linux-stable/drivers/ipack/carriers/tpci200.c

651 lines
16 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* driver for the TEWS TPCI-200 device
*
* Copyright (C) 2009-2012 CERN (www.cern.ch)
* Author: Nicolas Serafini, EIC2 SA
* Author: Samuel Iglesias Gonsalvez <siglesias@igalia.com>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include "tpci200.h"
static const u16 tpci200_status_timeout[] = {
TPCI200_A_TIMEOUT,
TPCI200_B_TIMEOUT,
TPCI200_C_TIMEOUT,
TPCI200_D_TIMEOUT,
};
static const u16 tpci200_status_error[] = {
TPCI200_A_ERROR,
TPCI200_B_ERROR,
TPCI200_C_ERROR,
TPCI200_D_ERROR,
};
static const size_t tpci200_space_size[IPACK_SPACE_COUNT] = {
[IPACK_IO_SPACE] = TPCI200_IO_SPACE_SIZE,
[IPACK_ID_SPACE] = TPCI200_ID_SPACE_SIZE,
[IPACK_INT_SPACE] = TPCI200_INT_SPACE_SIZE,
[IPACK_MEM8_SPACE] = TPCI200_MEM8_SPACE_SIZE,
[IPACK_MEM16_SPACE] = TPCI200_MEM16_SPACE_SIZE,
};
static const size_t tpci200_space_interval[IPACK_SPACE_COUNT] = {
[IPACK_IO_SPACE] = TPCI200_IO_SPACE_INTERVAL,
[IPACK_ID_SPACE] = TPCI200_ID_SPACE_INTERVAL,
[IPACK_INT_SPACE] = TPCI200_INT_SPACE_INTERVAL,
[IPACK_MEM8_SPACE] = TPCI200_MEM8_SPACE_INTERVAL,
[IPACK_MEM16_SPACE] = TPCI200_MEM16_SPACE_INTERVAL,
};
static struct tpci200_board *check_slot(struct ipack_device *dev)
{
struct tpci200_board *tpci200;
if (dev == NULL)
return NULL;
tpci200 = dev_get_drvdata(dev->bus->parent);
if (tpci200 == NULL) {
dev_info(&dev->dev, "carrier board not found\n");
return NULL;
}
if (dev->slot >= TPCI200_NB_SLOT) {
dev_info(&dev->dev,
"Slot [%d:%d] doesn't exist! Last tpci200 slot is %d.\n",
dev->bus->bus_nr, dev->slot, TPCI200_NB_SLOT-1);
return NULL;
}
return tpci200;
}
static void tpci200_clear_mask(struct tpci200_board *tpci200,
__le16 __iomem *addr, u16 mask)
{
unsigned long flags;
spin_lock_irqsave(&tpci200->regs_lock, flags);
iowrite16(ioread16(addr) & (~mask), addr);
spin_unlock_irqrestore(&tpci200->regs_lock, flags);
}
static void tpci200_set_mask(struct tpci200_board *tpci200,
__le16 __iomem *addr, u16 mask)
{
unsigned long flags;
spin_lock_irqsave(&tpci200->regs_lock, flags);
iowrite16(ioread16(addr) | mask, addr);
spin_unlock_irqrestore(&tpci200->regs_lock, flags);
}
static void tpci200_unregister(struct tpci200_board *tpci200)
{
free_irq(tpci200->info->pdev->irq, (void *) tpci200);
pci_iounmap(tpci200->info->pdev, tpci200->info->interface_regs);
pci_release_region(tpci200->info->pdev, TPCI200_IP_INTERFACE_BAR);
pci_release_region(tpci200->info->pdev, TPCI200_IO_ID_INT_SPACES_BAR);
pci_release_region(tpci200->info->pdev, TPCI200_MEM16_SPACE_BAR);
pci_release_region(tpci200->info->pdev, TPCI200_MEM8_SPACE_BAR);
pci_disable_device(tpci200->info->pdev);
}
static void tpci200_enable_irq(struct tpci200_board *tpci200,
int islot)
{
tpci200_set_mask(tpci200,
&tpci200->info->interface_regs->control[islot],
TPCI200_INT0_EN | TPCI200_INT1_EN);
}
static void tpci200_disable_irq(struct tpci200_board *tpci200,
int islot)
{
tpci200_clear_mask(tpci200,
&tpci200->info->interface_regs->control[islot],
TPCI200_INT0_EN | TPCI200_INT1_EN);
}
static irqreturn_t tpci200_slot_irq(struct slot_irq *slot_irq)
{
irqreturn_t ret;
if (!slot_irq)
return -ENODEV;
ret = slot_irq->handler(slot_irq->arg);
return ret;
}
static irqreturn_t tpci200_interrupt(int irq, void *dev_id)
{
struct tpci200_board *tpci200 = (struct tpci200_board *) dev_id;
struct slot_irq *slot_irq;
irqreturn_t ret;
u16 status_reg;
int i;
/* Read status register */
status_reg = ioread16(&tpci200->info->interface_regs->status);
/* Did we cause the interrupt? */
if (!(status_reg & TPCI200_SLOT_INT_MASK))
return IRQ_NONE;
/* callback to the IRQ handler for the corresponding slot */
rcu_read_lock();
for (i = 0; i < TPCI200_NB_SLOT; i++) {
if (!(status_reg & ((TPCI200_A_INT0 | TPCI200_A_INT1) << (2 * i))))
continue;
slot_irq = rcu_dereference(tpci200->slots[i].irq);
ret = tpci200_slot_irq(slot_irq);
if (ret == -ENODEV) {
dev_info(&tpci200->info->pdev->dev,
"No registered ISR for slot [%d:%d]!. IRQ will be disabled.\n",
tpci200->number, i);
tpci200_disable_irq(tpci200, i);
}
}
rcu_read_unlock();
return IRQ_HANDLED;
}
static int tpci200_free_irq(struct ipack_device *dev)
{
struct slot_irq *slot_irq;
struct tpci200_board *tpci200;
tpci200 = check_slot(dev);
if (tpci200 == NULL)
return -EINVAL;
if (mutex_lock_interruptible(&tpci200->mutex))
return -ERESTARTSYS;
if (tpci200->slots[dev->slot].irq == NULL) {
mutex_unlock(&tpci200->mutex);
return -EINVAL;
}
tpci200_disable_irq(tpci200, dev->slot);
slot_irq = tpci200->slots[dev->slot].irq;
/* uninstall handler */
RCU_INIT_POINTER(tpci200->slots[dev->slot].irq, NULL);
synchronize_rcu();
kfree(slot_irq);
mutex_unlock(&tpci200->mutex);
return 0;
}
static int tpci200_request_irq(struct ipack_device *dev,
irqreturn_t (*handler)(void *), void *arg)
{
int res = 0;
struct slot_irq *slot_irq;
struct tpci200_board *tpci200;
tpci200 = check_slot(dev);
if (tpci200 == NULL)
return -EINVAL;
if (mutex_lock_interruptible(&tpci200->mutex))
return -ERESTARTSYS;
if (tpci200->slots[dev->slot].irq != NULL) {
dev_err(&dev->dev,
"Slot [%d:%d] IRQ already registered !\n",
dev->bus->bus_nr,
dev->slot);
res = -EINVAL;
goto out_unlock;
}
slot_irq = kzalloc(sizeof(struct slot_irq), GFP_KERNEL);
if (slot_irq == NULL) {
dev_err(&dev->dev,
"Slot [%d:%d] unable to allocate memory for IRQ !\n",
dev->bus->bus_nr, dev->slot);
res = -ENOMEM;
goto out_unlock;
}
/*
* WARNING: Setup Interrupt Vector in the IndustryPack device
* before an IRQ request.
* Read the User Manual of your IndustryPack device to know
* where to write the vector in memory.
*/
slot_irq->handler = handler;
slot_irq->arg = arg;
slot_irq->holder = dev;
rcu_assign_pointer(tpci200->slots[dev->slot].irq, slot_irq);
tpci200_enable_irq(tpci200, dev->slot);
out_unlock:
mutex_unlock(&tpci200->mutex);
return res;
}
static int tpci200_register(struct tpci200_board *tpci200)
{
int i;
int res;
phys_addr_t ioidint_base;
unsigned short slot_ctrl;
if (pci_enable_device(tpci200->info->pdev) < 0)
return -ENODEV;
/* Request IP interface register (Bar 2) */
res = pci_request_region(tpci200->info->pdev, TPCI200_IP_INTERFACE_BAR,
"Carrier IP interface registers");
if (res) {
dev_err(&tpci200->info->pdev->dev,
"(bn 0x%X, sn 0x%X) failed to allocate PCI resource for BAR 2 !",
tpci200->info->pdev->bus->number,
tpci200->info->pdev->devfn);
goto err_disable_device;
}
/* Request IO ID INT space (Bar 3) */
res = pci_request_region(tpci200->info->pdev,
TPCI200_IO_ID_INT_SPACES_BAR,
"Carrier IO ID INT space");
if (res) {
dev_err(&tpci200->info->pdev->dev,
"(bn 0x%X, sn 0x%X) failed to allocate PCI resource for BAR 3 !",
tpci200->info->pdev->bus->number,
tpci200->info->pdev->devfn);
goto err_ip_interface_bar;
}
/* Request MEM8 space (Bar 5) */
res = pci_request_region(tpci200->info->pdev, TPCI200_MEM8_SPACE_BAR,
"Carrier MEM8 space");
if (res) {
dev_err(&tpci200->info->pdev->dev,
"(bn 0x%X, sn 0x%X) failed to allocate PCI resource for BAR 5!",
tpci200->info->pdev->bus->number,
tpci200->info->pdev->devfn);
goto err_io_id_int_spaces_bar;
}
/* Request MEM16 space (Bar 4) */
res = pci_request_region(tpci200->info->pdev, TPCI200_MEM16_SPACE_BAR,
"Carrier MEM16 space");
if (res) {
dev_err(&tpci200->info->pdev->dev,
"(bn 0x%X, sn 0x%X) failed to allocate PCI resource for BAR 4!",
tpci200->info->pdev->bus->number,
tpci200->info->pdev->devfn);
goto err_mem8_space_bar;
}
/* Map internal tpci200 driver user space */
tpci200->info->interface_regs =
ioremap(pci_resource_start(tpci200->info->pdev,
TPCI200_IP_INTERFACE_BAR),
TPCI200_IFACE_SIZE);
if (!tpci200->info->interface_regs) {
dev_err(&tpci200->info->pdev->dev,
"(bn 0x%X, sn 0x%X) failed to map driver user space!",
tpci200->info->pdev->bus->number,
tpci200->info->pdev->devfn);
res = -ENOMEM;
goto err_mem16_space_bar;
}
/* Initialize lock that protects interface_regs */
spin_lock_init(&tpci200->regs_lock);
ioidint_base = pci_resource_start(tpci200->info->pdev,
TPCI200_IO_ID_INT_SPACES_BAR);
tpci200->mod_mem[IPACK_IO_SPACE] = ioidint_base + TPCI200_IO_SPACE_OFF;
tpci200->mod_mem[IPACK_ID_SPACE] = ioidint_base + TPCI200_ID_SPACE_OFF;
tpci200->mod_mem[IPACK_INT_SPACE] =
ioidint_base + TPCI200_INT_SPACE_OFF;
tpci200->mod_mem[IPACK_MEM8_SPACE] =
pci_resource_start(tpci200->info->pdev,
TPCI200_MEM8_SPACE_BAR);
tpci200->mod_mem[IPACK_MEM16_SPACE] =
pci_resource_start(tpci200->info->pdev,
TPCI200_MEM16_SPACE_BAR);
/* Set the default parameters of the slot
* INT0 disabled, level sensitive
* INT1 disabled, level sensitive
* error interrupt disabled
* timeout interrupt disabled
* recover time disabled
* clock rate 8 MHz
*/
slot_ctrl = 0;
for (i = 0; i < TPCI200_NB_SLOT; i++)
writew(slot_ctrl, &tpci200->info->interface_regs->control[i]);
res = request_irq(tpci200->info->pdev->irq,
tpci200_interrupt, IRQF_SHARED,
KBUILD_MODNAME, (void *) tpci200);
if (res) {
dev_err(&tpci200->info->pdev->dev,
"(bn 0x%X, sn 0x%X) unable to register IRQ !",
tpci200->info->pdev->bus->number,
tpci200->info->pdev->devfn);
goto err_interface_regs;
}
return 0;
err_interface_regs:
pci_iounmap(tpci200->info->pdev, tpci200->info->interface_regs);
err_mem16_space_bar:
pci_release_region(tpci200->info->pdev, TPCI200_MEM16_SPACE_BAR);
err_mem8_space_bar:
pci_release_region(tpci200->info->pdev, TPCI200_MEM8_SPACE_BAR);
err_io_id_int_spaces_bar:
pci_release_region(tpci200->info->pdev, TPCI200_IO_ID_INT_SPACES_BAR);
err_ip_interface_bar:
pci_release_region(tpci200->info->pdev, TPCI200_IP_INTERFACE_BAR);
err_disable_device:
pci_disable_device(tpci200->info->pdev);
return res;
}
static int tpci200_get_clockrate(struct ipack_device *dev)
{
struct tpci200_board *tpci200 = check_slot(dev);
__le16 __iomem *addr;
if (!tpci200)
return -ENODEV;
addr = &tpci200->info->interface_regs->control[dev->slot];
return (ioread16(addr) & TPCI200_CLK32) ? 32 : 8;
}
static int tpci200_set_clockrate(struct ipack_device *dev, int mherz)
{
struct tpci200_board *tpci200 = check_slot(dev);
__le16 __iomem *addr;
if (!tpci200)
return -ENODEV;
addr = &tpci200->info->interface_regs->control[dev->slot];
switch (mherz) {
case 8:
tpci200_clear_mask(tpci200, addr, TPCI200_CLK32);
break;
case 32:
tpci200_set_mask(tpci200, addr, TPCI200_CLK32);
break;
default:
return -EINVAL;
}
return 0;
}
static int tpci200_get_error(struct ipack_device *dev)
{
struct tpci200_board *tpci200 = check_slot(dev);
__le16 __iomem *addr;
u16 mask;
if (!tpci200)
return -ENODEV;
addr = &tpci200->info->interface_regs->status;
mask = tpci200_status_error[dev->slot];
return (ioread16(addr) & mask) ? 1 : 0;
}
static int tpci200_get_timeout(struct ipack_device *dev)
{
struct tpci200_board *tpci200 = check_slot(dev);
__le16 __iomem *addr;
u16 mask;
if (!tpci200)
return -ENODEV;
addr = &tpci200->info->interface_regs->status;
mask = tpci200_status_timeout[dev->slot];
return (ioread16(addr) & mask) ? 1 : 0;
}
static int tpci200_reset_timeout(struct ipack_device *dev)
{
struct tpci200_board *tpci200 = check_slot(dev);
__le16 __iomem *addr;
u16 mask;
if (!tpci200)
return -ENODEV;
addr = &tpci200->info->interface_regs->status;
mask = tpci200_status_timeout[dev->slot];
iowrite16(mask, addr);
return 0;
}
static void tpci200_uninstall(struct tpci200_board *tpci200)
{
tpci200_unregister(tpci200);
kfree(tpci200->slots);
}
static const struct ipack_bus_ops tpci200_bus_ops = {
.request_irq = tpci200_request_irq,
.free_irq = tpci200_free_irq,
.get_clockrate = tpci200_get_clockrate,
.set_clockrate = tpci200_set_clockrate,
.get_error = tpci200_get_error,
.get_timeout = tpci200_get_timeout,
.reset_timeout = tpci200_reset_timeout,
};
static int tpci200_install(struct tpci200_board *tpci200)
{
int res;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
tpci200->slots = kcalloc(TPCI200_NB_SLOT, sizeof(struct tpci200_slot),
GFP_KERNEL);
if (tpci200->slots == NULL)
return -ENOMEM;
res = tpci200_register(tpci200);
if (res) {
kfree(tpci200->slots);
tpci200->slots = NULL;
return res;
}
mutex_init(&tpci200->mutex);
return 0;
}
static void tpci200_release_device(struct ipack_device *dev)
{
kfree(dev);
}
static int tpci200_create_device(struct tpci200_board *tpci200, int i)
{
int ret;
enum ipack_space space;
struct ipack_device *dev =
kzalloc(sizeof(struct ipack_device), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->slot = i;
dev->bus = tpci200->info->ipack_bus;
dev->release = tpci200_release_device;
for (space = 0; space < IPACK_SPACE_COUNT; space++) {
dev->region[space].start =
tpci200->mod_mem[space]
+ tpci200_space_interval[space] * i;
dev->region[space].size = tpci200_space_size[space];
}
ret = ipack_device_init(dev);
if (ret < 0) {
ipack_put_device(dev);
return ret;
}
ret = ipack_device_add(dev);
if (ret < 0)
ipack_put_device(dev);
return ret;
}
static int tpci200_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
int ret, i;
struct tpci200_board *tpci200;
u32 reg32;
tpci200 = kzalloc(sizeof(struct tpci200_board), GFP_KERNEL);
if (!tpci200)
return -ENOMEM;
tpci200->info = kzalloc(sizeof(struct tpci200_infos), GFP_KERNEL);
if (!tpci200->info) {
ret = -ENOMEM;
goto err_tpci200;
}
pci_dev_get(pdev);
/* Obtain a mapping of the carrier's PCI configuration registers */
ret = pci_request_region(pdev, TPCI200_CFG_MEM_BAR,
KBUILD_MODNAME " Configuration Memory");
if (ret) {
dev_err(&pdev->dev, "Failed to allocate PCI Configuration Memory");
ret = -EBUSY;
goto err_tpci200_info;
}
tpci200->info->cfg_regs = ioremap(
pci_resource_start(pdev, TPCI200_CFG_MEM_BAR),
pci_resource_len(pdev, TPCI200_CFG_MEM_BAR));
if (!tpci200->info->cfg_regs) {
dev_err(&pdev->dev, "Failed to map PCI Configuration Memory");
ret = -EFAULT;
goto err_request_region;
}
/* Disable byte swapping for 16 bit IP module access. This will ensure
* that the Industrypack big endian byte order is preserved by the
* carrier. */
reg32 = ioread32(tpci200->info->cfg_regs + LAS1_DESC);
reg32 |= 1 << LAS_BIT_BIGENDIAN;
iowrite32(reg32, tpci200->info->cfg_regs + LAS1_DESC);
reg32 = ioread32(tpci200->info->cfg_regs + LAS2_DESC);
reg32 |= 1 << LAS_BIT_BIGENDIAN;
iowrite32(reg32, tpci200->info->cfg_regs + LAS2_DESC);
/* Save struct pci_dev pointer */
tpci200->info->pdev = pdev;
tpci200->info->id_table = (struct pci_device_id *)id;
/* register the device and initialize it */
ret = tpci200_install(tpci200);
if (ret) {
dev_err(&pdev->dev, "error during tpci200 install\n");
ret = -ENODEV;
goto err_cfg_regs;
}
/* Register the carrier in the industry pack bus driver */
tpci200->info->ipack_bus = ipack_bus_register(&pdev->dev,
TPCI200_NB_SLOT,
&tpci200_bus_ops,
THIS_MODULE);
if (!tpci200->info->ipack_bus) {
dev_err(&pdev->dev,
"error registering the carrier on ipack driver\n");
ret = -EFAULT;
goto err_tpci200_install;
}
/* save the bus number given by ipack to logging purpose */
tpci200->number = tpci200->info->ipack_bus->bus_nr;
dev_set_drvdata(&pdev->dev, tpci200);
for (i = 0; i < TPCI200_NB_SLOT; i++)
tpci200_create_device(tpci200, i);
return 0;
err_tpci200_install:
tpci200_uninstall(tpci200);
err_cfg_regs:
pci_iounmap(tpci200->info->pdev, tpci200->info->cfg_regs);
err_request_region:
pci_release_region(pdev, TPCI200_CFG_MEM_BAR);
err_tpci200_info:
kfree(tpci200->info);
pci_dev_put(pdev);
err_tpci200:
kfree(tpci200);
return ret;
}
static void __tpci200_pci_remove(struct tpci200_board *tpci200)
{
ipack_bus_unregister(tpci200->info->ipack_bus);
tpci200_uninstall(tpci200);
pci_iounmap(tpci200->info->pdev, tpci200->info->cfg_regs);
pci_release_region(tpci200->info->pdev, TPCI200_CFG_MEM_BAR);
pci_dev_put(tpci200->info->pdev);
kfree(tpci200->info);
kfree(tpci200);
}
static void tpci200_pci_remove(struct pci_dev *dev)
{
struct tpci200_board *tpci200 = pci_get_drvdata(dev);
__tpci200_pci_remove(tpci200);
}
static const struct pci_device_id tpci200_idtable[] = {
{ TPCI200_VENDOR_ID, TPCI200_DEVICE_ID, TPCI200_SUBVENDOR_ID,
TPCI200_SUBDEVICE_ID },
{ 0, },
};
MODULE_DEVICE_TABLE(pci, tpci200_idtable);
static struct pci_driver tpci200_pci_drv = {
.name = "tpci200",
.id_table = tpci200_idtable,
.probe = tpci200_pci_probe,
.remove = tpci200_pci_remove,
};
module_pci_driver(tpci200_pci_drv);
MODULE_DESCRIPTION("TEWS TPCI-200 device driver");
MODULE_LICENSE("GPL");