_ALU = 0x97,
M1_PMU_PERFCTR_INST_SIMD_LD = 0x98,
M1_PMU_PERFCTR_INST_SIMD_ST = 0x99,
M1_PMU_PERFCTR_INST_SIMD_ALU = 0x9a,
M1_PMU_PERFCTR_INST_LDST = 0x9b,
M1_PMU_PERFCTR_INST_BARRIER = 0x9c,
M1_PMU_PERFCTR_UNKNOWN_9f = 0x9f,
M1_PMU_PERFCTR_L1D_TLB_ACCESS = 0xa0,
M1_PMU_PERFCTR_L1D_TLB_MISS = 0xa1,
M1_PMU_PERFCTR_L1D_CACHE_MISS_ST = 0xa2,
M1_PMU_PERFCTR_L1D_CACHE_MISS_LD = 0xa3,
M1_PMU_PERFCTR_LD_UNIT_UOP = 0xa6,
M1_PMU_PERFCTR_ST_UNIT_UOP = 0xa7,
M1_PMU_PERFCTR_L1D_CACHE_WRITEBACK = 0xa8,
M1_PMU_PERFCTR_LDST_X64_UOP = 0xb1,
M1_PMU_PERFCTR_LDST_XPG_UOP = 0xb2,
M1_PMU_PERFCTR_ATOMIC_OR_EXCLUSIVE_SUCC = 0xb3,
M1_PMU_PERFCTR_ATOMIC_OR_EXCLUSIVE_FAIL = 0xb4,
M1_PMU_PERFCTR_L1D_CACHE_MISS_LD_NONSPEC = 0xbf,
M1_PMU_PERFCTR_L1D_CACHE_MISS_ST_NONSPEC = 0xc0,
M1_PMU_PERFCTR_L1D_TLB_MISS_NONSPEC = 0xc1,
M1_PMU_PERFCTR_ST_MEMORY_ORDER_VIOLATION_NONSPEC = 0xc4,
M1_PMU_PERFCTR_BRANCH_COND_MISPRED_NONSPEC = 0xc5,
M1_PMU_PERFCTR_BRANCH_INDIR_MISPRED_NONSPEC = 0xc6,
M1_PMU_PERFCTR_BRANCH_RET_INDIR_MISPRED_NONSPEC = 0xc8,
M1_PMU_PERFCTR_BRANCH_CALL_INDIR_MISPRED_NONSPEC = 0xca,
M1_PMU_PERFCTR_BRANCH_MISPRED_NONSPEC = 0xcb,
M1_PMU_PERFCTR_L1I_TLB_MISS_DEMAND = 0xd4,
M1_PMU_PERFCTR_MAP_DISPATCH_BUBBLE = 0xd6,
M1_PMU_PERFCTR_L1I_CACHE_MISS_DEMAND = 0xdb,
M1_PMU_PERFCTR_FETCH_RESTART = 0xde,
M1_PMU_PERFCTR_ST_NT_UOP = 0xe5,
M1_PMU_PERFCTR_LD_NT_UOP = 0xe6,
M1_PMU_PERFCTR_UNKNOWN_f5 = 0xf5,
M1_PMU_PERFCTR_UNKNOWN_f6 = 0xf6,
M1_PMU_PERFCTR_UNKNOWN_f7 = 0xf7,
M1_PMU_PERFCTR_UNKNOWN_f8 = 0xf8,
M1_PMU_PERFCTR_UNKNOWN_fd = 0xfd,
M1_PMU_PERFCTR_LAST = M1_PMU_CFG_EVENT,
/*
* From this point onwards, these are not actual HW events,
* but attributes that get stored in hw->config_base.
*/
M1_PMU_CFG_COUNT_USER = BIT(8),
M1_PMU_CFG_COUNT_KERNEL = BIT(9),
};
/*
* Per-event affinity table. Most events can be installed on counter
* 2-9, but there are a number of exceptions. Note that this table
* has been created experimentally, and I wouldn't be surprised if more
* counters had strange affinities.
*/
static const u16 m1_pmu_event_affinity[M1_PMU_PERFCTR_LAST + 1] = {
[0 ... M1_PMU_PERFCTR_LAST] = ANY_BUT_0_1,
[M1_PMU_PERFCTR_RETIRE_UOP] = BIT(7),
[M1_PMU_PERFCTR_CORE_ACTIVE_CYCLE] = ANY_BUT_0_1 | BIT(0),
[M1_PMU_PERFCTR_INST_ALL] = BIT(7) | BIT(1),
[M1_PMU_PERFCTR_INST_BRANCH] = ONLY_5_6_7,
[M1_PMU_PERFCTR_INST_BRANCH_CALL] = ONLY_5_6_7,
[M1_PMU_PERFCTR_INST_BRANCH_RET] = ONLY_5_6_7,
[M1_PMU_PERFCTR_INST_BRANCH_TAKEN] = ONLY_5_6_7,
[M1_PMU_PERFCTR_INST_BRANCH_INDIR] = ONLY_5_6_7,
[M1_PMU_PERFCTR_INST_BRANCH_COND] = ONLY_5_6_7,
[M1_PMU_PERFCTR_INST_INT_LD] = ONLY_5_6_7,
[M1_PMU_PERFCTR_INST_INT_ST] = BIT(7),
[M1_PMU_PERFCTR_INST_INT_ALU] = BIT(7),
[M1_PMU_PERFCTR_INST_SIMD_LD] = ONLY_5_6_7,
[M1_PMU_PERFCTR_INST_SIMD_ST] = ONLY_5_6_7,
[M1_PMU_PERFCTR_INST_SIMD_ALU] = BIT(7),
[M1_PMU_PERFCTR_INST_LDST] = BIT(7),
[M1_PMU_PERFCTR_INST_BARRIER] = ONLY_5_6_7,
[M1_PMU_PERFCTR_UNKNOWN_9f] = BIT(7),
[M1_PMU_PERFCTR_L1D_CACHE_MISS_LD_NONSPEC] = ONLY_5_6_7,
[M1_PMU_PERFCTR_L1D_CACHE_MISS_ST_NONSPEC] = ONLY_5_6_7,
[M1_PMU_PERFCTR_L1D_TLB_MISS_NONSPEC] = ONLY_5_6_7,
[M1_PMU_PERFCTR_ST_MEMORY_ORDER_VIOLATION_NONSPEC] = ONLY_5_6_7,
[M1_PMU_PERFCTR_BRANCH_COND_MISPRED_NONSPEC] = ONLY_5_6_7,
[M1_PMU_PERFCTR_BRANCH_INDIR_MISPRED_NONSPEC] = ONLY_5_6_7,
[M1_PMU_PERFCTR_BRANCH_RET_INDIR_MISPRED_NONSPEC] = ONLY_5_6_7,
[M1_PMU_PERFCTR_BRANCH_CALL_INDIR_MISPRED_NONSPEC] = ONLY_5_6_7,
[M1_PMU_PERFCTR_BRANCH_MISPRED_NONSPEC] = ONLY_5_6_7,
[M1_PMU_PERFCTR_UNKNOWN_f5] = ONLY_2_4_6,
[M1_PMU_PERFCTR_UNKNOWN_f6] = ONLY_2_4_6,
[M1_PMU_PERFCTR_UNKNOWN_f7] = ONLY_2_4_6,
[M1_PMU_PERFCTR_UNKNOWN_f8] = ONLY_2_TO_7,
[M1_PMU_PERFCTR_UNKNOWN_fd] = ONLY_2_4_6,
};
static const unsigned m1_pmu_perf_map[PERF_COUNT_HW_MAX] = {
PERF_MAP_ALL_UNSUPPORTED,
[PERF_COUNT_HW_CPU_CYCLES] = M1_PMU_PERFCTR_CORE_ACTIVE_CYCLE,
[PERF_COUNT_HW_INSTRUCTIONS] = M1_PMU_PERFCTR_INST_ALL,
};
/* sysfs definitions */
static ssize_t m1_pmu_events_sysfs_show(struct device *dev,
struct device_attribute *attr,
char *page)
{
struct perf_pmu_events_attr *pmu_attr;
pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
}
#define M1_PMU_EVENT_ATTR(name, config) \
PMU_EVENT_ATTR_ID(name, m1_pmu_events_sysfs_show, config)
static struct attribute *m1_pmu_event_attrs[] = {
M1_PMU_EVENT_ATTR(cycles, M1_PMU_PERFCTR_CORE_ACTIVE_CYCLE),
M1_PMU_EVENT_ATTR(instructions, M1_PMU_PERFCTR_INST_ALL),
NULL,
};
static const struct attribute_group m1_pmu_events_attr_group = {
.name = "events",
.attrs = m1_pmu_event_attrs,
};
PMU_FORMAT_ATTR(event, "config:0-7");
static struct attribute *m1_pmu_format_attrs[] = {
&format_attr_event.attr,
NULL,
};
static const struct attribute_group m1_pmu_format_attr_group = {
.name = "format",
.attrs = m1_pmu_format_attrs,
};
/* Low level accessors. No synchronisation. */
#define PMU_READ_COUNTER(_idx) \
case _idx: return read_sysreg_s(SYS_IMP_APL_PMC## _idx ##_EL1)
#define PMU_WRITE_COUNTER(_val, _idx) \
case _idx: \
write_sysreg_s(_val, SYS_IMP_APL_PMC## _idx ##_EL1); \
return
static u64 m1_pmu_read_hw_counter(unsigned int index)
{
switch (index) {
PMU_READ_COUNTER(0);
PMU_READ_COUNTER(1);
PMU_READ_COUNTER(2);
PMU_READ_COUNTER(3);
PMU_READ_COUNTER(4);
PMU_READ_COUNTER(5);
PMU_READ_COUNTER(6);
PMU_READ_COUNTER(7);
PMU_READ_COUNTER(8);
PMU_READ_COUNTER(9);
}
BUG();
}
static void m1_pmu_write_hw_counter(u64 val, unsigned int index)
{
switch (index) {
PMU_WRITE_COUNTER(val, 0);
PMU_WRITE_COUNTER(val, 1);
PMU_WRITE_COUNTER(val, 2);
PMU_WRITE_COUNTER(val, 3);
PMU_WRITE_COUNTER(val, 4);
PMU_WRITE_COUNTER(val, 5);
PMU_WRITE_COUNTER(val, 6);
PMU_WRITE_COUNTER(val, 7);
PMU_WRITE_COUNTER(val, 8);
PMU_WRITE_COUNTER(val, 9);
}
BUG();
}
#define get_bit_offset(index, mask) (__ffs(mask) + (index))
static void __m1_pmu_enable_counter(unsigned int index, bool en)
{
u64 val, bit;
switch (index) {
case 0 ... 7:
bit = BIT(get_bit_offset(index, PMCR0_CNT_ENABLE_0_7));
break;
case 8 ... 9:
bit = BIT(get_bit_offset(index - 8, PMCR0_CNT_ENABLE_8_9));
break;
default:
BUG();
}
val = read_sysreg_s(SYS_IMP_APL_PMCR0_EL1);
if (en)
val |= bit;
else
val &= ~bit;
write_sysreg_s(val, SYS_IMP_APL_PMCR0_EL1);
}
static void m1_pmu_enable_counter(unsigned int index)
{
__m1_pmu_enable_counter(index, true);
}
static void m1_pmu_disable_counter(unsigned int index)
{
__m1_pmu_enable_counter(index, false);
}
static void __m1_pmu_enable_counter_interrupt(unsigned int index, bool en)
{
u64 val, bit;
switch (index) {
case 0 ... 7:
bit = BIT(get_bit_offset(index, PMCR0_PMI_ENABLE_0_7));
break;
case 8 ... 9:
bit = BIT(get_bit_offset(index - 8, PMCR0_PMI_ENABLE_8_9));
break;
default:
BUG();
}
val = read_sysreg_s(SYS_IMP_APL_PMCR0_EL1);
if (en)
val |= bit;
else
val &= ~bit;
write_sysreg_s(val, SYS_IMP_APL_PMCR0_EL1);
}
static void m1_pmu_enable_counter_interrupt(unsigned int index)
{
__m1_pmu_enable_counter_interrupt(index, true);
}
static void m1_pmu_disable_counter_interrupt(unsigned int index)
{
__m1_pmu_enable_counter_interrupt(index, false);
}
static void m1_pmu_configure_counter(unsigned int index, u8 event,
bool user, bool kernel)
{
u64 val, user_bit, kernel_bit;
int shift;
switch (index) {
case 0 ... 7:
user_bit = BIT(get_bit_offset(index, PMCR1_COUNT_A64_EL0_0_7));
kernel_bit = BIT(get_bit_offset(index, PMCR1_COUNT_A64_EL1_0_7));
break;
case 8 ... 9:
user_bit = BIT(get_bit_offset(index - 8, PMCR1_COUNT_A64_EL0_8_9));
kernel_bit = BIT(get_bit_offset(index - 8, PMCR1_COUNT_A64_EL1_8_9));
break;
default:
BUG();
}
val = read_sysreg_s(SYS_IMP_APL_PMCR1_EL1);
if (user)
val |= user_bit;
else
val &= ~user_bit;
if (kernel)
val |= kernel_bit;
else
val &= ~kernel_bit;
write_sysreg_s(val, SYS_IMP_APL_PMCR1_EL1);
/*
* Counters 0 and 1 have fixed events. For anything else,
* place the event at the expected location in the relevant
* register (PMESR0 holds the event configuration for counters
* 2-5, resp. PMESR1 for counters 6-9).
*/
switch (index) {
case 0 ... 1:
break;
case 2 ... 5:
shift = (index - 2) * 8;
val = read_sysreg_s(SYS_IMP_APL_PMESR0_EL1);
val &= ~((u64)0xff << shift);
val |= (u64)event << shift;
write_sysreg_s(val, SYS_IMP_APL_PMESR0_EL1);
break;
case 6 ... 9:
shift = (index - 6) * 8;
val = read_sysreg_s(SYS_IMP_APL_PMESR1_EL1);
val &= ~((u64)0xff << shift);
val |= (u64)event << shift;
write_sysreg_s(val, SYS_IMP_APL_PMESR1_EL1);
break;
}
}
/* arm_pmu backend */
static void m1_pmu_enable_event(struct perf_event *event)
{
bool user, kernel;
u8 evt;
evt = event->hw.config_base & M1_PMU_CFG_EVENT;
user = event->hw.config_base & M1_PMU_CFG_COUNT_USER;
kernel = event->hw.config_base & M1_PMU_CFG_COUNT_KERNEL;
m1_pmu_disable_counter_interrupt(event->hw.idx);
m1_pmu_disable_counter(event->hw.idx);
isb();
m1_pmu_configure_counter(event->hw.idx, evt, user, kernel);
m1_pmu_enable_counter(event->hw.idx);
m1_pmu_enable_counter_interrupt(event->hw.idx);
isb();
}
static void m1_pmu_disable_event(struct perf_event *event)
{
m1_pmu_disable_counter_interrupt(event->hw.idx);
m1_pmu_disable_counter(event->hw.idx);
isb();
}
static irqreturn_t m1_pmu_handle_irq(struct arm_pmu *cpu_pmu)
{
struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
struct pt_regs *regs;
u64 overflow, state;
int idx;
overflow = read_sysreg_s(SYS_IMP_APL_PMSR_EL1);
if (!overflow) {
/* Spurious interrupt? */
state = read_sysreg_s(SYS_IMP_APL_PMCR0_EL1);
state &= ~PMCR0_IACT;
write_sysreg_s(state, SYS_IMP_APL_PMCR0_EL1);
isb();
return IRQ_NONE;
}
cpu_pmu->stop(cpu_pmu);
regs = get_irq_regs();
for_each_set_bit(idx, cpu_pmu->cntr_mask, M1_PMU_NR_COUNTERS) {
struct perf_event *event = cpuc->events[idx];
struct perf_sample_data data;
if (!event)
continue;
armpmu_event_update(event);
perf_sample_data_init(&data, 0, event->hw.last_period);
if (!armpmu_event_set_period(event))
continue;
if (perf_event_overflow(event, &data, regs))
m1_pmu_disable_event(event);
}
cpu_pmu->start(cpu_pmu);
return IRQ_HANDLED;
}
static u64 m1_pmu_read_counter(struct perf_event *event)
{
return m1_pmu_read_hw_counter(event->hw.idx);
}
static void m1_pmu_write_counter(struct perf_event *event, u64 value)
{
m1_pmu_write_hw_counter(value, event->hw.idx);
isb();
}
static int m1_pmu_get_event_idx(struct pmu_hw_events *cpuc,
struct perf_event *event)
{
unsigned long evtype = event->hw.config_base & M1_PMU_CFG_EVENT;
unsigned long affinity = m1_pmu_event_affinity[evtype];
int idx;
/*
* Place the event on the first free counter that can count
* this event.
*
* We could do a better job if we had a view of all the events
* counting on the PMU at any given time, and by placing the
* most constraining events first.
*/
for_each_set_bit(idx, &affinity, M1_PMU_NR_COUNTERS) {
if (!test_and_set_bit(idx, cpuc->used_mask))
return idx;
}
return -EAGAIN;
}
static void m1_pmu_clear_event_idx(struct pmu_hw_events *cpuc,
struct perf_event *event)
{
clear_bit(event->hw.idx, cpuc->used_mask);
}
static void __m1_pmu_set_mode(u8 mode)
{
u64 val;
val = read_sysreg_s(SYS_IMP_APL_PMCR0_EL1);
val &= ~(PMCR0_IMODE | PMCR0_IACT);
val |= FIELD_PREP(PMCR0_IMODE, mode);
write_sysreg_s(val, SYS_IMP_APL_PMCR0_EL1);
isb();
}
static void m1_pmu_start(struct arm_pmu *cpu_pmu)
{
__m1_pmu_set_mode(PMCR0_IMODE_FIQ);
}
static void m1_pmu_stop(struct arm_pmu *cpu_pmu)
{
__m1_pmu_set_mode(PMCR0_IMODE_OFF);
}
static int m1_pmu_map_event(struct perf_event *event)
{
/*
* Although the counters are 48bit wide, bit 47 is what
* triggers the overflow interrupt. Advertise the counters
* being 47bit wide to mimick the behaviour of the ARM PMU.
*/
event->hw.flags |= ARMPMU_EVT_47BIT;
return armpmu_map_event(event, &m1_pmu_perf_map, NULL, M1_PMU_CFG_EVENT);
}
static int m2_pmu_map_event(struct perf_event *event)
{
/*
* Same deal as the above, except that M2 has 64bit counters.
* Which, as far as we're concerned, actually means 63 bits.
* Yes, this is getting awkward.
*/
event->hw.flags |= ARMPMU_EVT_63BIT;
return armpmu_map_event(event, &m1_pmu_perf_map, NULL, M1_PMU_CFG_EVENT);
}
static void m1_pmu_reset(void *info)
{
int i;
__m1_pmu_set_mode(PMCR0_IMODE_OFF);
for (i = 0; i < M1_PMU_NR_COUNTERS; i++) {
m1_pmu_disable_counter(i);
m1_pmu_disable_counter_interrupt(i);
m1_pmu_write_hw_counter(0, i);
}
isb();
}
static int m1_pmu_set_event_filter(struct hw_perf_event *event,
struct perf_event_attr *attr)
{
unsigned long config_base = 0;
if (!attr->exclude_guest) {
pr_debug("ARM performance counters do not support mode exclusion\n");
return -EOPNOTSUPP;
}
if (!attr->exclude_kernel)
config_base |= M1_PMU_CFG_COUNT_KERNEL;
if (!attr->exclude_user)
config_base |= M1_PMU_CFG_COUNT_USER;
event->config_base = config_base;
return 0;
}
static int m1_pmu_init(struct arm_pmu *cpu_pmu, u32 flags)
{
cpu_pmu->handle_irq = m1_pmu_handle_irq;
cpu_pmu->enable = m1_pmu_enable_event;
cpu_pmu->disable = m1_pmu_disable_event;
cpu_pmu->read_counter = m1_pmu_read_counter;
cpu_pmu->write_counter = m1_pmu_write_counter;
cpu_pmu->get_event_idx = m1_pmu_get_event_idx;
cpu_pmu->clear_event_idx = m1_pmu_clear_event_idx;
cpu_pmu->start = m1_pmu_start;
cpu_pmu->stop = m1_pmu_stop;
if (flags & ARMPMU_EVT_47BIT)
cpu_pmu->map_event = m1_pmu_map_event;
else if (flags & ARMPMU_EVT_63BIT)
cpu_pmu->map_event = m2_pmu_map_event;
else
return WARN_ON(-EINVAL);
cpu_pmu->reset = m1_pmu_reset;
cpu_pmu->set_event_filter = m1_pmu_set_event_filter;
bitmap_set(cpu_pmu->cntr_mask, 0, M1_PMU_NR_COUNTERS);
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = &m1_pmu_events_attr_group;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = &m1_pmu_format_attr_group;
return 0;
}
/* Device driver gunk */
static int m1_pmu_ice_init(struct arm_pmu *cpu_pmu)
{
cpu_pmu->name = "apple_icestorm_pmu";
return m1_pmu_init(cpu_pmu, ARMPMU_EVT_47BIT);
}
static int m1_pmu_fire_init(struct arm_pmu *cpu_pmu)
{
cpu_pmu->name = "apple_firestorm_pmu";
return m1_pmu_init(cpu_pmu, ARMPMU_EVT_47BIT);
}
static int m2_pmu_avalanche_init(struct arm_pmu *cpu_pmu)
{
cpu_pmu->name = "apple_avalanche_pmu";
return m1_pmu_init(cpu_pmu, ARMPMU_EVT_63BIT);
}
static int m2_pmu_blizzard_init(struct arm_pmu *cpu_pmu)
{
cpu_pmu->name = "apple_blizzard_pmu";
return m1_pmu_init(cpu_pmu, ARMPMU_EVT_63BIT);
}
static const struct of_device_id m1_pmu_of_device_ids[] = {
{ .compatible = "apple,avalanche-pmu", .data = m2_pmu_avalanche_init, },
{ .compatible = "apple,blizzard-pmu", .data = m2_pmu_blizzard_init, },
{ .compatible = "apple,icestorm-pmu", .data = m1_pmu_ice_init, },
{ .compatible = "apple,firestorm-pmu", .data = m1_pmu_fire_init, },
{ },
};
MODULE_DEVICE_TABLE(of, m1_pmu_of_device_ids);
static int m1_pmu_device_probe(struct platform_device *pdev)
{
return arm_pmu_device_probe(pdev, m1_pmu_of_device_ids, NULL);
}
static struct platform_driver m1_pmu_driver = {
.driver = {
.name = "apple-m1-cpu-pmu",
.of_match_table = m1_pmu_of_device_ids,
.suppress_bind_attrs = true,
},
.probe = m1_pmu_device_probe,
};
module_platform_driver(m1_pmu_driver);