linux-stable/drivers/thermal/sun8i_thermal.c

738 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Thermal sensor driver for Allwinner SOC
* Copyright (C) 2019 Yangtao Li
*
* Based on the work of Icenowy Zheng <icenowy@aosc.io>
* Based on the work of Ondrej Jirman <megous@megous.com>
* Based on the work of Josef Gajdusek <atx@atx.name>
*/
#include <linux/bitmap.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#include "thermal_hwmon.h"
#define MAX_SENSOR_NUM 4
#define FT_TEMP_MASK GENMASK(11, 0)
#define TEMP_CALIB_MASK GENMASK(11, 0)
#define CALIBRATE_DEFAULT 0x800
#define SUN8I_THS_CTRL0 0x00
#define SUN8I_THS_CTRL2 0x40
#define SUN8I_THS_IC 0x44
#define SUN8I_THS_IS 0x48
#define SUN8I_THS_MFC 0x70
#define SUN8I_THS_TEMP_CALIB 0x74
#define SUN8I_THS_TEMP_DATA 0x80
#define SUN50I_THS_CTRL0 0x00
#define SUN50I_H6_THS_ENABLE 0x04
#define SUN50I_H6_THS_PC 0x08
#define SUN50I_H6_THS_DIC 0x10
#define SUN50I_H6_THS_DIS 0x20
#define SUN50I_H6_THS_MFC 0x30
#define SUN50I_H6_THS_TEMP_CALIB 0xa0
#define SUN50I_H6_THS_TEMP_DATA 0xc0
#define SUN8I_THS_CTRL0_T_ACQ0(x) (GENMASK(15, 0) & (x))
#define SUN8I_THS_CTRL2_T_ACQ1(x) ((GENMASK(15, 0) & (x)) << 16)
#define SUN8I_THS_DATA_IRQ_STS(x) BIT(x + 8)
#define SUN50I_THS_CTRL0_T_ACQ(x) (GENMASK(15, 0) & ((x) - 1))
#define SUN50I_THS_CTRL0_T_SAMPLE_PER(x) ((GENMASK(15, 0) & ((x) - 1)) << 16)
#define SUN50I_THS_FILTER_EN BIT(2)
#define SUN50I_THS_FILTER_TYPE(x) (GENMASK(1, 0) & (x))
#define SUN50I_H6_THS_PC_TEMP_PERIOD(x) ((GENMASK(19, 0) & (x)) << 12)
#define SUN50I_H6_THS_DATA_IRQ_STS(x) BIT(x)
struct tsensor {
struct ths_device *tmdev;
struct thermal_zone_device *tzd;
int id;
};
struct ths_thermal_chip {
bool has_mod_clk;
bool has_bus_clk_reset;
bool needs_sram;
int sensor_num;
int offset;
int scale;
int ft_deviation;
int temp_data_base;
int (*calibrate)(struct ths_device *tmdev,
u16 *caldata, int callen);
int (*init)(struct ths_device *tmdev);
unsigned long (*irq_ack)(struct ths_device *tmdev);
int (*calc_temp)(struct ths_device *tmdev,
int id, int reg);
};
struct ths_device {
const struct ths_thermal_chip *chip;
struct device *dev;
struct regmap *regmap;
struct regmap_field *sram_regmap_field;
struct reset_control *reset;
struct clk *bus_clk;
struct clk *mod_clk;
struct tsensor sensor[MAX_SENSOR_NUM];
};
/* The H616 needs to have a bit 16 in the SRAM control register cleared. */
static const struct reg_field sun8i_ths_sram_reg_field = REG_FIELD(0x0, 16, 16);
/* Temp Unit: millidegree Celsius */
static int sun8i_ths_calc_temp(struct ths_device *tmdev,
int id, int reg)
{
return tmdev->chip->offset - (reg * tmdev->chip->scale / 10);
}
static int sun50i_h5_calc_temp(struct ths_device *tmdev,
int id, int reg)
{
if (reg >= 0x500)
return -1191 * reg / 10 + 223000;
else if (!id)
return -1452 * reg / 10 + 259000;
else
return -1590 * reg / 10 + 276000;
}
static int sun8i_ths_get_temp(struct thermal_zone_device *tz, int *temp)
{
2023-03-01 21:14:30 +01:00
struct tsensor *s = thermal_zone_device_priv(tz);
struct ths_device *tmdev = s->tmdev;
int val = 0;
regmap_read(tmdev->regmap, tmdev->chip->temp_data_base +
0x4 * s->id, &val);
/* ths have no data yet */
if (!val)
return -EAGAIN;
*temp = tmdev->chip->calc_temp(tmdev, s->id, val);
/*
* According to the original sdk, there are some platforms(rarely)
* that add a fixed offset value after calculating the temperature
* value. We can't simply put it on the formula for calculating the
* temperature above, because the formula for calculating the
* temperature above is also used when the sensor is calibrated. If
* do this, the correct calibration formula is hard to know.
*/
*temp += tmdev->chip->ft_deviation;
return 0;
}
static const struct thermal_zone_device_ops ths_ops = {
.get_temp = sun8i_ths_get_temp,
};
static const struct regmap_config config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.fast_io = true,
.max_register = 0xfc,
};
static unsigned long sun8i_h3_irq_ack(struct ths_device *tmdev)
{
unsigned long irq_bitmap = 0;
int i, state;
regmap_read(tmdev->regmap, SUN8I_THS_IS, &state);
for (i = 0; i < tmdev->chip->sensor_num; i++) {
if (state & SUN8I_THS_DATA_IRQ_STS(i)) {
regmap_write(tmdev->regmap, SUN8I_THS_IS,
SUN8I_THS_DATA_IRQ_STS(i));
bitmap_set(&irq_bitmap, i, 1);
}
}
return irq_bitmap;
}
static unsigned long sun50i_h6_irq_ack(struct ths_device *tmdev)
{
unsigned long irq_bitmap = 0;
int i, state;
regmap_read(tmdev->regmap, SUN50I_H6_THS_DIS, &state);
for (i = 0; i < tmdev->chip->sensor_num; i++) {
if (state & SUN50I_H6_THS_DATA_IRQ_STS(i)) {
regmap_write(tmdev->regmap, SUN50I_H6_THS_DIS,
SUN50I_H6_THS_DATA_IRQ_STS(i));
bitmap_set(&irq_bitmap, i, 1);
}
}
return irq_bitmap;
}
static irqreturn_t sun8i_irq_thread(int irq, void *data)
{
struct ths_device *tmdev = data;
unsigned long irq_bitmap = tmdev->chip->irq_ack(tmdev);
int i;
for_each_set_bit(i, &irq_bitmap, tmdev->chip->sensor_num) {
/* We allow some zones to not register. */
if (IS_ERR(tmdev->sensor[i].tzd))
continue;
thermal_zone_device_update(tmdev->sensor[i].tzd,
THERMAL_EVENT_UNSPECIFIED);
}
return IRQ_HANDLED;
}
static int sun8i_h3_ths_calibrate(struct ths_device *tmdev,
u16 *caldata, int callen)
{
int i;
if (!caldata[0] || callen < 2 * tmdev->chip->sensor_num)
return -EINVAL;
for (i = 0; i < tmdev->chip->sensor_num; i++) {
int offset = (i % 2) << 4;
regmap_update_bits(tmdev->regmap,
SUN8I_THS_TEMP_CALIB + (4 * (i >> 1)),
TEMP_CALIB_MASK << offset,
caldata[i] << offset);
}
return 0;
}
static int sun50i_h6_ths_calibrate(struct ths_device *tmdev,
u16 *caldata, int callen)
{
struct device *dev = tmdev->dev;
int i, ft_temp;
if (!caldata[0])
return -EINVAL;
/*
* efuse layout:
*
* 0 11 16 27 32 43 48 57
* +----------+-----------+-----------+-----------+
* | temp | |sensor0| |sensor1| |sensor2| |
* +----------+-----------+-----------+-----------+
* ^ ^ ^
* | | |
* | | sensor3[11:8]
* | sensor3[7:4]
* sensor3[3:0]
*
* The calibration data on the H6 is the ambient temperature and
* sensor values that are filled during the factory test stage.
*
* The unit of stored FT temperature is 0.1 degree celsius.
*
* We need to calculate a delta between measured and caluclated
* register values and this will become a calibration offset.
*/
ft_temp = (caldata[0] & FT_TEMP_MASK) * 100;
for (i = 0; i < tmdev->chip->sensor_num; i++) {
int sensor_reg, sensor_temp, cdata, offset;
if (i == 3)
sensor_reg = (caldata[1] >> 12)
| ((caldata[2] >> 12) << 4)
| ((caldata[3] >> 12) << 8);
else
sensor_reg = caldata[i + 1] & TEMP_CALIB_MASK;
sensor_temp = tmdev->chip->calc_temp(tmdev, i, sensor_reg);
/*
* Calibration data is CALIBRATE_DEFAULT - (calculated
* temperature from sensor reading at factory temperature
* minus actual factory temperature) * 14.88 (scale from
* temperature to register values)
*/
cdata = CALIBRATE_DEFAULT -
((sensor_temp - ft_temp) * 10 / tmdev->chip->scale);
if (cdata & ~TEMP_CALIB_MASK) {
/*
* Calibration value more than 12-bit, but calibration
* register is 12-bit. In this case, ths hardware can
* still work without calibration, although the data
* won't be so accurate.
*/
dev_warn(dev, "sensor%d is not calibrated.\n", i);
continue;
}
offset = (i % 2) * 16;
regmap_update_bits(tmdev->regmap,
SUN50I_H6_THS_TEMP_CALIB + (i / 2 * 4),
TEMP_CALIB_MASK << offset,
cdata << offset);
}
return 0;
}
static int sun8i_ths_calibrate(struct ths_device *tmdev)
{
struct nvmem_cell *calcell;
struct device *dev = tmdev->dev;
u16 *caldata;
size_t callen;
int ret = 0;
calcell = nvmem_cell_get(dev, "calibration");
if (IS_ERR(calcell)) {
if (PTR_ERR(calcell) == -EPROBE_DEFER)
return -EPROBE_DEFER;
/*
* Even if the external calibration data stored in sid is
* not accessible, the THS hardware can still work, although
* the data won't be so accurate.
*
* The default value of calibration register is 0x800 for
* every sensor, and the calibration value is usually 0x7xx
* or 0x8xx, so they won't be away from the default value
* for a lot.
*
* So here we do not return error if the calibration data is
* not available, except the probe needs deferring.
*/
goto out;
}
caldata = nvmem_cell_read(calcell, &callen);
if (IS_ERR(caldata)) {
ret = PTR_ERR(caldata);
goto out;
}
tmdev->chip->calibrate(tmdev, caldata, callen);
kfree(caldata);
out:
if (!IS_ERR(calcell))
nvmem_cell_put(calcell);
return ret;
}
static void sun8i_ths_reset_control_assert(void *data)
{
reset_control_assert(data);
}
static struct regmap *sun8i_ths_get_sram_regmap(struct device_node *node)
{
struct device_node *sram_node;
struct platform_device *sram_pdev;
struct regmap *regmap = NULL;
sram_node = of_parse_phandle(node, "allwinner,sram", 0);
if (!sram_node)
return ERR_PTR(-ENODEV);
sram_pdev = of_find_device_by_node(sram_node);
if (!sram_pdev) {
/* platform device might not be probed yet */
regmap = ERR_PTR(-EPROBE_DEFER);
goto out_put_node;
}
/* If no regmap is found then the other device driver is at fault */
regmap = dev_get_regmap(&sram_pdev->dev, NULL);
if (!regmap)
regmap = ERR_PTR(-EINVAL);
platform_device_put(sram_pdev);
out_put_node:
of_node_put(sram_node);
return regmap;
}
static int sun8i_ths_resource_init(struct ths_device *tmdev)
{
struct device *dev = tmdev->dev;
struct platform_device *pdev = to_platform_device(dev);
void __iomem *base;
int ret;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
tmdev->regmap = devm_regmap_init_mmio(dev, base, &config);
if (IS_ERR(tmdev->regmap))
return PTR_ERR(tmdev->regmap);
if (tmdev->chip->has_bus_clk_reset) {
tmdev->reset = devm_reset_control_get(dev, NULL);
if (IS_ERR(tmdev->reset))
return PTR_ERR(tmdev->reset);
ret = reset_control_deassert(tmdev->reset);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, sun8i_ths_reset_control_assert,
tmdev->reset);
if (ret)
return ret;
tmdev->bus_clk = devm_clk_get_enabled(&pdev->dev, "bus");
if (IS_ERR(tmdev->bus_clk))
return PTR_ERR(tmdev->bus_clk);
}
if (tmdev->chip->has_mod_clk) {
tmdev->mod_clk = devm_clk_get_enabled(&pdev->dev, "mod");
if (IS_ERR(tmdev->mod_clk))
return PTR_ERR(tmdev->mod_clk);
}
ret = clk_set_rate(tmdev->mod_clk, 24000000);
if (ret)
return ret;
if (tmdev->chip->needs_sram) {
struct regmap *regmap;
regmap = sun8i_ths_get_sram_regmap(dev->of_node);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
tmdev->sram_regmap_field = devm_regmap_field_alloc(dev,
regmap,
sun8i_ths_sram_reg_field);
if (IS_ERR(tmdev->sram_regmap_field))
return PTR_ERR(tmdev->sram_regmap_field);
}
ret = sun8i_ths_calibrate(tmdev);
if (ret)
return ret;
return 0;
}
static int sun8i_h3_thermal_init(struct ths_device *tmdev)
{
int val;
/* average over 4 samples */
regmap_write(tmdev->regmap, SUN8I_THS_MFC,
SUN50I_THS_FILTER_EN |
SUN50I_THS_FILTER_TYPE(1));
/*
* clkin = 24MHz
* filter_samples = 4
* period = 0.25s
*
* x = period * clkin / 4096 / filter_samples - 1
* = 365
*/
val = GENMASK(7 + tmdev->chip->sensor_num, 8);
regmap_write(tmdev->regmap, SUN8I_THS_IC,
SUN50I_H6_THS_PC_TEMP_PERIOD(365) | val);
/*
* T_acq = 20us
* clkin = 24MHz
*
* x = T_acq * clkin - 1
* = 479
*/
regmap_write(tmdev->regmap, SUN8I_THS_CTRL0,
SUN8I_THS_CTRL0_T_ACQ0(479));
val = GENMASK(tmdev->chip->sensor_num - 1, 0);
regmap_write(tmdev->regmap, SUN8I_THS_CTRL2,
SUN8I_THS_CTRL2_T_ACQ1(479) | val);
return 0;
}
static int sun50i_h6_thermal_init(struct ths_device *tmdev)
{
int val;
/* The H616 needs to have a bit in the SRAM control register cleared. */
if (tmdev->sram_regmap_field)
regmap_field_write(tmdev->sram_regmap_field, 0);
/*
* The manual recommends an overall sample frequency of 50 KHz (20us,
* 480 cycles at 24 MHz), which provides plenty of time for both the
* acquisition time (>24 cycles) and the actual conversion time
* (>14 cycles).
* The lower half of the CTRL register holds the "acquire time", in
* clock cycles, which the manual recommends to be 2us:
* 24MHz * 2us = 48 cycles.
* The high half of THS_CTRL encodes the sample frequency, in clock
* cycles: 24MHz * 20us = 480 cycles.
* This is explained in the H616 manual, but apparently wrongly
* described in the H6 manual, although the BSP code does the same
* for both SoCs.
*/
regmap_write(tmdev->regmap, SUN50I_THS_CTRL0,
SUN50I_THS_CTRL0_T_ACQ(48) |
SUN50I_THS_CTRL0_T_SAMPLE_PER(480));
/* average over 4 samples */
regmap_write(tmdev->regmap, SUN50I_H6_THS_MFC,
SUN50I_THS_FILTER_EN |
SUN50I_THS_FILTER_TYPE(1));
/*
* clkin = 24MHz
* filter_samples = 4
* period = 0.25s
*
* x = period * clkin / 4096 / filter_samples - 1
* = 365
*/
regmap_write(tmdev->regmap, SUN50I_H6_THS_PC,
SUN50I_H6_THS_PC_TEMP_PERIOD(365));
/* enable sensor */
val = GENMASK(tmdev->chip->sensor_num - 1, 0);
regmap_write(tmdev->regmap, SUN50I_H6_THS_ENABLE, val);
/* thermal data interrupt enable */
val = GENMASK(tmdev->chip->sensor_num - 1, 0);
regmap_write(tmdev->regmap, SUN50I_H6_THS_DIC, val);
return 0;
}
static int sun8i_ths_register(struct ths_device *tmdev)
{
int i;
for (i = 0; i < tmdev->chip->sensor_num; i++) {
tmdev->sensor[i].tmdev = tmdev;
tmdev->sensor[i].id = i;
tmdev->sensor[i].tzd =
devm_thermal_of_zone_register(tmdev->dev,
i,
&tmdev->sensor[i],
&ths_ops);
/*
* If an individual zone fails to register for reasons
* other than probe deferral (eg, a bad DT) then carry
* on, other zones might register successfully.
*/
if (IS_ERR(tmdev->sensor[i].tzd)) {
if (PTR_ERR(tmdev->sensor[i].tzd) == -EPROBE_DEFER)
return PTR_ERR(tmdev->sensor[i].tzd);
continue;
}
devm_thermal_add_hwmon_sysfs(tmdev->dev, tmdev->sensor[i].tzd);
}
return 0;
}
static int sun8i_ths_probe(struct platform_device *pdev)
{
struct ths_device *tmdev;
struct device *dev = &pdev->dev;
int ret, irq;
tmdev = devm_kzalloc(dev, sizeof(*tmdev), GFP_KERNEL);
if (!tmdev)
return -ENOMEM;
tmdev->dev = dev;
tmdev->chip = of_device_get_match_data(&pdev->dev);
if (!tmdev->chip)
return -EINVAL;
ret = sun8i_ths_resource_init(tmdev);
if (ret)
return ret;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = tmdev->chip->init(tmdev);
if (ret)
return ret;
ret = sun8i_ths_register(tmdev);
if (ret)
return ret;
/*
* Avoid entering the interrupt handler, the thermal device is not
* registered yet, we deffer the registration of the interrupt to
* the end.
*/
ret = devm_request_threaded_irq(dev, irq, NULL,
sun8i_irq_thread,
IRQF_ONESHOT, "ths", tmdev);
if (ret)
return ret;
return 0;
}
static const struct ths_thermal_chip sun8i_a83t_ths = {
.sensor_num = 3,
.scale = 705,
.offset = 191668,
.temp_data_base = SUN8I_THS_TEMP_DATA,
.calibrate = sun8i_h3_ths_calibrate,
.init = sun8i_h3_thermal_init,
.irq_ack = sun8i_h3_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct ths_thermal_chip sun8i_h3_ths = {
.sensor_num = 1,
.scale = 1211,
.offset = 217000,
.has_mod_clk = true,
.has_bus_clk_reset = true,
.temp_data_base = SUN8I_THS_TEMP_DATA,
.calibrate = sun8i_h3_ths_calibrate,
.init = sun8i_h3_thermal_init,
.irq_ack = sun8i_h3_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct ths_thermal_chip sun8i_r40_ths = {
.sensor_num = 2,
.offset = 251086,
.scale = 1130,
.has_mod_clk = true,
.has_bus_clk_reset = true,
.temp_data_base = SUN8I_THS_TEMP_DATA,
.calibrate = sun8i_h3_ths_calibrate,
.init = sun8i_h3_thermal_init,
.irq_ack = sun8i_h3_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct ths_thermal_chip sun50i_a64_ths = {
.sensor_num = 3,
.offset = 260890,
.scale = 1170,
.has_mod_clk = true,
.has_bus_clk_reset = true,
.temp_data_base = SUN8I_THS_TEMP_DATA,
.calibrate = sun8i_h3_ths_calibrate,
.init = sun8i_h3_thermal_init,
.irq_ack = sun8i_h3_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct ths_thermal_chip sun50i_a100_ths = {
.sensor_num = 3,
.has_bus_clk_reset = true,
.ft_deviation = 8000,
.offset = 187744,
.scale = 672,
.temp_data_base = SUN50I_H6_THS_TEMP_DATA,
.calibrate = sun50i_h6_ths_calibrate,
.init = sun50i_h6_thermal_init,
.irq_ack = sun50i_h6_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct ths_thermal_chip sun50i_h5_ths = {
.sensor_num = 2,
.has_mod_clk = true,
.has_bus_clk_reset = true,
.temp_data_base = SUN8I_THS_TEMP_DATA,
.calibrate = sun8i_h3_ths_calibrate,
.init = sun8i_h3_thermal_init,
.irq_ack = sun8i_h3_irq_ack,
.calc_temp = sun50i_h5_calc_temp,
};
static const struct ths_thermal_chip sun50i_h6_ths = {
.sensor_num = 2,
.has_bus_clk_reset = true,
.ft_deviation = 7000,
.offset = 187744,
.scale = 672,
.temp_data_base = SUN50I_H6_THS_TEMP_DATA,
.calibrate = sun50i_h6_ths_calibrate,
.init = sun50i_h6_thermal_init,
.irq_ack = sun50i_h6_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct ths_thermal_chip sun20i_d1_ths = {
.sensor_num = 1,
.has_bus_clk_reset = true,
.offset = 188552,
.scale = 673,
.temp_data_base = SUN50I_H6_THS_TEMP_DATA,
.calibrate = sun50i_h6_ths_calibrate,
.init = sun50i_h6_thermal_init,
.irq_ack = sun50i_h6_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct ths_thermal_chip sun50i_h616_ths = {
.sensor_num = 4,
.has_bus_clk_reset = true,
.needs_sram = true,
.ft_deviation = 8000,
.offset = 263655,
.scale = 810,
.temp_data_base = SUN50I_H6_THS_TEMP_DATA,
.calibrate = sun50i_h6_ths_calibrate,
.init = sun50i_h6_thermal_init,
.irq_ack = sun50i_h6_irq_ack,
.calc_temp = sun8i_ths_calc_temp,
};
static const struct of_device_id of_ths_match[] = {
{ .compatible = "allwinner,sun8i-a83t-ths", .data = &sun8i_a83t_ths },
{ .compatible = "allwinner,sun8i-h3-ths", .data = &sun8i_h3_ths },
{ .compatible = "allwinner,sun8i-r40-ths", .data = &sun8i_r40_ths },
{ .compatible = "allwinner,sun50i-a64-ths", .data = &sun50i_a64_ths },
{ .compatible = "allwinner,sun50i-a100-ths", .data = &sun50i_a100_ths },
{ .compatible = "allwinner,sun50i-h5-ths", .data = &sun50i_h5_ths },
{ .compatible = "allwinner,sun50i-h6-ths", .data = &sun50i_h6_ths },
{ .compatible = "allwinner,sun20i-d1-ths", .data = &sun20i_d1_ths },
{ .compatible = "allwinner,sun50i-h616-ths", .data = &sun50i_h616_ths },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, of_ths_match);
static struct platform_driver ths_driver = {
.probe = sun8i_ths_probe,
.driver = {
.name = "sun8i-thermal",
.of_match_table = of_ths_match,
},
};
module_platform_driver(ths_driver);
MODULE_DESCRIPTION("Thermal sensor driver for Allwinner SOC");
MODULE_LICENSE("GPL v2");