linux-stable/tools/perf/util/session.h

211 lines
6.7 KiB
C
Raw Permalink Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __PERF_SESSION_H
#define __PERF_SESSION_H
#include "trace-event.h"
#include "event.h"
#include "header.h"
#include "machine.h"
#include "data.h"
#include "ordered-events.h"
#include "util/compress.h"
#include <linux/kernel.h>
#include <linux/rbtree.h>
#include <linux/perf_event.h>
struct ip_callchain;
struct symbol;
struct thread;
struct auxtrace;
struct itrace_synth_opts;
struct decomp_data {
struct decomp *decomp;
struct decomp *decomp_last;
struct zstd_data *zstd_decomp;
};
/**
* struct perf_session- A Perf session holds the main state when the program is
* working with live perf events or reading data from an input file.
*
* The rough organization of a perf_session is:
* ```
* +--------------+ +-----------+ +------------+
* | Session |1..* ----->| Machine |1..* ----->| Thread |
* +--------------+ +-----------+ +------------+
* ```
*/
struct perf_session {
/**
* @header: The read version of a perf_file_header, or captures global
* information from a live session.
*/
struct perf_header header;
/** @machines: Machines within the session a host and 0 or more guests. */
struct machines machines;
/** @evlist: List of evsels/events of the session. */
struct evlist *evlist;
/** @auxtrace: callbacks to allow AUX area data decoding. */
const struct auxtrace *auxtrace;
/** @itrace_synth_opts: AUX area tracing synthesis options. */
struct itrace_synth_opts *itrace_synth_opts;
/** @auxtrace_index: index of AUX area tracing events within a perf.data file. */
struct list_head auxtrace_index;
perf build: Use libtraceevent from the system Remove the LIBTRACEEVENT_DYNAMIC and LIBTRACEFS_DYNAMIC make command line variables. If libtraceevent isn't installed or NO_LIBTRACEEVENT=1 is passed to the build, don't compile in libtraceevent and libtracefs support. This also disables CONFIG_TRACE that controls "perf trace". CONFIG_LIBTRACEEVENT is used to control enablement in Build/Makefiles, HAVE_LIBTRACEEVENT is used in C code. Without HAVE_LIBTRACEEVENT tracepoints are disabled and as such the commands kmem, kwork, lock, sched and timechart are removed. The majority of commands continue to work including "perf test". Committer notes: Fixed up a tools/perf/util/Build reject and added: #include <traceevent/event-parse.h> to tools/perf/util/scripting-engines/trace-event-perl.c. Committer testing: $ rpm -qi libtraceevent-devel Name : libtraceevent-devel Version : 1.5.3 Release : 2.fc36 Architecture: x86_64 Install Date: Mon 25 Jul 2022 03:20:19 PM -03 Group : Unspecified Size : 27728 License : LGPLv2+ and GPLv2+ Signature : RSA/SHA256, Fri 15 Apr 2022 02:11:58 PM -03, Key ID 999f7cbf38ab71f4 Source RPM : libtraceevent-1.5.3-2.fc36.src.rpm Build Date : Fri 15 Apr 2022 10:57:01 AM -03 Build Host : buildvm-x86-05.iad2.fedoraproject.org Packager : Fedora Project Vendor : Fedora Project URL : https://git.kernel.org/pub/scm/libs/libtrace/libtraceevent.git/ Bug URL : https://bugz.fedoraproject.org/libtraceevent Summary : Development headers of libtraceevent Description : Development headers of libtraceevent-libs $ Default build: $ ldd ~/bin/perf | grep tracee libtraceevent.so.1 => /lib64/libtraceevent.so.1 (0x00007f1dcaf8f000) $ # perf trace -e sched:* --max-events 10 0.000 migration/0/17 sched:sched_migrate_task(comm: "", pid: 1603763 (perf), prio: 120, dest_cpu: 1) 0.005 migration/0/17 sched:sched_wake_idle_without_ipi(cpu: 1) 0.011 migration/0/17 sched:sched_switch(prev_comm: "", prev_pid: 17 (migration/0), prev_state: 1, next_comm: "", next_prio: 120) 1.173 :0/0 sched:sched_wakeup(comm: "", pid: 3138 (gnome-terminal-), prio: 120) 1.180 :0/0 sched:sched_switch(prev_comm: "", prev_prio: 120, next_comm: "", next_pid: 3138 (gnome-terminal-), next_prio: 120) 0.156 migration/1/21 sched:sched_migrate_task(comm: "", pid: 1603763 (perf), prio: 120, orig_cpu: 1, dest_cpu: 2) 0.160 migration/1/21 sched:sched_wake_idle_without_ipi(cpu: 2) 0.166 migration/1/21 sched:sched_switch(prev_comm: "", prev_pid: 21 (migration/1), prev_state: 1, next_comm: "", next_prio: 120) 1.183 :0/0 sched:sched_wakeup(comm: "", pid: 1602985 (kworker/u16:0-f), prio: 120, target_cpu: 1) 1.186 :0/0 sched:sched_switch(prev_comm: "", prev_prio: 120, next_comm: "", next_pid: 1602985 (kworker/u16:0-f), next_prio: 120) # Had to tweak tools/perf/util/setup.py to make sure the python binding shared object links with libtraceevent if -DHAVE_LIBTRACEEVENT is present in CFLAGS. Building with NO_LIBTRACEEVENT=1 uncovered some more build failures: - Make building of data-convert-bt.c to CONFIG_LIBTRACEEVENT=y - perf-$(CONFIG_LIBTRACEEVENT) += scripts/ - bpf_kwork.o needs also to be dependent on CONFIG_LIBTRACEEVENT=y - The python binding needed some fixups and util/trace-event.c can't be built and linked with the python binding shared object, so remove it in tools/perf/util/setup.py and exclude it from the list of dependencies in the python/perf.so Makefile.perf target. Building without libtraceevent-devel installed uncovered more build failures: - The python binding tools/perf/util/python.c was assuming that traceevent/parse-events.h was always available, which was the case when we defaulted to using the in-kernel tools/lib/traceevent/ files, now we need to enclose it under ifdef HAVE_LIBTRACEEVENT, just like the other parts of it that deal with tracepoints. - We have to ifdef the rules in the Build files with CONFIG_LIBTRACEEVENT=y to build builtin-trace.c and tools/perf/trace/beauty/ as we only ifdef setting CONFIG_TRACE=y when setting NO_LIBTRACEEVENT=1 in the make command line, not when we don't detect libtraceevent-devel installed in the system. Simplification here to avoid these two ways of disabling builtin-trace.c and not having CONFIG_TRACE=y when libtraceevent-devel isn't installed is the clean way. From Athira: <quote> tools/perf/arch/powerpc/util/Build -perf-y += kvm-stat.o +perf-$(CONFIG_LIBTRACEEVENT) += kvm-stat.o </quote> Then, ditto for arm64 and s390, detected by container cross build tests. - s/390 uses test__checkevent_tracepoint() that is now only available if HAVE_LIBTRACEEVENT is defined, enclose the callsite with ifder HAVE_LIBTRACEEVENT. Also from Athira: <quote> With this change, I could successfully compile in these environment: - Without libtraceevent-devel installed - With libtraceevent-devel installed - With “make NO_LIBTRACEEVENT=1” </quote> Then, finally rename CONFIG_TRACEEVENT to CONFIG_LIBTRACEEVENT for consistency with other libraries detected in tools/perf/. Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Tested-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: bpf@vger.kernel.org Link: http://lore.kernel.org/lkml/20221205225940.3079667-3-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2022-12-05 22:59:39 +00:00
#ifdef HAVE_LIBTRACEEVENT
/** @tevent: handles for libtraceevent and plugins. */
struct trace_event tevent;
perf build: Use libtraceevent from the system Remove the LIBTRACEEVENT_DYNAMIC and LIBTRACEFS_DYNAMIC make command line variables. If libtraceevent isn't installed or NO_LIBTRACEEVENT=1 is passed to the build, don't compile in libtraceevent and libtracefs support. This also disables CONFIG_TRACE that controls "perf trace". CONFIG_LIBTRACEEVENT is used to control enablement in Build/Makefiles, HAVE_LIBTRACEEVENT is used in C code. Without HAVE_LIBTRACEEVENT tracepoints are disabled and as such the commands kmem, kwork, lock, sched and timechart are removed. The majority of commands continue to work including "perf test". Committer notes: Fixed up a tools/perf/util/Build reject and added: #include <traceevent/event-parse.h> to tools/perf/util/scripting-engines/trace-event-perl.c. Committer testing: $ rpm -qi libtraceevent-devel Name : libtraceevent-devel Version : 1.5.3 Release : 2.fc36 Architecture: x86_64 Install Date: Mon 25 Jul 2022 03:20:19 PM -03 Group : Unspecified Size : 27728 License : LGPLv2+ and GPLv2+ Signature : RSA/SHA256, Fri 15 Apr 2022 02:11:58 PM -03, Key ID 999f7cbf38ab71f4 Source RPM : libtraceevent-1.5.3-2.fc36.src.rpm Build Date : Fri 15 Apr 2022 10:57:01 AM -03 Build Host : buildvm-x86-05.iad2.fedoraproject.org Packager : Fedora Project Vendor : Fedora Project URL : https://git.kernel.org/pub/scm/libs/libtrace/libtraceevent.git/ Bug URL : https://bugz.fedoraproject.org/libtraceevent Summary : Development headers of libtraceevent Description : Development headers of libtraceevent-libs $ Default build: $ ldd ~/bin/perf | grep tracee libtraceevent.so.1 => /lib64/libtraceevent.so.1 (0x00007f1dcaf8f000) $ # perf trace -e sched:* --max-events 10 0.000 migration/0/17 sched:sched_migrate_task(comm: "", pid: 1603763 (perf), prio: 120, dest_cpu: 1) 0.005 migration/0/17 sched:sched_wake_idle_without_ipi(cpu: 1) 0.011 migration/0/17 sched:sched_switch(prev_comm: "", prev_pid: 17 (migration/0), prev_state: 1, next_comm: "", next_prio: 120) 1.173 :0/0 sched:sched_wakeup(comm: "", pid: 3138 (gnome-terminal-), prio: 120) 1.180 :0/0 sched:sched_switch(prev_comm: "", prev_prio: 120, next_comm: "", next_pid: 3138 (gnome-terminal-), next_prio: 120) 0.156 migration/1/21 sched:sched_migrate_task(comm: "", pid: 1603763 (perf), prio: 120, orig_cpu: 1, dest_cpu: 2) 0.160 migration/1/21 sched:sched_wake_idle_without_ipi(cpu: 2) 0.166 migration/1/21 sched:sched_switch(prev_comm: "", prev_pid: 21 (migration/1), prev_state: 1, next_comm: "", next_prio: 120) 1.183 :0/0 sched:sched_wakeup(comm: "", pid: 1602985 (kworker/u16:0-f), prio: 120, target_cpu: 1) 1.186 :0/0 sched:sched_switch(prev_comm: "", prev_prio: 120, next_comm: "", next_pid: 1602985 (kworker/u16:0-f), next_prio: 120) # Had to tweak tools/perf/util/setup.py to make sure the python binding shared object links with libtraceevent if -DHAVE_LIBTRACEEVENT is present in CFLAGS. Building with NO_LIBTRACEEVENT=1 uncovered some more build failures: - Make building of data-convert-bt.c to CONFIG_LIBTRACEEVENT=y - perf-$(CONFIG_LIBTRACEEVENT) += scripts/ - bpf_kwork.o needs also to be dependent on CONFIG_LIBTRACEEVENT=y - The python binding needed some fixups and util/trace-event.c can't be built and linked with the python binding shared object, so remove it in tools/perf/util/setup.py and exclude it from the list of dependencies in the python/perf.so Makefile.perf target. Building without libtraceevent-devel installed uncovered more build failures: - The python binding tools/perf/util/python.c was assuming that traceevent/parse-events.h was always available, which was the case when we defaulted to using the in-kernel tools/lib/traceevent/ files, now we need to enclose it under ifdef HAVE_LIBTRACEEVENT, just like the other parts of it that deal with tracepoints. - We have to ifdef the rules in the Build files with CONFIG_LIBTRACEEVENT=y to build builtin-trace.c and tools/perf/trace/beauty/ as we only ifdef setting CONFIG_TRACE=y when setting NO_LIBTRACEEVENT=1 in the make command line, not when we don't detect libtraceevent-devel installed in the system. Simplification here to avoid these two ways of disabling builtin-trace.c and not having CONFIG_TRACE=y when libtraceevent-devel isn't installed is the clean way. From Athira: <quote> tools/perf/arch/powerpc/util/Build -perf-y += kvm-stat.o +perf-$(CONFIG_LIBTRACEEVENT) += kvm-stat.o </quote> Then, ditto for arm64 and s390, detected by container cross build tests. - s/390 uses test__checkevent_tracepoint() that is now only available if HAVE_LIBTRACEEVENT is defined, enclose the callsite with ifder HAVE_LIBTRACEEVENT. Also from Athira: <quote> With this change, I could successfully compile in these environment: - Without libtraceevent-devel installed - With libtraceevent-devel installed - With “make NO_LIBTRACEEVENT=1” </quote> Then, finally rename CONFIG_TRACEEVENT to CONFIG_LIBTRACEEVENT for consistency with other libraries detected in tools/perf/. Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Tested-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: bpf@vger.kernel.org Link: http://lore.kernel.org/lkml/20221205225940.3079667-3-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2022-12-05 22:59:39 +00:00
#endif
/** @time_conv: Holds contents of last PERF_RECORD_TIME_CONV event. */
struct perf_record_time_conv time_conv;
perf inject: Overhaul handling of pipe files Previously inject->is_pipe was set if the input or output were a pipe. Determining the input was a pipe had to be done prior to starting the session and opening the file. This was done by comparing the input file name with '-' but it fails if the pipe file is written to disk. Opening a pipe file from disk will correctly set perf_data.is_pipe, but this is too late for 'perf inject' and results in a broken file. A workaround is 'cat pipe_perf|perf inject -i - ...'. This change removes inject->is_pipe and changes the dependent conditions to use the is_pipe flag on the input (inject->session->data) and output files (inject->output). This ensures the is_pipe condition reflects things like the header being read. The change removes the use of perf file header repiping, that is writing the file header out while reading it in. The case of input pipe and output file cannot repipe as the attributes for the file are unknown. To resolve this, write the file header when writing to disk and as the attributes may be unknown, write them after the data. Update sessions repipe variable to be trace_event_repipe as those are the only events now impacted by it. Update __perf_session__new as the repipe_fd no longer needs passing. Fully removing repipe from session header reading will be done in a later change. Committer testing: root@number:~# perf record -e syscalls:sys_enter_*sleep/max-stack=4/ -o - sleep 0.01 | perf report -i - # To display the perf.data header info, please use --header/--header-only options. # [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.050 MB - ] # # Total Lost Samples: 0 # # Samples: 1 of event 'syscalls:sys_enter_clock_nanosleep' # Event count (approx.): 1 # # Overhead Command Shared Object Symbol # ........ ....... ............. ............................... # 100.00% sleep libc.so.6 [.] clock_nanosleep@GLIBC_2.2.5 | ---__libc_start_main@@GLIBC_2.34 __libc_start_call_main 0x562fc2560a9f clock_nanosleep@GLIBC_2.2.5 # # (Tip: Create an archive with symtabs to analyse on other machine: perf archive) # root@number:~# perf record -e syscalls:sys_enter_*sleep/max-stack=4/ -o - sleep 0.01 > pipe.data [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.050 MB - ] root@number:~# perf report --stdio -i pipe.data # To display the perf.data header info, please use --header/--header-only options. # # # Total Lost Samples: 0 # # Samples: 1 of event 'syscalls:sys_enter_clock_nanosleep' # Event count (approx.): 1 # # Overhead Command Shared Object Symbol # ........ ....... ............. ............................... # 100.00% sleep libc.so.6 [.] clock_nanosleep@GLIBC_2.2.5 | ---__libc_start_main@@GLIBC_2.34 __libc_start_call_main 0x55f775975a9f clock_nanosleep@GLIBC_2.2.5 # # (Tip: To set sampling period of individual events use perf record -e cpu/cpu-cycles,period=100001/,cpu/branches,period=10001/ ...) # root@number:~# Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Clark <james.clark@linaro.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nick Terrell <terrelln@fb.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Yanteng Si <siyanteng@loongson.cn> Cc: Yicong Yang <yangyicong@hisilicon.com> Link: https://lore.kernel.org/r/20240829150154.37929-7-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-08-29 15:01:52 +00:00
/** @trace_event_repipe: When set causes read trace events to be written to stdout. */
bool trace_event_repipe;
/**
* @one_mmap: The reader will use a single mmap by default. There may be
* multiple data files in particular for aux events. If this is true
* then the single big mmap for the data file can be assumed.
*/
bool one_mmap;
/** @one_mmap_addr: Address of initial perf data file reader mmap. */
void *one_mmap_addr;
/** @one_mmap_offset: File offset in perf.data file when mapped. */
u64 one_mmap_offset;
/** @ordered_events: Used to turn unordered events into ordered ones. */
struct ordered_events ordered_events;
/** @data: Optional perf data file being read from. */
struct perf_data *data;
/** @tool: callbacks for event handling. */
2024-08-12 20:47:19 +00:00
const struct perf_tool *tool;
/**
* @bytes_transferred: Used by perf record to count written bytes before
* compression.
*/
u64 bytes_transferred;
/**
* @bytes_compressed: Used by perf record to count written bytes after
* compression.
*/
u64 bytes_compressed;
/** @zstd_data: Owner of global compression state, buffers, etc. */
struct zstd_data zstd_data;
struct decomp_data decomp_data;
struct decomp_data *active_decomp;
perf report: Implement perf.data record decompression zstd_init(, comp_level = 0) initializes decompression part of API only hat now consists of zstd_decompress_stream() function. The perf.data PERF_RECORD_COMPRESSED records are decompressed using zstd_decompress_stream() function into a linked list of mmaped memory regions of mmap_comp_len size (struct decomp). After decompression of one COMPRESSED record its content is iterated and fetched for usual processing. The mmaped memory regions with decompressed events are kept in the linked list till the tool process termination. When dumping raw records (e.g., perf report -D --header) file offsets of events from compressed records are printed as zero. Committer notes: Since now we have support for processing PERF_RECORD_COMPRESSED, we see none, in raw form, like we saw in the previous patch commiter notes, they were decompressed into the usual PERF_RECORD_{FORK,MMAP,COMM,etc} records, we only see the stats for those PERF_RECORD_COMPRESSED events, and since I used the file generated in the commiter notes for the previous patch, there they are, 2 compressed records: $ perf report --header-only | grep cmdline # cmdline : /home/acme/bin/perf record -z2 sleep 1 $ perf report -D | grep COMPRESS COMPRESSED events: 2 COMPRESSED events: 0 $ perf report --stdio # To display the perf.data header info, please use --header/--header-only options. # # # Total Lost Samples: 0 # # Samples: 15 of event 'cycles:u' # Event count (approx.): 962227 # # Overhead Command Shared Object Symbol # ........ ....... ................ ........................... # 46.99% sleep libc-2.28.so [.] _dl_addr 29.24% sleep [unknown] [k] 0xffffffffaea00a67 16.45% sleep libc-2.28.so [.] __GI__IO_un_link.part.1 5.92% sleep ld-2.28.so [.] _dl_setup_hash 1.40% sleep libc-2.28.so [.] __nanosleep 0.00% sleep [unknown] [k] 0xffffffffaea00163 # # (Tip: To see callchains in a more compact form: perf report -g folded) # $ Signed-off-by: Alexey Budankov <alexey.budankov@linux.intel.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/304b0a59-942c-3fe1-da02-aa749f87108b@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-18 17:45:11 +00:00
};
struct decomp {
struct decomp *next;
u64 file_pos;
const char *file_path;
size_t mmap_len;
perf report: Implement perf.data record decompression zstd_init(, comp_level = 0) initializes decompression part of API only hat now consists of zstd_decompress_stream() function. The perf.data PERF_RECORD_COMPRESSED records are decompressed using zstd_decompress_stream() function into a linked list of mmaped memory regions of mmap_comp_len size (struct decomp). After decompression of one COMPRESSED record its content is iterated and fetched for usual processing. The mmaped memory regions with decompressed events are kept in the linked list till the tool process termination. When dumping raw records (e.g., perf report -D --header) file offsets of events from compressed records are printed as zero. Committer notes: Since now we have support for processing PERF_RECORD_COMPRESSED, we see none, in raw form, like we saw in the previous patch commiter notes, they were decompressed into the usual PERF_RECORD_{FORK,MMAP,COMM,etc} records, we only see the stats for those PERF_RECORD_COMPRESSED events, and since I used the file generated in the commiter notes for the previous patch, there they are, 2 compressed records: $ perf report --header-only | grep cmdline # cmdline : /home/acme/bin/perf record -z2 sleep 1 $ perf report -D | grep COMPRESS COMPRESSED events: 2 COMPRESSED events: 0 $ perf report --stdio # To display the perf.data header info, please use --header/--header-only options. # # # Total Lost Samples: 0 # # Samples: 15 of event 'cycles:u' # Event count (approx.): 962227 # # Overhead Command Shared Object Symbol # ........ ....... ................ ........................... # 46.99% sleep libc-2.28.so [.] _dl_addr 29.24% sleep [unknown] [k] 0xffffffffaea00a67 16.45% sleep libc-2.28.so [.] __GI__IO_un_link.part.1 5.92% sleep ld-2.28.so [.] _dl_setup_hash 1.40% sleep libc-2.28.so [.] __nanosleep 0.00% sleep [unknown] [k] 0xffffffffaea00163 # # (Tip: To see callchains in a more compact form: perf report -g folded) # $ Signed-off-by: Alexey Budankov <alexey.budankov@linux.intel.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/304b0a59-942c-3fe1-da02-aa749f87108b@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-18 17:45:11 +00:00
u64 head;
size_t size;
char data[];
};
struct perf_tool;
struct perf_session *__perf_session__new(struct perf_data *data,
perf inject: Overhaul handling of pipe files Previously inject->is_pipe was set if the input or output were a pipe. Determining the input was a pipe had to be done prior to starting the session and opening the file. This was done by comparing the input file name with '-' but it fails if the pipe file is written to disk. Opening a pipe file from disk will correctly set perf_data.is_pipe, but this is too late for 'perf inject' and results in a broken file. A workaround is 'cat pipe_perf|perf inject -i - ...'. This change removes inject->is_pipe and changes the dependent conditions to use the is_pipe flag on the input (inject->session->data) and output files (inject->output). This ensures the is_pipe condition reflects things like the header being read. The change removes the use of perf file header repiping, that is writing the file header out while reading it in. The case of input pipe and output file cannot repipe as the attributes for the file are unknown. To resolve this, write the file header when writing to disk and as the attributes may be unknown, write them after the data. Update sessions repipe variable to be trace_event_repipe as those are the only events now impacted by it. Update __perf_session__new as the repipe_fd no longer needs passing. Fully removing repipe from session header reading will be done in a later change. Committer testing: root@number:~# perf record -e syscalls:sys_enter_*sleep/max-stack=4/ -o - sleep 0.01 | perf report -i - # To display the perf.data header info, please use --header/--header-only options. # [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.050 MB - ] # # Total Lost Samples: 0 # # Samples: 1 of event 'syscalls:sys_enter_clock_nanosleep' # Event count (approx.): 1 # # Overhead Command Shared Object Symbol # ........ ....... ............. ............................... # 100.00% sleep libc.so.6 [.] clock_nanosleep@GLIBC_2.2.5 | ---__libc_start_main@@GLIBC_2.34 __libc_start_call_main 0x562fc2560a9f clock_nanosleep@GLIBC_2.2.5 # # (Tip: Create an archive with symtabs to analyse on other machine: perf archive) # root@number:~# perf record -e syscalls:sys_enter_*sleep/max-stack=4/ -o - sleep 0.01 > pipe.data [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.050 MB - ] root@number:~# perf report --stdio -i pipe.data # To display the perf.data header info, please use --header/--header-only options. # # # Total Lost Samples: 0 # # Samples: 1 of event 'syscalls:sys_enter_clock_nanosleep' # Event count (approx.): 1 # # Overhead Command Shared Object Symbol # ........ ....... ............. ............................... # 100.00% sleep libc.so.6 [.] clock_nanosleep@GLIBC_2.2.5 | ---__libc_start_main@@GLIBC_2.34 __libc_start_call_main 0x55f775975a9f clock_nanosleep@GLIBC_2.2.5 # # (Tip: To set sampling period of individual events use perf record -e cpu/cpu-cycles,period=100001/,cpu/branches,period=10001/ ...) # root@number:~# Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Clark <james.clark@linaro.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nick Terrell <terrelln@fb.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Yanteng Si <siyanteng@loongson.cn> Cc: Yicong Yang <yangyicong@hisilicon.com> Link: https://lore.kernel.org/r/20240829150154.37929-7-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-08-29 15:01:52 +00:00
struct perf_tool *tool,
bool trace_event_repipe);
static inline struct perf_session *perf_session__new(struct perf_data *data,
struct perf_tool *tool)
{
perf inject: Overhaul handling of pipe files Previously inject->is_pipe was set if the input or output were a pipe. Determining the input was a pipe had to be done prior to starting the session and opening the file. This was done by comparing the input file name with '-' but it fails if the pipe file is written to disk. Opening a pipe file from disk will correctly set perf_data.is_pipe, but this is too late for 'perf inject' and results in a broken file. A workaround is 'cat pipe_perf|perf inject -i - ...'. This change removes inject->is_pipe and changes the dependent conditions to use the is_pipe flag on the input (inject->session->data) and output files (inject->output). This ensures the is_pipe condition reflects things like the header being read. The change removes the use of perf file header repiping, that is writing the file header out while reading it in. The case of input pipe and output file cannot repipe as the attributes for the file are unknown. To resolve this, write the file header when writing to disk and as the attributes may be unknown, write them after the data. Update sessions repipe variable to be trace_event_repipe as those are the only events now impacted by it. Update __perf_session__new as the repipe_fd no longer needs passing. Fully removing repipe from session header reading will be done in a later change. Committer testing: root@number:~# perf record -e syscalls:sys_enter_*sleep/max-stack=4/ -o - sleep 0.01 | perf report -i - # To display the perf.data header info, please use --header/--header-only options. # [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.050 MB - ] # # Total Lost Samples: 0 # # Samples: 1 of event 'syscalls:sys_enter_clock_nanosleep' # Event count (approx.): 1 # # Overhead Command Shared Object Symbol # ........ ....... ............. ............................... # 100.00% sleep libc.so.6 [.] clock_nanosleep@GLIBC_2.2.5 | ---__libc_start_main@@GLIBC_2.34 __libc_start_call_main 0x562fc2560a9f clock_nanosleep@GLIBC_2.2.5 # # (Tip: Create an archive with symtabs to analyse on other machine: perf archive) # root@number:~# perf record -e syscalls:sys_enter_*sleep/max-stack=4/ -o - sleep 0.01 > pipe.data [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.050 MB - ] root@number:~# perf report --stdio -i pipe.data # To display the perf.data header info, please use --header/--header-only options. # # # Total Lost Samples: 0 # # Samples: 1 of event 'syscalls:sys_enter_clock_nanosleep' # Event count (approx.): 1 # # Overhead Command Shared Object Symbol # ........ ....... ............. ............................... # 100.00% sleep libc.so.6 [.] clock_nanosleep@GLIBC_2.2.5 | ---__libc_start_main@@GLIBC_2.34 __libc_start_call_main 0x55f775975a9f clock_nanosleep@GLIBC_2.2.5 # # (Tip: To set sampling period of individual events use perf record -e cpu/cpu-cycles,period=100001/,cpu/branches,period=10001/ ...) # root@number:~# Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Clark <james.clark@linaro.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nick Terrell <terrelln@fb.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Yanteng Si <siyanteng@loongson.cn> Cc: Yicong Yang <yangyicong@hisilicon.com> Link: https://lore.kernel.org/r/20240829150154.37929-7-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-08-29 15:01:52 +00:00
return __perf_session__new(data, tool, /*trace_event_repipe=*/false);
}
void perf_session__delete(struct perf_session *session);
void perf_event_header__bswap(struct perf_event_header *hdr);
perf tools: Cross platform perf.data analysis support There are still some problems related to loading vmlinux files, but those are unrelated to the feature implemented in this patch, so will get fixed in the next patches, but here are some results: 1. collect perf.data file on a Fedora 12 machine, x86_64, 64-bit userland 2. transfer it to a Debian Testing machine, PARISC64, 32-bit userland acme@parisc:~/git/linux-2.6-tip$ perf buildid-list | head -5 74f9930ee94475b6b3238caf3725a50d59cb994b [kernel.kallsyms] 55fdd56670453ea66c011158c4b9d30179c1d049 /lib/modules/2.6.33-rc4-tip+/kernel/net/ipv4/netfilter/ipt_MASQUERADE.ko 41adff63c730890480980d5d8ba513f1c216a858 /lib/modules/2.6.33-rc4-tip+/kernel/net/ipv4/netfilter/iptable_nat.ko 90a33def1077bb8e97b8a78546dc96c2de62df46 /lib/modules/2.6.33-rc4-tip+/kernel/net/ipv4/netfilter/nf_nat.ko 984c7bea90ce1376d5c8e7ef43a781801286e62d /lib/modules/2.6.33-rc4-tip+/kernel/drivers/net/tun.ko acme@parisc:~/git/linux-2.6-tip$ perf buildid-list | tail -5 22492f3753c6a67de5c7ccbd6b863390c92c0723 /usr/lib64/libXt.so.6.0.0 353802bb7e1b895ba43507cc678f951e778e4c6f /usr/lib64/libMagickCore.so.2.0.0 d10c2897558595efe7be8b0584cf7e6398bc776c /usr/lib64/libfprint.so.0.0.0 a83ecfb519a788774a84d5ddde633c9ba56c03ab /home/acme/bin/perf d3ca765a8ecf257d263801d7ad8c49c189082317 /usr/lib64/libdwarf.so.0.0 acme@parisc:~/git/linux-2.6-tip$ acme@parisc:~/git/linux-2.6-tip$ perf report --sort comm The file [kernel.kallsyms] cannot be used, trying to use /proc/kallsyms... ^^^^ The problem related to vmlinux handling, it shouldn't be trying this ^^^^ rather alien /proc/kallsyms at all... /lib64/libpthread-2.10.2.so with build id 5c68f7afeb33309c78037e374b0deee84dd441f6 not found, continuing without symbols /lib64/libc-2.10.2.so with build id eb4ec8fa8b2a5eb18cad173c92f27ed8887ed1c1 not found, continuing without symbols /home/acme/bin/perf with build id a83ecfb519a788774a84d5ddde633c9ba56c03ab not found, continuing without symbols /usr/sbin/openvpn with build id f2037a091ef36b591187a858d75e203690ea9409 not found, continuing without symbols Failed to open /lib/modules/2.6.33-rc4-tip+/kernel/drivers/net/e1000e/e1000e.ko, continuing without symbols Failed to open /lib/modules/2.6.33-rc4-tip+/kernel/drivers/net/wireless/iwlwifi/iwlcore.ko, continuing without symbols <SNIP more complaints about not finding the right build-ids, those will have to wait for 'perf archive' or plain copying what was collected by 'perf record' on the x86_64, source machine, see further below for an example of this > # Samples: 293085637 # # Overhead Command # ........ ............... # 61.70% find 23.50% perf 5.86% swapper 3.12% sshd 2.39% init 0.87% bash 0.86% sleep 0.59% dbus-daemon 0.25% hald 0.24% NetworkManager 0.19% hald-addon-rfki 0.15% openvpn 0.07% phy0 0.07% events/0 0.05% iwl3945 0.05% events/1 0.03% kondemand/0 acme@parisc:~/git/linux-2.6-tip$ Which matches what we get when running the same command for the same perf.data file on the F12, x86_64, source machine: [root@doppio linux-2.6-tip]# perf report --sort comm # Samples: 293085637 # # Overhead Command # ........ ............... # 61.70% find 23.50% perf 5.86% swapper 3.12% sshd 2.39% init 0.87% bash 0.86% sleep 0.59% dbus-daemon 0.25% hald 0.24% NetworkManager 0.19% hald-addon-rfki 0.15% openvpn 0.07% phy0 0.07% events/0 0.05% iwl3945 0.05% events/1 0.03% kondemand/0 [root@doppio linux-2.6-tip]# The other modes work as well, modulo the problem with vmlinux: acme@parisc:~/git/linux-2.6-tip$ perf report --sort comm,dso 2> /dev/null | head -15 # Samples: 293085637 # # Overhead Command Shared Object # ........ ............... ................................. # 35.11% find ffffffff81002b5a 18.25% perf ffffffff8102235f 16.17% find libc-2.10.2.so 9.07% find find 5.80% swapper ffffffff8102235f 3.95% perf libc-2.10.2.so 2.33% init ffffffff810091b9 1.65% sshd libcrypto.so.0.9.8k 1.35% find [e1000e] 0.68% sleep libc-2.10.2.so acme@parisc:~/git/linux-2.6-tip$ And the lack of the right buildids: acme@parisc:~/git/linux-2.6-tip$ perf report --sort comm,dso,symbol 2> /dev/null | head -15 # Samples: 293085637 # # Overhead Command Shared Object Symbol # ........ ............... ................................. ...... # 35.11% find ffffffff81002b5a [k] 0xffffffff81002b5a 18.25% perf ffffffff8102235f [k] 0xffffffff8102235f 16.17% find libc-2.10.2.so [.] 0x00000000045782 9.07% find find [.] 0x0000000000fb0e 5.80% swapper ffffffff8102235f [k] 0xffffffff8102235f 3.95% perf libc-2.10.2.so [.] 0x0000000007f398 2.33% init ffffffff810091b9 [k] 0xffffffff810091b9 1.65% sshd libcrypto.so.0.9.8k [.] 0x00000000105440 1.35% find [e1000e] [k] 0x00000000010948 0.68% sleep libc-2.10.2.so [.] 0x0000000011ad5b acme@parisc:~/git/linux-2.6-tip$ But if we: acme@parisc:~/git/linux-2.6-tip$ ls ~/.debug ls: cannot access /home/acme/.debug: No such file or directory acme@parisc:~/git/linux-2.6-tip$ mkdir -p ~/.debug/lib64/libc-2.10.2.so/ acme@parisc:~/git/linux-2.6-tip$ scp doppio:.debug/lib64/libc-2.10.2.so/* ~/.debug/lib64/libc-2.10.2.so/ acme@doppio's password: eb4ec8fa8b2a5eb18cad173c92f27ed8887ed1c1 100% 1783KB 714.7KB/s 00:02 acme@parisc:~/git/linux-2.6-tip$ mkdir -p ~/.debug/.build-id/eb acme@parisc:~/git/linux-2.6-tip$ ln -s ../../lib64/libc-2.10.2.so/eb4ec8fa8b2a5eb18cad173c92f27ed8887ed1c1 ~/.debug/.build-id/eb/4ec8fa8b2a5eb18cad173c92f27ed8887ed1c1 acme@parisc:~/git/linux-2.6-tip$ perf report --dsos libc-2.10.2.so 2> /dev/null # dso: libc-2.10.2.so # Samples: 64281170 # # Overhead Command Symbol # ........ ............... ...... # 14.98% perf [.] __GI_strcmp 12.30% find [.] __GI_memmove 9.25% find [.] _int_malloc 7.60% find [.] _IO_vfprintf_internal 6.10% find [.] _IO_new_file_xsputn 6.02% find [.] __GI_close 3.08% find [.] _IO_file_overflow_internal 3.08% find [.] malloc_consolidate 3.08% find [.] _int_free 3.08% find [.] __strchrnul 3.08% find [.] __getdents64 3.08% find [.] __write_nocancel 3.08% sleep [.] __GI__dl_addr 3.08% sshd [.] __libc_select 3.08% find [.] _IO_new_file_write 3.07% find [.] _IO_new_do_write 3.06% find [.] __GI___errno_location 3.05% find [.] __GI___libc_malloc 3.04% perf [.] __GI_memcpy 1.71% find [.] __fprintf_chk 1.29% bash [.] __gconv_transform_utf8_internal 0.79% dbus-daemon [.] __GI_strlen # # (For a higher level overview, try: perf report --sort comm,dso) # acme@parisc:~/git/linux-2.6-tip$ Which matches what we get on the source, F12, x86_64 machine: [root@doppio linux-2.6-tip]# perf report --dsos libc-2.10.2.so # dso: libc-2.10.2.so # Samples: 64281170 # # Overhead Command Symbol # ........ ............... ...... # 14.98% perf [.] __GI_strcmp 12.30% find [.] __GI_memmove 9.25% find [.] _int_malloc 7.60% find [.] _IO_vfprintf_internal 6.10% find [.] _IO_new_file_xsputn 6.02% find [.] __GI_close 3.08% find [.] _IO_file_overflow_internal 3.08% find [.] malloc_consolidate 3.08% find [.] _int_free 3.08% find [.] __strchrnul 3.08% find [.] __getdents64 3.08% find [.] __write_nocancel 3.08% sleep [.] __GI__dl_addr 3.08% sshd [.] __libc_select 3.08% find [.] _IO_new_file_write 3.07% find [.] _IO_new_do_write 3.06% find [.] __GI___errno_location 3.05% find [.] __GI___libc_malloc 3.04% perf [.] __GI_memcpy 1.71% find [.] __fprintf_chk 1.29% bash [.] __gconv_transform_utf8_internal 0.79% dbus-daemon [.] __GI_strlen # # (For a higher level overview, try: perf report --sort comm,dso) # [root@doppio linux-2.6-tip]# So I think this is really, really nice in that it demonstrates the portability of perf.data files and the use of build-ids accross such aliens worlds :-) There are some things to fix tho, like the bitmap on the header, but things are looking good. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> LKML-Reference: <1263478990-8200-2-git-send-email-acme@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-14 14:23:10 +00:00
int perf_session__peek_event(struct perf_session *session, off_t file_offset,
void *buf, size_t buf_sz,
union perf_event **event_ptr,
struct perf_sample *sample);
typedef int (*peek_events_cb_t)(struct perf_session *session,
union perf_event *event, u64 offset,
void *data);
int perf_session__peek_events(struct perf_session *session, u64 offset,
u64 size, peek_events_cb_t cb, void *data);
int perf_session__process_events(struct perf_session *session);
int perf_session__queue_event(struct perf_session *s, union perf_event *event,
u64 timestamp, u64 file_offset, const char *file_path);
int perf_session__resolve_callchain(struct perf_session *session,
struct evsel *evsel,
perf callchain: Feed callchains into a cursor The callchains are fed with an array of a fixed size. As a result we iterate over each callchains three times: - 1st to resolve symbols - 2nd to filter out context boundaries - 3rd for the insertion into the tree This also involves some pairs of memory allocation/deallocation everytime we insert a callchain, for the filtered out array of addresses and for the array of symbols that comes along. Instead, feed the callchains through a linked list with persistent allocations. It brings several pros like: - Merge the 1st and 2nd iterations in one. That was possible before but in a way that would involve allocating an array slightly taller than necessary because we don't know in advance the number of context boundaries to filter out. - Much lesser allocations/deallocations. The linked list keeps persistent empty entries for the next usages and is extendable at will. - Makes it easier for multiple sources of callchains to feed a stacktrace together. This is deemed to pave the way for cfi based callchains wherein traditional frame pointer based kernel stacktraces will precede cfi based user ones, producing an overall callchain which size is hardly predictable. This requirement makes the static array obsolete and makes a linked list based iterator a much more flexible fit. Basic testing on a big perf file containing callchains (~ 176 MB) has shown a throughput gain of about 11% with perf report. Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1294977121-5700-2-git-send-email-fweisbec@gmail.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2011-01-14 03:51:58 +00:00
struct thread *thread,
struct ip_callchain *chain,
struct symbol **parent);
bool perf_session__has_traces(struct perf_session *session, const char *msg);
void perf_event__attr_swap(struct perf_event_attr *attr);
perf tools: Cross platform perf.data analysis support There are still some problems related to loading vmlinux files, but those are unrelated to the feature implemented in this patch, so will get fixed in the next patches, but here are some results: 1. collect perf.data file on a Fedora 12 machine, x86_64, 64-bit userland 2. transfer it to a Debian Testing machine, PARISC64, 32-bit userland acme@parisc:~/git/linux-2.6-tip$ perf buildid-list | head -5 74f9930ee94475b6b3238caf3725a50d59cb994b [kernel.kallsyms] 55fdd56670453ea66c011158c4b9d30179c1d049 /lib/modules/2.6.33-rc4-tip+/kernel/net/ipv4/netfilter/ipt_MASQUERADE.ko 41adff63c730890480980d5d8ba513f1c216a858 /lib/modules/2.6.33-rc4-tip+/kernel/net/ipv4/netfilter/iptable_nat.ko 90a33def1077bb8e97b8a78546dc96c2de62df46 /lib/modules/2.6.33-rc4-tip+/kernel/net/ipv4/netfilter/nf_nat.ko 984c7bea90ce1376d5c8e7ef43a781801286e62d /lib/modules/2.6.33-rc4-tip+/kernel/drivers/net/tun.ko acme@parisc:~/git/linux-2.6-tip$ perf buildid-list | tail -5 22492f3753c6a67de5c7ccbd6b863390c92c0723 /usr/lib64/libXt.so.6.0.0 353802bb7e1b895ba43507cc678f951e778e4c6f /usr/lib64/libMagickCore.so.2.0.0 d10c2897558595efe7be8b0584cf7e6398bc776c /usr/lib64/libfprint.so.0.0.0 a83ecfb519a788774a84d5ddde633c9ba56c03ab /home/acme/bin/perf d3ca765a8ecf257d263801d7ad8c49c189082317 /usr/lib64/libdwarf.so.0.0 acme@parisc:~/git/linux-2.6-tip$ acme@parisc:~/git/linux-2.6-tip$ perf report --sort comm The file [kernel.kallsyms] cannot be used, trying to use /proc/kallsyms... ^^^^ The problem related to vmlinux handling, it shouldn't be trying this ^^^^ rather alien /proc/kallsyms at all... /lib64/libpthread-2.10.2.so with build id 5c68f7afeb33309c78037e374b0deee84dd441f6 not found, continuing without symbols /lib64/libc-2.10.2.so with build id eb4ec8fa8b2a5eb18cad173c92f27ed8887ed1c1 not found, continuing without symbols /home/acme/bin/perf with build id a83ecfb519a788774a84d5ddde633c9ba56c03ab not found, continuing without symbols /usr/sbin/openvpn with build id f2037a091ef36b591187a858d75e203690ea9409 not found, continuing without symbols Failed to open /lib/modules/2.6.33-rc4-tip+/kernel/drivers/net/e1000e/e1000e.ko, continuing without symbols Failed to open /lib/modules/2.6.33-rc4-tip+/kernel/drivers/net/wireless/iwlwifi/iwlcore.ko, continuing without symbols <SNIP more complaints about not finding the right build-ids, those will have to wait for 'perf archive' or plain copying what was collected by 'perf record' on the x86_64, source machine, see further below for an example of this > # Samples: 293085637 # # Overhead Command # ........ ............... # 61.70% find 23.50% perf 5.86% swapper 3.12% sshd 2.39% init 0.87% bash 0.86% sleep 0.59% dbus-daemon 0.25% hald 0.24% NetworkManager 0.19% hald-addon-rfki 0.15% openvpn 0.07% phy0 0.07% events/0 0.05% iwl3945 0.05% events/1 0.03% kondemand/0 acme@parisc:~/git/linux-2.6-tip$ Which matches what we get when running the same command for the same perf.data file on the F12, x86_64, source machine: [root@doppio linux-2.6-tip]# perf report --sort comm # Samples: 293085637 # # Overhead Command # ........ ............... # 61.70% find 23.50% perf 5.86% swapper 3.12% sshd 2.39% init 0.87% bash 0.86% sleep 0.59% dbus-daemon 0.25% hald 0.24% NetworkManager 0.19% hald-addon-rfki 0.15% openvpn 0.07% phy0 0.07% events/0 0.05% iwl3945 0.05% events/1 0.03% kondemand/0 [root@doppio linux-2.6-tip]# The other modes work as well, modulo the problem with vmlinux: acme@parisc:~/git/linux-2.6-tip$ perf report --sort comm,dso 2> /dev/null | head -15 # Samples: 293085637 # # Overhead Command Shared Object # ........ ............... ................................. # 35.11% find ffffffff81002b5a 18.25% perf ffffffff8102235f 16.17% find libc-2.10.2.so 9.07% find find 5.80% swapper ffffffff8102235f 3.95% perf libc-2.10.2.so 2.33% init ffffffff810091b9 1.65% sshd libcrypto.so.0.9.8k 1.35% find [e1000e] 0.68% sleep libc-2.10.2.so acme@parisc:~/git/linux-2.6-tip$ And the lack of the right buildids: acme@parisc:~/git/linux-2.6-tip$ perf report --sort comm,dso,symbol 2> /dev/null | head -15 # Samples: 293085637 # # Overhead Command Shared Object Symbol # ........ ............... ................................. ...... # 35.11% find ffffffff81002b5a [k] 0xffffffff81002b5a 18.25% perf ffffffff8102235f [k] 0xffffffff8102235f 16.17% find libc-2.10.2.so [.] 0x00000000045782 9.07% find find [.] 0x0000000000fb0e 5.80% swapper ffffffff8102235f [k] 0xffffffff8102235f 3.95% perf libc-2.10.2.so [.] 0x0000000007f398 2.33% init ffffffff810091b9 [k] 0xffffffff810091b9 1.65% sshd libcrypto.so.0.9.8k [.] 0x00000000105440 1.35% find [e1000e] [k] 0x00000000010948 0.68% sleep libc-2.10.2.so [.] 0x0000000011ad5b acme@parisc:~/git/linux-2.6-tip$ But if we: acme@parisc:~/git/linux-2.6-tip$ ls ~/.debug ls: cannot access /home/acme/.debug: No such file or directory acme@parisc:~/git/linux-2.6-tip$ mkdir -p ~/.debug/lib64/libc-2.10.2.so/ acme@parisc:~/git/linux-2.6-tip$ scp doppio:.debug/lib64/libc-2.10.2.so/* ~/.debug/lib64/libc-2.10.2.so/ acme@doppio's password: eb4ec8fa8b2a5eb18cad173c92f27ed8887ed1c1 100% 1783KB 714.7KB/s 00:02 acme@parisc:~/git/linux-2.6-tip$ mkdir -p ~/.debug/.build-id/eb acme@parisc:~/git/linux-2.6-tip$ ln -s ../../lib64/libc-2.10.2.so/eb4ec8fa8b2a5eb18cad173c92f27ed8887ed1c1 ~/.debug/.build-id/eb/4ec8fa8b2a5eb18cad173c92f27ed8887ed1c1 acme@parisc:~/git/linux-2.6-tip$ perf report --dsos libc-2.10.2.so 2> /dev/null # dso: libc-2.10.2.so # Samples: 64281170 # # Overhead Command Symbol # ........ ............... ...... # 14.98% perf [.] __GI_strcmp 12.30% find [.] __GI_memmove 9.25% find [.] _int_malloc 7.60% find [.] _IO_vfprintf_internal 6.10% find [.] _IO_new_file_xsputn 6.02% find [.] __GI_close 3.08% find [.] _IO_file_overflow_internal 3.08% find [.] malloc_consolidate 3.08% find [.] _int_free 3.08% find [.] __strchrnul 3.08% find [.] __getdents64 3.08% find [.] __write_nocancel 3.08% sleep [.] __GI__dl_addr 3.08% sshd [.] __libc_select 3.08% find [.] _IO_new_file_write 3.07% find [.] _IO_new_do_write 3.06% find [.] __GI___errno_location 3.05% find [.] __GI___libc_malloc 3.04% perf [.] __GI_memcpy 1.71% find [.] __fprintf_chk 1.29% bash [.] __gconv_transform_utf8_internal 0.79% dbus-daemon [.] __GI_strlen # # (For a higher level overview, try: perf report --sort comm,dso) # acme@parisc:~/git/linux-2.6-tip$ Which matches what we get on the source, F12, x86_64 machine: [root@doppio linux-2.6-tip]# perf report --dsos libc-2.10.2.so # dso: libc-2.10.2.so # Samples: 64281170 # # Overhead Command Symbol # ........ ............... ...... # 14.98% perf [.] __GI_strcmp 12.30% find [.] __GI_memmove 9.25% find [.] _int_malloc 7.60% find [.] _IO_vfprintf_internal 6.10% find [.] _IO_new_file_xsputn 6.02% find [.] __GI_close 3.08% find [.] _IO_file_overflow_internal 3.08% find [.] malloc_consolidate 3.08% find [.] _int_free 3.08% find [.] __strchrnul 3.08% find [.] __getdents64 3.08% find [.] __write_nocancel 3.08% sleep [.] __GI__dl_addr 3.08% sshd [.] __libc_select 3.08% find [.] _IO_new_file_write 3.07% find [.] _IO_new_do_write 3.06% find [.] __GI___errno_location 3.05% find [.] __GI___libc_malloc 3.04% perf [.] __GI_memcpy 1.71% find [.] __fprintf_chk 1.29% bash [.] __gconv_transform_utf8_internal 0.79% dbus-daemon [.] __GI_strlen # # (For a higher level overview, try: perf report --sort comm,dso) # [root@doppio linux-2.6-tip]# So I think this is really, really nice in that it demonstrates the portability of perf.data files and the use of build-ids accross such aliens worlds :-) There are some things to fix tho, like the bitmap on the header, but things are looking good. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> LKML-Reference: <1263478990-8200-2-git-send-email-acme@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-14 14:23:10 +00:00
int perf_session__create_kernel_maps(struct perf_session *session);
perf report: Implement initial UI using newt Newt has widespread availability and provides a rather simple API as can be seen by the size of this patch. The work needed to support it will benefit other frontends too. In this initial patch it just checks if the output is a tty, if not it falls back to the previous behaviour, also if newt-devel/libnewt-dev is not installed the previous behaviour is maintaned. Pressing enter on a symbol will annotate it, ESC in the annotation window will return to the report symbol list. More work will be done to remove the special casing in color_fprintf, stop using fmemopen/FILE in the printing of hist_entries, etc. Also the annotation doesn't need to be done via spawning "perf annotate" and then browsing its output, we can do better by calling directly the builtin-annotate.c functions, that would then be moved to tools/perf/util/annotate.c and shared with perf top, etc But lets go by baby steps, this patch already improves perf usability by allowing to quickly do annotations on symbols from the report screen and provides a first experimentation with libnewt/TUI integration of tools. Tested on RHEL5 and Fedora12 X86_64 and on Debian PARISC64 to browse a perf.data file collected on a Fedora12 x86_64 box. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Avi Kivity <avi@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> LKML-Reference: <1268349164-5822-5-git-send-email-acme@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-11 23:12:44 +00:00
void perf_session__set_id_hdr_size(struct perf_session *session);
static inline
struct machine *perf_session__find_machine(struct perf_session *session, pid_t pid)
{
return machines__find(&session->machines, pid);
}
static inline
struct machine *perf_session__findnew_machine(struct perf_session *session, pid_t pid)
{
return machines__findnew(&session->machines, pid);
}
struct thread *perf_session__findnew(struct perf_session *session, pid_t pid);
perf tools: Make perf_session__register_idle_thread drop the refcount Note that since the thread was already inserted to the session list, it will be released when the session is released. Also, in perf_session__register_idle_thread() failure path, the thread should be put before returning. Refcnt debugger shows that the perf_session__register_idle_thread gets the returned thread, but the caller (__cmd_top) does not put the returned idle thread. ---- ==== [0] ==== Unreclaimed thread@0x24e6240 Refcount +1 => 0 at ./perf(thread__new+0xe5) [0x4c8a75] ./perf(machine__findnew_thread+0x9a) [0x4bbdba] ./perf(perf_session__register_idle_thread+0x28) [0x4c63c8] ./perf(cmd_top+0xd7d) [0x43cf6d] ./perf() [0x47ba35] ./perf(main+0x617) [0x4225b7] /lib64/libc.so.6(__libc_start_main+0xf5) [0x7f06027c5af5] ./perf() [0x42272d] Refcount +1 => 1 at ./perf(thread__get+0x2c) [0x4c8bcc] ./perf(machine__findnew_thread+0xee) [0x4bbe0e] ./perf(perf_session__register_idle_thread+0x28) [0x4c63c8] ./perf(cmd_top+0xd7d) [0x43cf6d] ./perf() [0x47ba35] ./perf(main+0x617) [0x4225b7] /lib64/libc.so.6(__libc_start_main+0xf5) [0x7f06027c5af5] ./perf() [0x42272d] Refcount +1 => 2 at ./perf(thread__get+0x2c) [0x4c8bcc] ./perf(machine__findnew_thread+0x112) [0x4bbe32] ./perf(perf_session__register_idle_thread+0x28) [0x4c63c8] ./perf(cmd_top+0xd7d) [0x43cf6d] ./perf() [0x47ba35] ./perf(main+0x617) [0x4225b7] /lib64/libc.so.6(__libc_start_main+0xf5) [0x7f06027c5af5] ./perf() [0x42272d] ---- Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20151209021122.10245.69707.stgit@localhost.localdomain [ Drop the refcount in perf_session__register_idle_thread() ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-12-09 02:11:23 +00:00
int perf_session__register_idle_thread(struct perf_session *session);
size_t perf_session__fprintf(struct perf_session *session, FILE *fp);
size_t perf_session__fprintf_dsos(struct perf_session *session, FILE *fp);
size_t perf_session__fprintf_dsos_buildid(struct perf_session *session, FILE *fp,
bool (fn)(struct dso *dso, int parm), int parm);
size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp);
perf tools: Make it possible to see perf's kernel and module memory mappings Dump kmaps if using 'perf --debug kmaps' or verbose > 2 (e.g. -vvv) for tools 'perf script' and 'perf report' if there is no browser. Example: $ perf --debug kmaps script 2>&1 >/dev/null | grep kvm.intel build id event received for /lib/modules/6.7.2-local/kernel/arch/x86/kvm/kvm-intel.ko: 0691d75e10e72ebbbd45a44c59f6d00a5604badf [20] Map: 0-3a3 4f5d8 [kvm_intel].modinfo Map: 0-5240 5f280 [kvm_intel]__versions Map: 0-30 64 [kvm_intel].note.Linux Map: 0-14 644c0 [kvm_intel].orc_header Map: 0-5297 43680 [kvm_intel].rodata Map: 0-5bee 3b837 [kvm_intel].text.unlikely Map: 0-7e0 41430 [kvm_intel].noinstr.text Map: 0-2080 713c0 [kvm_intel].bss Map: 0-26 705c8 [kvm_intel].data..read_mostly Map: 0-5888 6a4c0 [kvm_intel].data Map: 0-22 70220 [kvm_intel].data.once Map: 0-40 705f0 [kvm_intel].data..percpu Map: 0-1685 41d20 [kvm_intel].init.text Map: 0-4b8 6fd60 [kvm_intel].init.data Map: 0-380 70248 [kvm_intel]__dyndbg Map: 0-8 70218 [kvm_intel].exit.data Map: 0-438 4f980 [kvm_intel]__param Map: 0-5f5 4ca0f [kvm_intel].rodata.str1.1 Map: 0-3657 493b8 [kvm_intel].rodata.str1.8 Map: 0-e0 70640 [kvm_intel].data..ro_after_init Map: 0-500 70ec0 [kvm_intel].gnu.linkonce.this_module Map: ffffffffc13a7000-ffffffffc1421000 a0 /lib/modules/6.7.2-local/kernel/arch/x86/kvm/kvm-intel.ko The example above shows how the module section mappings are all wrong except for the main .text mapping at 0xffffffffc13a7000. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Like Xu <like.xu.linux@gmail.com> Signed-off-by: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20240208085326.13432-2-adrian.hunter@intel.com
2024-02-08 08:53:25 +00:00
void perf_session__dump_kmaps(struct perf_session *session);
struct evsel *perf_session__find_first_evtype(struct perf_session *session,
unsigned int type);
int perf_session__cpu_bitmap(struct perf_session *session,
const char *cpu_list, unsigned long *cpu_bitmap);
perf tools: Make perf.data more self-descriptive (v8) The goal of this patch is to include more information about the host environment into the perf.data so it is more self-descriptive. Overtime, profiles are captured on various machines and it becomes hard to track what was recorded, on what machine and when. This patch provides a way to solve this by extending the perf.data file with basic information about the host machine. To add those extensions, we leverage the feature bits capabilities of the perf.data format. The change is backward compatible with existing perf.data files. We define the following useful new extensions: - HEADER_HOSTNAME: the hostname - HEADER_OSRELEASE: the kernel release number - HEADER_ARCH: the hw architecture - HEADER_CPUDESC: generic CPU description - HEADER_NRCPUS: number of online/avail cpus - HEADER_CMDLINE: perf command line - HEADER_VERSION: perf version - HEADER_TOPOLOGY: cpu topology - HEADER_EVENT_DESC: full event description (attrs) - HEADER_CPUID: easy-to-parse low level CPU identication The small granularity for the entries is to make it easier to extend without breaking backward compatiblity. Many entries are provided as ASCII strings. Perf report/script have been modified to print the basic information as easy-to-parse ASCII strings. Extended information about CPU and NUMA topology may be requested with the -I option. Thanks to David Ahern for reviewing and testing the many versions of this patch. $ perf report --stdio # ======== # captured on : Mon Sep 26 15:22:14 2011 # hostname : quad # os release : 3.1.0-rc4-tip # perf version : 3.1.0-rc4 # arch : x86_64 # nrcpus online : 4 # nrcpus avail : 4 # cpudesc : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz # cpuid : GenuineIntel,6,15,11 # total memory : 8105360 kB # cmdline : /home/eranian/perfmon/official/tip/build/tools/perf/perf record date # event : name = cycles, type = 0, config = 0x0, config1 = 0x0, config2 = 0x0, excl_usr = 0, excl_kern = 0, id = { 29, 30, 31, # HEADER_CPU_TOPOLOGY info available, use -I to display # HEADER_NUMA_TOPOLOGY info available, use -I to display # ======== # ... $ perf report --stdio -I # ======== # captured on : Mon Sep 26 15:22:14 2011 # hostname : quad # os release : 3.1.0-rc4-tip # perf version : 3.1.0-rc4 # arch : x86_64 # nrcpus online : 4 # nrcpus avail : 4 # cpudesc : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz # cpuid : GenuineIntel,6,15,11 # total memory : 8105360 kB # cmdline : /home/eranian/perfmon/official/tip/build/tools/perf/perf record date # event : name = cycles, type = 0, config = 0x0, config1 = 0x0, config2 = 0x0, excl_usr = 0, excl_kern = 0, id = { 29, 30, 31, # sibling cores : 0-3 # sibling threads : 0 # sibling threads : 1 # sibling threads : 2 # sibling threads : 3 # node0 meminfo : total = 8320608 kB, free = 7571024 kB # node0 cpu list : 0-3 # ======== # ... Reviewed-by: David Ahern <dsahern@gmail.com> Tested-by: David Ahern <dsahern@gmail.com> Cc: David Ahern <dsahern@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Robert Richter <robert.richter@amd.com> Cc: Andi Kleen <ak@linux.intel.com> Link: http://lkml.kernel.org/r/20110930134040.GA5575@quad Signed-off-by: Stephane Eranian <eranian@google.com> [ committer notes: Use --show-info in the tools as was in the docs, rename perf_header_fprintf_info to perf_file_section__fprintf_info, fixup conflict with f69b64f7 "perf: Support setting the disassembler style" ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2011-09-30 13:40:40 +00:00
void perf_session__fprintf_info(struct perf_session *s, FILE *fp, bool full);
struct evsel_str_handler;
#define perf_session__set_tracepoints_handlers(session, array) \
__evlist__set_tracepoints_handlers(session->evlist, array, ARRAY_SIZE(array))
extern volatile int session_done;
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-23 21:07:29 +00:00
#define session_done() READ_ONCE(session_done)
perf tools: Add id index Add an index of the event identifiers, in preparation for Intel PT. The event id (also called the sample id) is a unique number allocated by the kernel to the event created by perf_event_open(). Events can include the event id by having a sample type including PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER. Currently the main use of the event id is to match an event back to the evsel to which it belongs i.e. perf_evlist__id2evsel() The purpose of this patch is to make it possible to match an event back to the mmap from which it was read. The reason that is useful is because the mmap represents a time-ordered context (either for a cpu or for a thread). Intel PT decodes trace information on that basis. In full-trace mode, that information can be recorded when the Intel PT trace is read, but in sample-mode the Intel PT trace data is embedded in a sample and it is in that case that the "id index" is needed. So the mmaps are numbered (idx) and the cpu and tid recorded against the id by perf_evlist__set_sid_idx() which is called by perf_evlist__mmap_per_evsel(). That information is recorded on the perf.data file in the new "id index". idx, cpu and tid are added to struct perf_sample_id (which is the node of evlist's hash table to match ids to evsels). The information can be retrieved using perf_evlist__id2sid(). Note however this all depends on having a sample type including PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER, otherwise ids are not recorded. The "id index" is a synthesized event record which will be created when Intel PT sampling is used by calling perf_event__synthesize_id_index(). Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414417770-18602-2-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-27 13:49:22 +00:00
int perf_session__deliver_synth_event(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample);
perf auxtrace: Remove dummy tools Add perf_session__deliver_synth_attr_event that synthesizes a perf_record_header_attr event with one id. Remove use of perf_event__synthesize_attr that necessitates the use of the dummy tool in order to pass the session. Reviewed-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Adrian Hunter <adrian.hunter@intel.com> Tested-by: Leo Yan <leo.yan@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ilkka Koskinen <ilkka@os.amperecomputing.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Clark <james.clark@arm.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Jonathan Cameron <jonathan.cameron@huawei.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Leo Yan <leo.yan@linux.dev> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Nick Terrell <terrelln@fb.com> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <song@kernel.org> Cc: Sun Haiyong <sunhaiyong@loongson.cn> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Yanteng Si <siyanteng@loongson.cn> Cc: Yicong Yang <yangyicong@hisilicon.com> Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20240812204720.631678-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-08-12 20:46:53 +00:00
int perf_session__deliver_synth_attr_event(struct perf_session *session,
const struct perf_event_attr *attr,
u64 id);
perf dsos: Attempt to better abstract DSOs internals Move functions from machine and build-id to dsos. Pass 'struct dsos' rather than internal state. Rename some functions to better represent which data structure they operate on. Signed-off-by: Ian Rogers <irogers@google.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Anne Macedo <retpolanne@posteo.net> Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com> Cc: Ben Gainey <ben.gainey@arm.com> Cc: Changbin Du <changbin.du@huawei.com> Cc: Chengen Du <chengen.du@canonical.com> Cc: Colin Ian King <colin.i.king@gmail.com> Cc: Ilkka Koskinen <ilkka@os.amperecomputing.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Clark <james.clark@arm.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: K Prateek Nayak <kprateek.nayak@amd.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Leo Yan <leo.yan@linux.dev> Cc: Li Dong <lidong@vivo.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Markus Elfring <Markus.Elfring@web.de> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Paran Lee <p4ranlee@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@amd.com> Cc: Song Liu <song@kernel.org> Cc: Sun Haiyong <sunhaiyong@loongson.cn> Cc: Thomas Richter <tmricht@linux.ibm.com> Cc: Yang Jihong <yangjihong1@huawei.com> Cc: Yanteng Si <siyanteng@loongson.cn> Cc: Yicong Yang <yangyicong@hisilicon.com> Cc: zhaimingbing <zhaimingbing@cmss.chinamobile.com> Link: https://lore.kernel.org/r/20240410064214.2755936-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-04-10 06:42:03 +00:00
int perf_session__dsos_hit_all(struct perf_session *session);
int perf_event__process_id_index(struct perf_session *session,
union perf_event *event);
perf tools: Add id index Add an index of the event identifiers, in preparation for Intel PT. The event id (also called the sample id) is a unique number allocated by the kernel to the event created by perf_event_open(). Events can include the event id by having a sample type including PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER. Currently the main use of the event id is to match an event back to the evsel to which it belongs i.e. perf_evlist__id2evsel() The purpose of this patch is to make it possible to match an event back to the mmap from which it was read. The reason that is useful is because the mmap represents a time-ordered context (either for a cpu or for a thread). Intel PT decodes trace information on that basis. In full-trace mode, that information can be recorded when the Intel PT trace is read, but in sample-mode the Intel PT trace data is embedded in a sample and it is in that case that the "id index" is needed. So the mmaps are numbered (idx) and the cpu and tid recorded against the id by perf_evlist__set_sid_idx() which is called by perf_evlist__mmap_per_evsel(). That information is recorded on the perf.data file in the new "id index". idx, cpu and tid are added to struct perf_sample_id (which is the node of evlist's hash table to match ids to evsels). The information can be retrieved using perf_evlist__id2sid(). Note however this all depends on having a sample type including PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER, otherwise ids are not recorded. The "id index" is a synthesized event record which will be created when Intel PT sampling is used by calling perf_event__synthesize_id_index(). Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414417770-18602-2-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-27 13:49:22 +00:00
perf tool: Constify tool pointers The tool pointer (to a struct largely of function pointers) is passed around but is unchanged except at initialization. Change parameter and variable types to be const to lower the possibilities of what could happen with a tool. Reviewed-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Adrian Hunter <adrian.hunter@intel.com> Tested-by: Leo Yan <leo.yan@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ilkka Koskinen <ilkka@os.amperecomputing.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Clark <james.clark@arm.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.g.garry@oracle.com> Cc: Jonathan Cameron <jonathan.cameron@huawei.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Leo Yan <leo.yan@linux.dev> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mike Leach <mike.leach@linaro.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Nick Terrell <terrelln@fb.com> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <song@kernel.org> Cc: Sun Haiyong <sunhaiyong@loongson.cn> Cc: Suzuki Poulouse <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Yanteng Si <siyanteng@loongson.cn> Cc: Yicong Yang <yangyicong@hisilicon.com> Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20240812204720.631678-4-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-08-12 20:46:55 +00:00
int perf_event__process_finished_round(const struct perf_tool *tool,
union perf_event *event,
struct ordered_events *oe);
#endif /* __PERF_SESSION_H */