tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
/*
|
|
|
|
* trace_events_trigger - trace event triggers
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2013 Tom Zanussi <tom.zanussi@linux.intel.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/ctype.h>
|
|
|
|
#include <linux/mutex.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
|
|
|
|
#include "trace.h"
|
|
|
|
|
|
|
|
static LIST_HEAD(trigger_commands);
|
|
|
|
static DEFINE_MUTEX(trigger_cmd_mutex);
|
|
|
|
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
static void
|
|
|
|
trigger_data_free(struct event_trigger_data *data)
|
|
|
|
{
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
if (data->cmd_ops->set_filter)
|
|
|
|
data->cmd_ops->set_filter(NULL, data, NULL);
|
|
|
|
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
synchronize_sched(); /* make sure current triggers exit before free */
|
|
|
|
kfree(data);
|
|
|
|
}
|
|
|
|
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
/**
|
|
|
|
* event_triggers_call - Call triggers associated with a trace event
|
2015-05-05 14:09:53 +00:00
|
|
|
* @file: The trace_event_file associated with the event
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
* @rec: The trace entry for the event, NULL for unconditional invocation
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
*
|
|
|
|
* For each trigger associated with an event, invoke the trigger
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
* function registered with the associated trigger command. If rec is
|
|
|
|
* non-NULL, it means that the trigger requires further processing and
|
|
|
|
* shouldn't be unconditionally invoked. If rec is non-NULL and the
|
|
|
|
* trigger has a filter associated with it, rec will checked against
|
|
|
|
* the filter and if the record matches the trigger will be invoked.
|
|
|
|
* If the trigger is a 'post_trigger', meaning it shouldn't be invoked
|
|
|
|
* in any case until the current event is written, the trigger
|
|
|
|
* function isn't invoked but the bit associated with the deferred
|
|
|
|
* trigger is set in the return value.
|
|
|
|
*
|
|
|
|
* Returns an enum event_trigger_type value containing a set bit for
|
|
|
|
* any trigger that should be deferred, ETT_NONE if nothing to defer.
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
*
|
|
|
|
* Called from tracepoint handlers (with rcu_read_lock_sched() held).
|
|
|
|
*
|
|
|
|
* Return: an enum event_trigger_type value containing a set bit for
|
|
|
|
* any trigger that should be deferred, ETT_NONE if nothing to defer.
|
|
|
|
*/
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
enum event_trigger_type
|
2015-05-05 14:09:53 +00:00
|
|
|
event_triggers_call(struct trace_event_file *file, void *rec)
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
{
|
|
|
|
struct event_trigger_data *data;
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
enum event_trigger_type tt = ETT_NONE;
|
2013-12-22 02:55:17 +00:00
|
|
|
struct event_filter *filter;
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
|
|
|
|
if (list_empty(&file->triggers))
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
return tt;
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
list_for_each_entry_rcu(data, &file->triggers, list) {
|
|
|
|
if (!rec) {
|
|
|
|
data->ops->func(data);
|
|
|
|
continue;
|
|
|
|
}
|
2014-05-02 17:30:04 +00:00
|
|
|
filter = rcu_dereference_sched(data->filter);
|
2013-12-22 02:55:17 +00:00
|
|
|
if (filter && !filter_match_preds(filter, rec))
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
continue;
|
|
|
|
if (data->cmd_ops->post_trigger) {
|
|
|
|
tt |= data->cmd_ops->trigger_type;
|
|
|
|
continue;
|
|
|
|
}
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
data->ops->func(data);
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
}
|
|
|
|
return tt;
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(event_triggers_call);
|
|
|
|
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
/**
|
|
|
|
* event_triggers_post_call - Call 'post_triggers' for a trace event
|
2015-05-05 14:09:53 +00:00
|
|
|
* @file: The trace_event_file associated with the event
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
* @tt: enum event_trigger_type containing a set bit for each trigger to invoke
|
|
|
|
*
|
|
|
|
* For each trigger associated with an event, invoke the trigger
|
|
|
|
* function registered with the associated trigger command, if the
|
|
|
|
* corresponding bit is set in the tt enum passed into this function.
|
|
|
|
* See @event_triggers_call for details on how those bits are set.
|
|
|
|
*
|
|
|
|
* Called from tracepoint handlers (with rcu_read_lock_sched() held).
|
|
|
|
*/
|
|
|
|
void
|
2015-05-05 14:09:53 +00:00
|
|
|
event_triggers_post_call(struct trace_event_file *file,
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
enum event_trigger_type tt)
|
|
|
|
{
|
|
|
|
struct event_trigger_data *data;
|
|
|
|
|
|
|
|
list_for_each_entry_rcu(data, &file->triggers, list) {
|
|
|
|
if (data->cmd_ops->trigger_type & tt)
|
|
|
|
data->ops->func(data);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(event_triggers_post_call);
|
|
|
|
|
2014-01-07 15:31:04 +00:00
|
|
|
#define SHOW_AVAILABLE_TRIGGERS (void *)(1UL)
|
|
|
|
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
static void *trigger_next(struct seq_file *m, void *t, loff_t *pos)
|
|
|
|
{
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *event_file = event_file_data(m->private);
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
|
2014-01-07 15:31:04 +00:00
|
|
|
if (t == SHOW_AVAILABLE_TRIGGERS)
|
|
|
|
return NULL;
|
|
|
|
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
return seq_list_next(t, &event_file->triggers, pos);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *trigger_start(struct seq_file *m, loff_t *pos)
|
|
|
|
{
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *event_file;
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
|
|
|
|
/* ->stop() is called even if ->start() fails */
|
|
|
|
mutex_lock(&event_mutex);
|
|
|
|
event_file = event_file_data(m->private);
|
|
|
|
if (unlikely(!event_file))
|
|
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
|
2014-01-07 15:31:04 +00:00
|
|
|
if (list_empty(&event_file->triggers))
|
|
|
|
return *pos == 0 ? SHOW_AVAILABLE_TRIGGERS : NULL;
|
|
|
|
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
return seq_list_start(&event_file->triggers, *pos);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void trigger_stop(struct seq_file *m, void *t)
|
|
|
|
{
|
|
|
|
mutex_unlock(&event_mutex);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int trigger_show(struct seq_file *m, void *v)
|
|
|
|
{
|
|
|
|
struct event_trigger_data *data;
|
2014-01-07 15:31:04 +00:00
|
|
|
struct event_command *p;
|
|
|
|
|
|
|
|
if (v == SHOW_AVAILABLE_TRIGGERS) {
|
|
|
|
seq_puts(m, "# Available triggers:\n");
|
|
|
|
seq_putc(m, '#');
|
|
|
|
mutex_lock(&trigger_cmd_mutex);
|
|
|
|
list_for_each_entry_reverse(p, &trigger_commands, list)
|
|
|
|
seq_printf(m, " %s", p->name);
|
|
|
|
seq_putc(m, '\n');
|
|
|
|
mutex_unlock(&trigger_cmd_mutex);
|
|
|
|
return 0;
|
|
|
|
}
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
|
|
|
|
data = list_entry(v, struct event_trigger_data, list);
|
|
|
|
data->ops->print(m, data->ops, data);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct seq_operations event_triggers_seq_ops = {
|
|
|
|
.start = trigger_start,
|
|
|
|
.next = trigger_next,
|
|
|
|
.stop = trigger_stop,
|
|
|
|
.show = trigger_show,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int event_trigger_regex_open(struct inode *inode, struct file *file)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
mutex_lock(&event_mutex);
|
|
|
|
|
|
|
|
if (unlikely(!event_file_data(file))) {
|
|
|
|
mutex_unlock(&event_mutex);
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (file->f_mode & FMODE_READ) {
|
|
|
|
ret = seq_open(file, &event_triggers_seq_ops);
|
|
|
|
if (!ret) {
|
|
|
|
struct seq_file *m = file->private_data;
|
|
|
|
m->private = file;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_unlock(&event_mutex);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-05-05 14:09:53 +00:00
|
|
|
static int trigger_process_regex(struct trace_event_file *file, char *buff)
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
{
|
|
|
|
char *command, *next = buff;
|
|
|
|
struct event_command *p;
|
|
|
|
int ret = -EINVAL;
|
|
|
|
|
|
|
|
command = strsep(&next, ": \t");
|
|
|
|
command = (command[0] != '!') ? command : command + 1;
|
|
|
|
|
|
|
|
mutex_lock(&trigger_cmd_mutex);
|
|
|
|
list_for_each_entry(p, &trigger_commands, list) {
|
|
|
|
if (strcmp(p->name, command) == 0) {
|
|
|
|
ret = p->func(p, file, buff, command, next);
|
|
|
|
goto out_unlock;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out_unlock:
|
|
|
|
mutex_unlock(&trigger_cmd_mutex);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t event_trigger_regex_write(struct file *file,
|
|
|
|
const char __user *ubuf,
|
|
|
|
size_t cnt, loff_t *ppos)
|
|
|
|
{
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *event_file;
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
ssize_t ret;
|
|
|
|
char *buf;
|
|
|
|
|
|
|
|
if (!cnt)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (cnt >= PAGE_SIZE)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
buf = (char *)__get_free_page(GFP_TEMPORARY);
|
|
|
|
if (!buf)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
if (copy_from_user(buf, ubuf, cnt)) {
|
|
|
|
free_page((unsigned long)buf);
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
buf[cnt] = '\0';
|
|
|
|
strim(buf);
|
|
|
|
|
|
|
|
mutex_lock(&event_mutex);
|
|
|
|
event_file = event_file_data(file);
|
|
|
|
if (unlikely(!event_file)) {
|
|
|
|
mutex_unlock(&event_mutex);
|
|
|
|
free_page((unsigned long)buf);
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
ret = trigger_process_regex(event_file, buf);
|
|
|
|
mutex_unlock(&event_mutex);
|
|
|
|
|
|
|
|
free_page((unsigned long)buf);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
*ppos += cnt;
|
|
|
|
ret = cnt;
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int event_trigger_regex_release(struct inode *inode, struct file *file)
|
|
|
|
{
|
|
|
|
mutex_lock(&event_mutex);
|
|
|
|
|
|
|
|
if (file->f_mode & FMODE_READ)
|
|
|
|
seq_release(inode, file);
|
|
|
|
|
|
|
|
mutex_unlock(&event_mutex);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t
|
|
|
|
event_trigger_write(struct file *filp, const char __user *ubuf,
|
|
|
|
size_t cnt, loff_t *ppos)
|
|
|
|
{
|
|
|
|
return event_trigger_regex_write(filp, ubuf, cnt, ppos);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
event_trigger_open(struct inode *inode, struct file *filp)
|
|
|
|
{
|
|
|
|
return event_trigger_regex_open(inode, filp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
event_trigger_release(struct inode *inode, struct file *file)
|
|
|
|
{
|
|
|
|
return event_trigger_regex_release(inode, file);
|
|
|
|
}
|
|
|
|
|
|
|
|
const struct file_operations event_trigger_fops = {
|
|
|
|
.open = event_trigger_open,
|
|
|
|
.read = seq_read,
|
|
|
|
.write = event_trigger_write,
|
2013-12-21 22:39:40 +00:00
|
|
|
.llseek = tracing_lseek,
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
.release = event_trigger_release,
|
|
|
|
};
|
|
|
|
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
/*
|
|
|
|
* Currently we only register event commands from __init, so mark this
|
|
|
|
* __init too.
|
|
|
|
*/
|
|
|
|
static __init int register_event_command(struct event_command *cmd)
|
|
|
|
{
|
|
|
|
struct event_command *p;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
mutex_lock(&trigger_cmd_mutex);
|
|
|
|
list_for_each_entry(p, &trigger_commands, list) {
|
|
|
|
if (strcmp(cmd->name, p->name) == 0) {
|
|
|
|
ret = -EBUSY;
|
|
|
|
goto out_unlock;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
list_add(&cmd->list, &trigger_commands);
|
|
|
|
out_unlock:
|
|
|
|
mutex_unlock(&trigger_cmd_mutex);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Currently we only unregister event commands from __init, so mark
|
|
|
|
* this __init too.
|
|
|
|
*/
|
|
|
|
static __init int unregister_event_command(struct event_command *cmd)
|
|
|
|
{
|
|
|
|
struct event_command *p, *n;
|
|
|
|
int ret = -ENODEV;
|
|
|
|
|
|
|
|
mutex_lock(&trigger_cmd_mutex);
|
|
|
|
list_for_each_entry_safe(p, n, &trigger_commands, list) {
|
|
|
|
if (strcmp(cmd->name, p->name) == 0) {
|
|
|
|
ret = 0;
|
|
|
|
list_del_init(&p->list);
|
|
|
|
goto out_unlock;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out_unlock:
|
|
|
|
mutex_unlock(&trigger_cmd_mutex);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* event_trigger_print - Generic event_trigger_ops @print implementation
|
|
|
|
* @name: The name of the event trigger
|
|
|
|
* @m: The seq_file being printed to
|
|
|
|
* @data: Trigger-specific data
|
|
|
|
* @filter_str: filter_str to print, if present
|
|
|
|
*
|
|
|
|
* Common implementation for event triggers to print themselves.
|
|
|
|
*
|
|
|
|
* Usually wrapped by a function that simply sets the @name of the
|
|
|
|
* trigger command and then invokes this.
|
|
|
|
*
|
|
|
|
* Return: 0 on success, errno otherwise
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
event_trigger_print(const char *name, struct seq_file *m,
|
|
|
|
void *data, char *filter_str)
|
|
|
|
{
|
|
|
|
long count = (long)data;
|
|
|
|
|
2014-11-08 20:42:10 +00:00
|
|
|
seq_puts(m, name);
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
|
|
|
|
if (count == -1)
|
|
|
|
seq_puts(m, ":unlimited");
|
|
|
|
else
|
|
|
|
seq_printf(m, ":count=%ld", count);
|
|
|
|
|
|
|
|
if (filter_str)
|
|
|
|
seq_printf(m, " if %s\n", filter_str);
|
|
|
|
else
|
2014-11-08 20:42:12 +00:00
|
|
|
seq_putc(m, '\n');
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* event_trigger_init - Generic event_trigger_ops @init implementation
|
|
|
|
* @ops: The trigger ops associated with the trigger
|
|
|
|
* @data: Trigger-specific data
|
|
|
|
*
|
|
|
|
* Common implementation of event trigger initialization.
|
|
|
|
*
|
|
|
|
* Usually used directly as the @init method in event trigger
|
|
|
|
* implementations.
|
|
|
|
*
|
|
|
|
* Return: 0 on success, errno otherwise
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
event_trigger_init(struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
data->ref++;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* event_trigger_free - Generic event_trigger_ops @free implementation
|
|
|
|
* @ops: The trigger ops associated with the trigger
|
|
|
|
* @data: Trigger-specific data
|
|
|
|
*
|
|
|
|
* Common implementation of event trigger de-initialization.
|
|
|
|
*
|
|
|
|
* Usually used directly as the @free method in event trigger
|
|
|
|
* implementations.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
event_trigger_free(struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
if (WARN_ON_ONCE(data->ref <= 0))
|
|
|
|
return;
|
|
|
|
|
|
|
|
data->ref--;
|
|
|
|
if (!data->ref)
|
|
|
|
trigger_data_free(data);
|
|
|
|
}
|
|
|
|
|
2015-05-05 14:09:53 +00:00
|
|
|
static int trace_event_trigger_enable_disable(struct trace_event_file *file,
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
int trigger_enable)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (trigger_enable) {
|
|
|
|
if (atomic_inc_return(&file->tm_ref) > 1)
|
|
|
|
return ret;
|
2015-05-13 19:12:33 +00:00
|
|
|
set_bit(EVENT_FILE_FL_TRIGGER_MODE_BIT, &file->flags);
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
ret = trace_event_enable_disable(file, 1, 1);
|
|
|
|
} else {
|
|
|
|
if (atomic_dec_return(&file->tm_ref) > 0)
|
|
|
|
return ret;
|
2015-05-13 19:12:33 +00:00
|
|
|
clear_bit(EVENT_FILE_FL_TRIGGER_MODE_BIT, &file->flags);
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
ret = trace_event_enable_disable(file, 0, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* clear_event_triggers - Clear all triggers associated with a trace array
|
|
|
|
* @tr: The trace array to clear
|
|
|
|
*
|
|
|
|
* For each trigger, the triggering event has its tm_ref decremented
|
|
|
|
* via trace_event_trigger_enable_disable(), and any associated event
|
|
|
|
* (in the case of enable/disable_event triggers) will have its sm_ref
|
|
|
|
* decremented via free()->trace_event_enable_disable(). That
|
|
|
|
* combination effectively reverses the soft-mode/trigger state added
|
|
|
|
* by trigger registration.
|
|
|
|
*
|
|
|
|
* Must be called with event_mutex held.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
clear_event_triggers(struct trace_array *tr)
|
|
|
|
{
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *file;
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
|
|
|
|
list_for_each_entry(file, &tr->events, list) {
|
|
|
|
struct event_trigger_data *data;
|
|
|
|
list_for_each_entry_rcu(data, &file->triggers, list) {
|
|
|
|
trace_event_trigger_enable_disable(file, 0);
|
|
|
|
if (data->ops->free)
|
|
|
|
data->ops->free(data->ops, data);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
/**
|
|
|
|
* update_cond_flag - Set or reset the TRIGGER_COND bit
|
2015-05-05 14:09:53 +00:00
|
|
|
* @file: The trace_event_file associated with the event
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
*
|
|
|
|
* If an event has triggers and any of those triggers has a filter or
|
|
|
|
* a post_trigger, trigger invocation needs to be deferred until after
|
|
|
|
* the current event has logged its data, and the event should have
|
|
|
|
* its TRIGGER_COND bit set, otherwise the TRIGGER_COND bit should be
|
|
|
|
* cleared.
|
|
|
|
*/
|
2015-05-05 14:09:53 +00:00
|
|
|
static void update_cond_flag(struct trace_event_file *file)
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
{
|
|
|
|
struct event_trigger_data *data;
|
|
|
|
bool set_cond = false;
|
|
|
|
|
|
|
|
list_for_each_entry_rcu(data, &file->triggers, list) {
|
|
|
|
if (data->filter || data->cmd_ops->post_trigger) {
|
|
|
|
set_cond = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (set_cond)
|
2015-05-13 19:12:33 +00:00
|
|
|
set_bit(EVENT_FILE_FL_TRIGGER_COND_BIT, &file->flags);
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
else
|
2015-05-13 19:12:33 +00:00
|
|
|
clear_bit(EVENT_FILE_FL_TRIGGER_COND_BIT, &file->flags);
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
}
|
|
|
|
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
/**
|
|
|
|
* register_trigger - Generic event_command @reg implementation
|
|
|
|
* @glob: The raw string used to register the trigger
|
|
|
|
* @ops: The trigger ops associated with the trigger
|
|
|
|
* @data: Trigger-specific data to associate with the trigger
|
2015-05-05 14:09:53 +00:00
|
|
|
* @file: The trace_event_file associated with the event
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
*
|
|
|
|
* Common implementation for event trigger registration.
|
|
|
|
*
|
|
|
|
* Usually used directly as the @reg method in event command
|
|
|
|
* implementations.
|
|
|
|
*
|
|
|
|
* Return: 0 on success, errno otherwise
|
|
|
|
*/
|
|
|
|
static int register_trigger(char *glob, struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data,
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *file)
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
{
|
|
|
|
struct event_trigger_data *test;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
list_for_each_entry_rcu(test, &file->triggers, list) {
|
|
|
|
if (test->cmd_ops->trigger_type == data->cmd_ops->trigger_type) {
|
|
|
|
ret = -EEXIST;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (data->ops->init) {
|
|
|
|
ret = data->ops->init(data->ops, data);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_add_rcu(&data->list, &file->triggers);
|
|
|
|
ret++;
|
|
|
|
|
|
|
|
if (trace_event_trigger_enable_disable(file, 1) < 0) {
|
|
|
|
list_del_rcu(&data->list);
|
|
|
|
ret--;
|
|
|
|
}
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
update_cond_flag(file);
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* unregister_trigger - Generic event_command @unreg implementation
|
|
|
|
* @glob: The raw string used to register the trigger
|
|
|
|
* @ops: The trigger ops associated with the trigger
|
|
|
|
* @test: Trigger-specific data used to find the trigger to remove
|
2015-05-05 14:09:53 +00:00
|
|
|
* @file: The trace_event_file associated with the event
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
*
|
|
|
|
* Common implementation for event trigger unregistration.
|
|
|
|
*
|
|
|
|
* Usually used directly as the @unreg method in event command
|
|
|
|
* implementations.
|
|
|
|
*/
|
|
|
|
static void unregister_trigger(char *glob, struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *test,
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *file)
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
{
|
|
|
|
struct event_trigger_data *data;
|
|
|
|
bool unregistered = false;
|
|
|
|
|
|
|
|
list_for_each_entry_rcu(data, &file->triggers, list) {
|
|
|
|
if (data->cmd_ops->trigger_type == test->cmd_ops->trigger_type) {
|
|
|
|
unregistered = true;
|
|
|
|
list_del_rcu(&data->list);
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
update_cond_flag(file);
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
trace_event_trigger_enable_disable(file, 0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unregistered && data->ops->free)
|
|
|
|
data->ops->free(data->ops, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* event_trigger_callback - Generic event_command @func implementation
|
|
|
|
* @cmd_ops: The command ops, used for trigger registration
|
2015-05-05 14:09:53 +00:00
|
|
|
* @file: The trace_event_file associated with the event
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
* @glob: The raw string used to register the trigger
|
|
|
|
* @cmd: The cmd portion of the string used to register the trigger
|
|
|
|
* @param: The params portion of the string used to register the trigger
|
|
|
|
*
|
|
|
|
* Common implementation for event command parsing and trigger
|
|
|
|
* instantiation.
|
|
|
|
*
|
|
|
|
* Usually used directly as the @func method in event command
|
|
|
|
* implementations.
|
|
|
|
*
|
|
|
|
* Return: 0 on success, errno otherwise
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
event_trigger_callback(struct event_command *cmd_ops,
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *file,
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
char *glob, char *cmd, char *param)
|
|
|
|
{
|
|
|
|
struct event_trigger_data *trigger_data;
|
|
|
|
struct event_trigger_ops *trigger_ops;
|
|
|
|
char *trigger = NULL;
|
|
|
|
char *number;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* separate the trigger from the filter (t:n [if filter]) */
|
|
|
|
if (param && isdigit(param[0]))
|
|
|
|
trigger = strsep(¶m, " \t");
|
|
|
|
|
|
|
|
trigger_ops = cmd_ops->get_trigger_ops(cmd, trigger);
|
|
|
|
|
|
|
|
ret = -ENOMEM;
|
|
|
|
trigger_data = kzalloc(sizeof(*trigger_data), GFP_KERNEL);
|
|
|
|
if (!trigger_data)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
trigger_data->count = -1;
|
|
|
|
trigger_data->ops = trigger_ops;
|
|
|
|
trigger_data->cmd_ops = cmd_ops;
|
|
|
|
INIT_LIST_HEAD(&trigger_data->list);
|
|
|
|
|
|
|
|
if (glob[0] == '!') {
|
|
|
|
cmd_ops->unreg(glob+1, trigger_ops, trigger_data, file);
|
|
|
|
kfree(trigger_data);
|
|
|
|
ret = 0;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (trigger) {
|
|
|
|
number = strsep(&trigger, ":");
|
|
|
|
|
|
|
|
ret = -EINVAL;
|
|
|
|
if (!strlen(number))
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We use the callback data field (which is a pointer)
|
|
|
|
* as our counter.
|
|
|
|
*/
|
|
|
|
ret = kstrtoul(number, 0, &trigger_data->count);
|
|
|
|
if (ret)
|
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!param) /* if param is non-empty, it's supposed to be a filter */
|
|
|
|
goto out_reg;
|
|
|
|
|
|
|
|
if (!cmd_ops->set_filter)
|
|
|
|
goto out_reg;
|
|
|
|
|
|
|
|
ret = cmd_ops->set_filter(param, trigger_data, file);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
out_reg:
|
|
|
|
ret = cmd_ops->reg(glob, trigger_ops, trigger_data, file);
|
|
|
|
/*
|
|
|
|
* The above returns on success the # of functions enabled,
|
|
|
|
* but if it didn't find any functions it returns zero.
|
|
|
|
* Consider no functions a failure too.
|
|
|
|
*/
|
|
|
|
if (!ret) {
|
|
|
|
ret = -ENOENT;
|
|
|
|
goto out_free;
|
|
|
|
} else if (ret < 0)
|
|
|
|
goto out_free;
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
out_free:
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
if (cmd_ops->set_filter)
|
|
|
|
cmd_ops->set_filter(NULL, trigger_data, NULL);
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
kfree(trigger_data);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
/**
|
|
|
|
* set_trigger_filter - Generic event_command @set_filter implementation
|
|
|
|
* @filter_str: The filter string for the trigger, NULL to remove filter
|
|
|
|
* @trigger_data: Trigger-specific data
|
2015-05-05 14:09:53 +00:00
|
|
|
* @file: The trace_event_file associated with the event
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
*
|
|
|
|
* Common implementation for event command filter parsing and filter
|
|
|
|
* instantiation.
|
|
|
|
*
|
|
|
|
* Usually used directly as the @set_filter method in event command
|
|
|
|
* implementations.
|
|
|
|
*
|
|
|
|
* Also used to remove a filter (if filter_str = NULL).
|
|
|
|
*
|
|
|
|
* Return: 0 on success, errno otherwise
|
|
|
|
*/
|
|
|
|
static int set_trigger_filter(char *filter_str,
|
|
|
|
struct event_trigger_data *trigger_data,
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *file)
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
{
|
|
|
|
struct event_trigger_data *data = trigger_data;
|
|
|
|
struct event_filter *filter = NULL, *tmp;
|
|
|
|
int ret = -EINVAL;
|
|
|
|
char *s;
|
|
|
|
|
|
|
|
if (!filter_str) /* clear the current filter */
|
|
|
|
goto assign;
|
|
|
|
|
|
|
|
s = strsep(&filter_str, " \t");
|
|
|
|
|
|
|
|
if (!strlen(s) || strcmp(s, "if") != 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (!filter_str)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* The filter is for the 'trigger' event, not the triggered event */
|
|
|
|
ret = create_event_filter(file->event_call, filter_str, false, &filter);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
assign:
|
2013-12-22 02:55:17 +00:00
|
|
|
tmp = rcu_access_pointer(data->filter);
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
|
|
|
|
rcu_assign_pointer(data->filter, filter);
|
|
|
|
|
|
|
|
if (tmp) {
|
|
|
|
/* Make sure the call is done with the filter */
|
|
|
|
synchronize_sched();
|
|
|
|
free_event_filter(tmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
kfree(data->filter_str);
|
|
|
|
data->filter_str = NULL;
|
|
|
|
|
|
|
|
if (filter_str) {
|
|
|
|
data->filter_str = kstrdup(filter_str, GFP_KERNEL);
|
|
|
|
if (!data->filter_str) {
|
2013-12-22 02:55:17 +00:00
|
|
|
free_event_filter(rcu_access_pointer(data->filter));
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
data->filter = NULL;
|
|
|
|
ret = -ENOMEM;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
static void
|
|
|
|
traceon_trigger(struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
if (tracing_is_on())
|
|
|
|
return;
|
|
|
|
|
|
|
|
tracing_on();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
traceon_count_trigger(struct event_trigger_data *data)
|
|
|
|
{
|
2014-01-07 03:25:50 +00:00
|
|
|
if (tracing_is_on())
|
|
|
|
return;
|
|
|
|
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
if (!data->count)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (data->count != -1)
|
|
|
|
(data->count)--;
|
|
|
|
|
2014-01-07 03:25:50 +00:00
|
|
|
tracing_on();
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
traceoff_trigger(struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
if (!tracing_is_on())
|
|
|
|
return;
|
|
|
|
|
|
|
|
tracing_off();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
traceoff_count_trigger(struct event_trigger_data *data)
|
|
|
|
{
|
2014-01-07 03:25:50 +00:00
|
|
|
if (!tracing_is_on())
|
|
|
|
return;
|
|
|
|
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
if (!data->count)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (data->count != -1)
|
|
|
|
(data->count)--;
|
|
|
|
|
2014-01-07 03:25:50 +00:00
|
|
|
tracing_off();
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
traceon_trigger_print(struct seq_file *m, struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
return event_trigger_print("traceon", m, (void *)data->count,
|
|
|
|
data->filter_str);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
traceoff_trigger_print(struct seq_file *m, struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
return event_trigger_print("traceoff", m, (void *)data->count,
|
|
|
|
data->filter_str);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct event_trigger_ops traceon_trigger_ops = {
|
|
|
|
.func = traceon_trigger,
|
|
|
|
.print = traceon_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_trigger_ops traceon_count_trigger_ops = {
|
|
|
|
.func = traceon_count_trigger,
|
|
|
|
.print = traceon_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_trigger_ops traceoff_trigger_ops = {
|
|
|
|
.func = traceoff_trigger,
|
|
|
|
.print = traceoff_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_trigger_ops traceoff_count_trigger_ops = {
|
|
|
|
.func = traceoff_count_trigger,
|
|
|
|
.print = traceoff_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_trigger_ops *
|
|
|
|
onoff_get_trigger_ops(char *cmd, char *param)
|
|
|
|
{
|
|
|
|
struct event_trigger_ops *ops;
|
|
|
|
|
|
|
|
/* we register both traceon and traceoff to this callback */
|
|
|
|
if (strcmp(cmd, "traceon") == 0)
|
|
|
|
ops = param ? &traceon_count_trigger_ops :
|
|
|
|
&traceon_trigger_ops;
|
|
|
|
else
|
|
|
|
ops = param ? &traceoff_count_trigger_ops :
|
|
|
|
&traceoff_trigger_ops;
|
|
|
|
|
|
|
|
return ops;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct event_command trigger_traceon_cmd = {
|
|
|
|
.name = "traceon",
|
|
|
|
.trigger_type = ETT_TRACE_ONOFF,
|
|
|
|
.func = event_trigger_callback,
|
|
|
|
.reg = register_trigger,
|
|
|
|
.unreg = unregister_trigger,
|
|
|
|
.get_trigger_ops = onoff_get_trigger_ops,
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
.set_filter = set_trigger_filter,
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_command trigger_traceoff_cmd = {
|
|
|
|
.name = "traceoff",
|
|
|
|
.trigger_type = ETT_TRACE_ONOFF,
|
|
|
|
.func = event_trigger_callback,
|
|
|
|
.reg = register_trigger,
|
|
|
|
.unreg = unregister_trigger,
|
|
|
|
.get_trigger_ops = onoff_get_trigger_ops,
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
.set_filter = set_trigger_filter,
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
};
|
|
|
|
|
2013-10-24 13:59:26 +00:00
|
|
|
#ifdef CONFIG_TRACER_SNAPSHOT
|
|
|
|
static void
|
|
|
|
snapshot_trigger(struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
tracing_snapshot();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
snapshot_count_trigger(struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
if (!data->count)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (data->count != -1)
|
|
|
|
(data->count)--;
|
|
|
|
|
|
|
|
snapshot_trigger(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
register_snapshot_trigger(char *glob, struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data,
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *file)
|
2013-10-24 13:59:26 +00:00
|
|
|
{
|
|
|
|
int ret = register_trigger(glob, ops, data, file);
|
|
|
|
|
|
|
|
if (ret > 0 && tracing_alloc_snapshot() != 0) {
|
|
|
|
unregister_trigger(glob, ops, data, file);
|
|
|
|
ret = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
snapshot_trigger_print(struct seq_file *m, struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
return event_trigger_print("snapshot", m, (void *)data->count,
|
|
|
|
data->filter_str);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct event_trigger_ops snapshot_trigger_ops = {
|
|
|
|
.func = snapshot_trigger,
|
|
|
|
.print = snapshot_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_trigger_ops snapshot_count_trigger_ops = {
|
|
|
|
.func = snapshot_count_trigger,
|
|
|
|
.print = snapshot_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_trigger_ops *
|
|
|
|
snapshot_get_trigger_ops(char *cmd, char *param)
|
|
|
|
{
|
|
|
|
return param ? &snapshot_count_trigger_ops : &snapshot_trigger_ops;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct event_command trigger_snapshot_cmd = {
|
|
|
|
.name = "snapshot",
|
|
|
|
.trigger_type = ETT_SNAPSHOT,
|
|
|
|
.func = event_trigger_callback,
|
|
|
|
.reg = register_snapshot_trigger,
|
|
|
|
.unreg = unregister_trigger,
|
|
|
|
.get_trigger_ops = snapshot_get_trigger_ops,
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
.set_filter = set_trigger_filter,
|
2013-10-24 13:59:26 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static __init int register_trigger_snapshot_cmd(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = register_event_command(&trigger_snapshot_cmd);
|
|
|
|
WARN_ON(ret < 0);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static __init int register_trigger_snapshot_cmd(void) { return 0; }
|
|
|
|
#endif /* CONFIG_TRACER_SNAPSHOT */
|
|
|
|
|
2013-10-24 13:59:27 +00:00
|
|
|
#ifdef CONFIG_STACKTRACE
|
|
|
|
/*
|
|
|
|
* Skip 3:
|
|
|
|
* stacktrace_trigger()
|
|
|
|
* event_triggers_post_call()
|
|
|
|
* ftrace_raw_event_xxx()
|
|
|
|
*/
|
|
|
|
#define STACK_SKIP 3
|
|
|
|
|
|
|
|
static void
|
|
|
|
stacktrace_trigger(struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
trace_dump_stack(STACK_SKIP);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
stacktrace_count_trigger(struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
if (!data->count)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (data->count != -1)
|
|
|
|
(data->count)--;
|
|
|
|
|
|
|
|
stacktrace_trigger(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
stacktrace_trigger_print(struct seq_file *m, struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
return event_trigger_print("stacktrace", m, (void *)data->count,
|
|
|
|
data->filter_str);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct event_trigger_ops stacktrace_trigger_ops = {
|
|
|
|
.func = stacktrace_trigger,
|
|
|
|
.print = stacktrace_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_trigger_ops stacktrace_count_trigger_ops = {
|
|
|
|
.func = stacktrace_count_trigger,
|
|
|
|
.print = stacktrace_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_trigger_ops *
|
|
|
|
stacktrace_get_trigger_ops(char *cmd, char *param)
|
|
|
|
{
|
|
|
|
return param ? &stacktrace_count_trigger_ops : &stacktrace_trigger_ops;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct event_command trigger_stacktrace_cmd = {
|
|
|
|
.name = "stacktrace",
|
|
|
|
.trigger_type = ETT_STACKTRACE,
|
|
|
|
.post_trigger = true,
|
|
|
|
.func = event_trigger_callback,
|
|
|
|
.reg = register_trigger,
|
|
|
|
.unreg = unregister_trigger,
|
|
|
|
.get_trigger_ops = stacktrace_get_trigger_ops,
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
.set_filter = set_trigger_filter,
|
2013-10-24 13:59:27 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static __init int register_trigger_stacktrace_cmd(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = register_event_command(&trigger_stacktrace_cmd);
|
|
|
|
WARN_ON(ret < 0);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static __init int register_trigger_stacktrace_cmd(void) { return 0; }
|
|
|
|
#endif /* CONFIG_STACKTRACE */
|
|
|
|
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
static __init void unregister_trigger_traceon_traceoff_cmds(void)
|
|
|
|
{
|
|
|
|
unregister_event_command(&trigger_traceon_cmd);
|
|
|
|
unregister_event_command(&trigger_traceoff_cmd);
|
|
|
|
}
|
|
|
|
|
2013-10-24 13:59:28 +00:00
|
|
|
/* Avoid typos */
|
|
|
|
#define ENABLE_EVENT_STR "enable_event"
|
|
|
|
#define DISABLE_EVENT_STR "disable_event"
|
|
|
|
|
|
|
|
struct enable_trigger_data {
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *file;
|
2013-10-24 13:59:28 +00:00
|
|
|
bool enable;
|
|
|
|
};
|
|
|
|
|
|
|
|
static void
|
|
|
|
event_enable_trigger(struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
struct enable_trigger_data *enable_data = data->private_data;
|
|
|
|
|
|
|
|
if (enable_data->enable)
|
2015-05-13 19:12:33 +00:00
|
|
|
clear_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &enable_data->file->flags);
|
2013-10-24 13:59:28 +00:00
|
|
|
else
|
2015-05-13 19:12:33 +00:00
|
|
|
set_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &enable_data->file->flags);
|
2013-10-24 13:59:28 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
event_enable_count_trigger(struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
struct enable_trigger_data *enable_data = data->private_data;
|
|
|
|
|
|
|
|
if (!data->count)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Skip if the event is in a state we want to switch to */
|
2015-05-13 19:12:33 +00:00
|
|
|
if (enable_data->enable == !(enable_data->file->flags & EVENT_FILE_FL_SOFT_DISABLED))
|
2013-10-24 13:59:28 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
if (data->count != -1)
|
|
|
|
(data->count)--;
|
|
|
|
|
|
|
|
event_enable_trigger(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
event_enable_trigger_print(struct seq_file *m, struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
struct enable_trigger_data *enable_data = data->private_data;
|
|
|
|
|
|
|
|
seq_printf(m, "%s:%s:%s",
|
|
|
|
enable_data->enable ? ENABLE_EVENT_STR : DISABLE_EVENT_STR,
|
|
|
|
enable_data->file->event_call->class->system,
|
2015-05-13 18:20:14 +00:00
|
|
|
trace_event_name(enable_data->file->event_call));
|
2013-10-24 13:59:28 +00:00
|
|
|
|
|
|
|
if (data->count == -1)
|
|
|
|
seq_puts(m, ":unlimited");
|
|
|
|
else
|
|
|
|
seq_printf(m, ":count=%ld", data->count);
|
|
|
|
|
|
|
|
if (data->filter_str)
|
|
|
|
seq_printf(m, " if %s\n", data->filter_str);
|
|
|
|
else
|
2014-11-08 20:42:12 +00:00
|
|
|
seq_putc(m, '\n');
|
2013-10-24 13:59:28 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
event_enable_trigger_free(struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
struct enable_trigger_data *enable_data = data->private_data;
|
|
|
|
|
|
|
|
if (WARN_ON_ONCE(data->ref <= 0))
|
|
|
|
return;
|
|
|
|
|
|
|
|
data->ref--;
|
|
|
|
if (!data->ref) {
|
|
|
|
/* Remove the SOFT_MODE flag */
|
|
|
|
trace_event_enable_disable(enable_data->file, 0, 1);
|
|
|
|
module_put(enable_data->file->event_call->mod);
|
|
|
|
trigger_data_free(data);
|
|
|
|
kfree(enable_data);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct event_trigger_ops event_enable_trigger_ops = {
|
|
|
|
.func = event_enable_trigger,
|
|
|
|
.print = event_enable_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_enable_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_trigger_ops event_enable_count_trigger_ops = {
|
|
|
|
.func = event_enable_count_trigger,
|
|
|
|
.print = event_enable_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_enable_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_trigger_ops event_disable_trigger_ops = {
|
|
|
|
.func = event_enable_trigger,
|
|
|
|
.print = event_enable_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_enable_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_trigger_ops event_disable_count_trigger_ops = {
|
|
|
|
.func = event_enable_count_trigger,
|
|
|
|
.print = event_enable_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_enable_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int
|
|
|
|
event_enable_trigger_func(struct event_command *cmd_ops,
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *file,
|
2013-10-24 13:59:28 +00:00
|
|
|
char *glob, char *cmd, char *param)
|
|
|
|
{
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *event_enable_file;
|
2013-10-24 13:59:28 +00:00
|
|
|
struct enable_trigger_data *enable_data;
|
|
|
|
struct event_trigger_data *trigger_data;
|
|
|
|
struct event_trigger_ops *trigger_ops;
|
|
|
|
struct trace_array *tr = file->tr;
|
|
|
|
const char *system;
|
|
|
|
const char *event;
|
|
|
|
char *trigger;
|
|
|
|
char *number;
|
|
|
|
bool enable;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!param)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* separate the trigger from the filter (s:e:n [if filter]) */
|
|
|
|
trigger = strsep(¶m, " \t");
|
|
|
|
if (!trigger)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
system = strsep(&trigger, ":");
|
|
|
|
if (!trigger)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
event = strsep(&trigger, ":");
|
|
|
|
|
|
|
|
ret = -EINVAL;
|
|
|
|
event_enable_file = find_event_file(tr, system, event);
|
|
|
|
if (!event_enable_file)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
enable = strcmp(cmd, ENABLE_EVENT_STR) == 0;
|
|
|
|
|
|
|
|
trigger_ops = cmd_ops->get_trigger_ops(cmd, trigger);
|
|
|
|
|
|
|
|
ret = -ENOMEM;
|
|
|
|
trigger_data = kzalloc(sizeof(*trigger_data), GFP_KERNEL);
|
|
|
|
if (!trigger_data)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
enable_data = kzalloc(sizeof(*enable_data), GFP_KERNEL);
|
|
|
|
if (!enable_data) {
|
|
|
|
kfree(trigger_data);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
trigger_data->count = -1;
|
|
|
|
trigger_data->ops = trigger_ops;
|
|
|
|
trigger_data->cmd_ops = cmd_ops;
|
|
|
|
INIT_LIST_HEAD(&trigger_data->list);
|
|
|
|
RCU_INIT_POINTER(trigger_data->filter, NULL);
|
|
|
|
|
|
|
|
enable_data->enable = enable;
|
|
|
|
enable_data->file = event_enable_file;
|
|
|
|
trigger_data->private_data = enable_data;
|
|
|
|
|
|
|
|
if (glob[0] == '!') {
|
|
|
|
cmd_ops->unreg(glob+1, trigger_ops, trigger_data, file);
|
|
|
|
kfree(trigger_data);
|
|
|
|
kfree(enable_data);
|
|
|
|
ret = 0;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (trigger) {
|
|
|
|
number = strsep(&trigger, ":");
|
|
|
|
|
|
|
|
ret = -EINVAL;
|
|
|
|
if (!strlen(number))
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We use the callback data field (which is a pointer)
|
|
|
|
* as our counter.
|
|
|
|
*/
|
|
|
|
ret = kstrtoul(number, 0, &trigger_data->count);
|
|
|
|
if (ret)
|
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!param) /* if param is non-empty, it's supposed to be a filter */
|
|
|
|
goto out_reg;
|
|
|
|
|
|
|
|
if (!cmd_ops->set_filter)
|
|
|
|
goto out_reg;
|
|
|
|
|
|
|
|
ret = cmd_ops->set_filter(param, trigger_data, file);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
out_reg:
|
|
|
|
/* Don't let event modules unload while probe registered */
|
|
|
|
ret = try_module_get(event_enable_file->event_call->mod);
|
|
|
|
if (!ret) {
|
|
|
|
ret = -EBUSY;
|
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = trace_event_enable_disable(event_enable_file, 1, 1);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out_put;
|
|
|
|
ret = cmd_ops->reg(glob, trigger_ops, trigger_data, file);
|
|
|
|
/*
|
|
|
|
* The above returns on success the # of functions enabled,
|
|
|
|
* but if it didn't find any functions it returns zero.
|
|
|
|
* Consider no functions a failure too.
|
|
|
|
*/
|
|
|
|
if (!ret) {
|
|
|
|
ret = -ENOENT;
|
|
|
|
goto out_disable;
|
|
|
|
} else if (ret < 0)
|
|
|
|
goto out_disable;
|
|
|
|
/* Just return zero, not the number of enabled functions */
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
out_disable:
|
|
|
|
trace_event_enable_disable(event_enable_file, 0, 1);
|
|
|
|
out_put:
|
|
|
|
module_put(event_enable_file->event_call->mod);
|
|
|
|
out_free:
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
if (cmd_ops->set_filter)
|
|
|
|
cmd_ops->set_filter(NULL, trigger_data, NULL);
|
2013-10-24 13:59:28 +00:00
|
|
|
kfree(trigger_data);
|
|
|
|
kfree(enable_data);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int event_enable_register_trigger(char *glob,
|
|
|
|
struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data,
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *file)
|
2013-10-24 13:59:28 +00:00
|
|
|
{
|
|
|
|
struct enable_trigger_data *enable_data = data->private_data;
|
|
|
|
struct enable_trigger_data *test_enable_data;
|
|
|
|
struct event_trigger_data *test;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
list_for_each_entry_rcu(test, &file->triggers, list) {
|
|
|
|
test_enable_data = test->private_data;
|
|
|
|
if (test_enable_data &&
|
|
|
|
(test_enable_data->file == enable_data->file)) {
|
|
|
|
ret = -EEXIST;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (data->ops->init) {
|
|
|
|
ret = data->ops->init(data->ops, data);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_add_rcu(&data->list, &file->triggers);
|
|
|
|
ret++;
|
|
|
|
|
|
|
|
if (trace_event_trigger_enable_disable(file, 1) < 0) {
|
|
|
|
list_del_rcu(&data->list);
|
|
|
|
ret--;
|
|
|
|
}
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
update_cond_flag(file);
|
2013-10-24 13:59:28 +00:00
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void event_enable_unregister_trigger(char *glob,
|
|
|
|
struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *test,
|
2015-05-05 14:09:53 +00:00
|
|
|
struct trace_event_file *file)
|
2013-10-24 13:59:28 +00:00
|
|
|
{
|
|
|
|
struct enable_trigger_data *test_enable_data = test->private_data;
|
|
|
|
struct enable_trigger_data *enable_data;
|
|
|
|
struct event_trigger_data *data;
|
|
|
|
bool unregistered = false;
|
|
|
|
|
|
|
|
list_for_each_entry_rcu(data, &file->triggers, list) {
|
|
|
|
enable_data = data->private_data;
|
|
|
|
if (enable_data &&
|
|
|
|
(enable_data->file == test_enable_data->file)) {
|
|
|
|
unregistered = true;
|
|
|
|
list_del_rcu(&data->list);
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
update_cond_flag(file);
|
2013-10-24 13:59:28 +00:00
|
|
|
trace_event_trigger_enable_disable(file, 0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unregistered && data->ops->free)
|
|
|
|
data->ops->free(data->ops, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct event_trigger_ops *
|
|
|
|
event_enable_get_trigger_ops(char *cmd, char *param)
|
|
|
|
{
|
|
|
|
struct event_trigger_ops *ops;
|
|
|
|
bool enable;
|
|
|
|
|
|
|
|
enable = strcmp(cmd, ENABLE_EVENT_STR) == 0;
|
|
|
|
|
|
|
|
if (enable)
|
|
|
|
ops = param ? &event_enable_count_trigger_ops :
|
|
|
|
&event_enable_trigger_ops;
|
|
|
|
else
|
|
|
|
ops = param ? &event_disable_count_trigger_ops :
|
|
|
|
&event_disable_trigger_ops;
|
|
|
|
|
|
|
|
return ops;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct event_command trigger_enable_cmd = {
|
|
|
|
.name = ENABLE_EVENT_STR,
|
|
|
|
.trigger_type = ETT_EVENT_ENABLE,
|
|
|
|
.func = event_enable_trigger_func,
|
|
|
|
.reg = event_enable_register_trigger,
|
|
|
|
.unreg = event_enable_unregister_trigger,
|
|
|
|
.get_trigger_ops = event_enable_get_trigger_ops,
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
.set_filter = set_trigger_filter,
|
2013-10-24 13:59:28 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_command trigger_disable_cmd = {
|
|
|
|
.name = DISABLE_EVENT_STR,
|
|
|
|
.trigger_type = ETT_EVENT_ENABLE,
|
|
|
|
.func = event_enable_trigger_func,
|
|
|
|
.reg = event_enable_register_trigger,
|
|
|
|
.unreg = event_enable_unregister_trigger,
|
|
|
|
.get_trigger_ops = event_enable_get_trigger_ops,
|
tracing: Add and use generic set_trigger_filter() implementation
Add a generic event_command.set_trigger_filter() op implementation and
have the current set of trigger commands use it - this essentially
gives them all support for filters.
Syntactically, filters are supported by adding 'if <filter>' just
after the command, in which case only events matching the filter will
invoke the trigger. For example, to add a filter to an
enable/disable_event command:
echo 'enable_event:system:event if common_pid == 999' > \
.../othersys/otherevent/trigger
The above command will only enable the system:event event if the
common_pid field in the othersys:otherevent event is 999.
As another example, to add a filter to a stacktrace command:
echo 'stacktrace if common_pid == 999' > \
.../somesys/someevent/trigger
The above command will only trigger a stacktrace if the common_pid
field in the event is 999.
The filter syntax is the same as that described in the 'Event
filtering' section of Documentation/trace/events.txt.
Because triggers can now use filters, the trigger-invoking logic needs
to be moved in those cases - e.g. for ftrace_raw_event_calls, if a
trigger has a filter associated with it, the trigger invocation now
needs to happen after the { assign; } part of the call, in order for
the trigger condition to be tested.
There's still a SOFT_DISABLED-only check at the top of e.g. the
ftrace_raw_events function, so when an event is soft disabled but not
because of the presence of a trigger, the original SOFT_DISABLED
behavior remains unchanged.
There's also a bit of trickiness in that some triggers need to avoid
being invoked while an event is currently in the process of being
logged, since the trigger may itself log data into the trace buffer.
Thus we make sure the current event is committed before invoking those
triggers. To do that, we split the trigger invocation in two - the
first part (event_triggers_call()) checks the filter using the current
trace record; if a command has the post_trigger flag set, it sets a
bit for itself in the return value, otherwise it directly invoks the
trigger. Once all commands have been either invoked or set their
return flag, event_triggers_call() returns. The current record is
then either committed or discarded; if any commands have deferred
their triggers, those commands are finally invoked following the close
of the current event by event_triggers_post_call().
To simplify the above and make it more efficient, the TRIGGER_COND bit
is introduced, which is set only if a soft-disabled trigger needs to
use the log record for filter testing or needs to wait until the
current log record is closed.
The syscall event invocation code is also changed in analogous ways.
Because event triggers need to be able to create and free filters,
this also adds a couple external wrappers for the existing
create_filter and free_filter functions, which are too generic to be
made extern functions themselves.
Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:29 +00:00
|
|
|
.set_filter = set_trigger_filter,
|
2013-10-24 13:59:28 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static __init void unregister_trigger_enable_disable_cmds(void)
|
|
|
|
{
|
|
|
|
unregister_event_command(&trigger_enable_cmd);
|
|
|
|
unregister_event_command(&trigger_disable_cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __init int register_trigger_enable_disable_cmds(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = register_event_command(&trigger_enable_cmd);
|
|
|
|
if (WARN_ON(ret < 0))
|
|
|
|
return ret;
|
|
|
|
ret = register_event_command(&trigger_disable_cmd);
|
|
|
|
if (WARN_ON(ret < 0))
|
|
|
|
unregister_trigger_enable_disable_cmds();
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
static __init int register_trigger_traceon_traceoff_cmds(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = register_event_command(&trigger_traceon_cmd);
|
|
|
|
if (WARN_ON(ret < 0))
|
|
|
|
return ret;
|
|
|
|
ret = register_event_command(&trigger_traceoff_cmd);
|
|
|
|
if (WARN_ON(ret < 0))
|
|
|
|
unregister_trigger_traceon_traceoff_cmds();
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
__init int register_trigger_cmds(void)
|
|
|
|
{
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
register_trigger_traceon_traceoff_cmds();
|
2013-10-24 13:59:26 +00:00
|
|
|
register_trigger_snapshot_cmd();
|
2013-10-24 13:59:27 +00:00
|
|
|
register_trigger_stacktrace_cmd();
|
2013-10-24 13:59:28 +00:00
|
|
|
register_trigger_enable_disable_cmds();
|
tracing: Add 'traceon' and 'traceoff' event trigger commands
Add 'traceon' and 'traceoff' event_command commands. traceon and
traceoff event triggers are added by the user via these commands in a
similar way and using practically the same syntax as the analagous
'traceon' and 'traceoff' ftrace function commands, but instead of
writing to the set_ftrace_filter file, the traceon and traceoff
triggers are written to the per-event 'trigger' files:
echo 'traceon' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff' > .../tracing/events/somesys/someevent/trigger
The above command will turn tracing on or off whenever someevent is
hit.
This also adds a 'count' version that limits the number of times the
command will be invoked:
echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger
echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger
Where N is the number of times the command will be invoked.
The above commands will will turn tracing on or off whenever someevent
is hit, but only N times.
Some common register/unregister_trigger() implementations of the
event_command reg()/unreg() callbacks are also provided, which add and
remove trigger instances to the per-event list of triggers, and
arm/disarm them as appropriate. event_trigger_callback() is a
general-purpose event_command func() implementation that orchestrates
command parsing and registration for most normal commands.
Most event commands will use these, but some will override and
possibly reuse them.
The event_trigger_init(), event_trigger_free(), and
event_trigger_print() functions are meant to be common implementations
of the event_trigger_ops init(), free(), and print() ops,
respectively.
Most trigger_ops implementations will use these, but some will
override and possibly reuse them.
Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:25 +00:00
|
|
|
|
tracing: Add basic event trigger framework
Add a 'trigger' file for each trace event, enabling 'trace event
triggers' to be set for trace events.
'trace event triggers' are patterned after the existing 'ftrace
function triggers' implementation except that triggers are written to
per-event 'trigger' files instead of to a single file such as the
'set_ftrace_filter' used for ftrace function triggers.
The implementation is meant to be entirely separate from ftrace
function triggers, in order to keep the respective implementations
relatively simple and to allow them to diverge.
The event trigger functionality is built on top of SOFT_DISABLE
functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file
flags which is checked when any trace event fires. Triggers set for a
particular event need to be checked regardless of whether that event
is actually enabled or not - getting an event to fire even if it's not
enabled is what's already implemented by SOFT_DISABLE mode, so trigger
mode directly reuses that. Event trigger essentially inherit the soft
disable logic in __ftrace_event_enable_disable() while adding a bit of
logic and trigger reference counting via tm_ref on top of that in a
new trace_event_trigger_enable_disable() function. Because the base
__ftrace_event_enable_disable() code now needs to be invoked from
outside trace_events.c, a wrapper is also added for those usages.
The triggers for an event are actually invoked via a new function,
event_triggers_call(), and code is also added to invoke them for
ftrace_raw_event calls as well as syscall events.
The main part of the patch creates a new trace_events_trigger.c file
to contain the trace event triggers implementation.
The standard open, read, and release file operations are implemented
here.
The open() implementation sets up for the various open modes of the
'trigger' file. It creates and attaches the trigger iterator and sets
up the command parser. If opened for reading set up the trigger
seq_ops.
The read() implementation parses the event trigger written to the
'trigger' file, looks up the trigger command, and passes it along to
that event_command's func() implementation for command-specific
processing.
The release() implementation does whatever cleanup is needed to
release the 'trigger' file, like releasing the parser and trigger
iterator, etc.
A couple of functions for event command registration and
unregistration are added, along with a list to add them to and a mutex
to protect them, as well as an (initially empty) registration function
to add the set of commands that will be added by future commits, and
call to it from the trace event initialization code.
also added are a couple trigger-specific data structures needed for
these implementations such as a trigger iterator and a struct for
trigger-specific data.
A couple structs consisting mostly of function meant to be implemented
in command-specific ways, event_command and event_trigger_ops, are
used by the generic event trigger command implementations. They're
being put into trace.h alongside the other trace_event data structures
and functions, in the expectation that they'll be needed in several
trace_event-related files such as trace_events_trigger.c and
trace_events.c.
The event_command.func() function is meant to be called by the trigger
parsing code in order to add a trigger instance to the corresponding
event. It essentially coordinates adding a live trigger instance to
the event, and arming the triggering the event.
Every event_command func() implementation essentially does the
same thing for any command:
- choose ops - use the value of param to choose either a number or
count version of event_trigger_ops specific to the command
- do the register or unregister of those ops
- associate a filter, if specified, with the triggering event
The reg() and unreg() ops allow command-specific implementations for
event_trigger_op registration and unregistration, and the
get_trigger_ops() op allows command-specific event_trigger_ops
selection to be parameterized. When a trigger instance is added, the
reg() op essentially adds that trigger to the triggering event and
arms it, while unreg() does the opposite. The set_filter() function
is used to associate a filter with the trigger - if the command
doesn't specify a set_filter() implementation, the command will ignore
filters.
Each command has an associated trigger_type, which serves double duty,
both as a unique identifier for the command as well as a value that
can be used for setting a trigger mode bit during trigger invocation.
The signature of func() adds a pointer to the event_command struct,
used to invoke those functions, along with a command_data param that
can be passed to the reg/unreg functions. This allows func()
implementations to use command-specific blobs and supports code
re-use.
The event_trigger_ops.func() command corrsponds to the trigger 'probe'
function that gets called when the triggering event is actually
invoked. The other functions are used to list the trigger when
needed, along with a couple mundane book-keeping functions.
This also moves event_file_data() into trace.h so it can be used
outside of trace_events.c.
Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Idea-by: Steve Rostedt <rostedt@goodmis.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 13:59:24 +00:00
|
|
|
return 0;
|
|
|
|
}
|