linux-stable/fs/nfsd/filecache.c

1286 lines
33 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
2019-08-18 14:18:48 -04:00
/*
* The NFSD open file cache.
2019-08-18 14:18:48 -04:00
*
* (c) 2015 - Jeff Layton <jeff.layton@primarydata.com>
*
* An nfsd_file object is a per-file collection of open state that binds
* together:
* - a struct file *
* - a user credential
* - a network namespace
* - a read-ahead context
* - monitoring for writeback errors
*
* nfsd_file objects are reference-counted. Consumers acquire a new
* object via the nfsd_file_acquire API. They manage their interest in
* the acquired object, and hence the object's reference count, via
* nfsd_file_get and nfsd_file_put. There are two varieties of nfsd_file
* object:
*
* * non-garbage-collected: When a consumer wants to precisely control
* the lifetime of a file's open state, it acquires a non-garbage-
* collected nfsd_file. The final nfsd_file_put releases the open
* state immediately.
*
* * garbage-collected: When a consumer does not control the lifetime
* of open state, it acquires a garbage-collected nfsd_file. The
* final nfsd_file_put allows the open state to linger for a period
* during which it may be re-used.
2019-08-18 14:18:48 -04:00
*/
#include <linux/hash.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/pagemap.h>
2019-08-18 14:18:48 -04:00
#include <linux/sched.h>
#include <linux/list_lru.h>
#include <linux/fsnotify_backend.h>
#include <linux/fsnotify.h>
#include <linux/seq_file.h>
#include <linux/rhashtable.h>
2019-08-18 14:18:48 -04:00
#include "vfs.h"
#include "nfsd.h"
#include "nfsfh.h"
#include "netns.h"
2019-08-18 14:18:48 -04:00
#include "filecache.h"
#include "trace.h"
#define NFSD_LAUNDRETTE_DELAY (2 * HZ)
#define NFSD_FILE_CACHE_UP (0)
2019-08-18 14:18:48 -04:00
/* We only care about NFSD_MAY_READ/WRITE for this cache */
#define NFSD_FILE_MAY_MASK (NFSD_MAY_READ|NFSD_MAY_WRITE)
static DEFINE_PER_CPU(unsigned long, nfsd_file_cache_hits);
static DEFINE_PER_CPU(unsigned long, nfsd_file_acquisitions);
static DEFINE_PER_CPU(unsigned long, nfsd_file_releases);
static DEFINE_PER_CPU(unsigned long, nfsd_file_total_age);
static DEFINE_PER_CPU(unsigned long, nfsd_file_pages_flushed);
static DEFINE_PER_CPU(unsigned long, nfsd_file_evictions);
2019-08-18 14:18:48 -04:00
struct nfsd_fcache_disposal {
struct work_struct work;
spinlock_t lock;
struct list_head freeme;
};
static struct workqueue_struct *nfsd_filecache_wq __read_mostly;
2019-08-18 14:18:48 -04:00
static struct kmem_cache *nfsd_file_slab;
static struct kmem_cache *nfsd_file_mark_slab;
static struct list_lru nfsd_file_lru;
static unsigned long nfsd_file_flags;
2019-08-18 14:18:48 -04:00
static struct fsnotify_group *nfsd_file_fsnotify_group;
static struct delayed_work nfsd_filecache_laundrette;
static struct rhashtable nfsd_file_rhash_tbl
____cacheline_aligned_in_smp;
enum nfsd_file_lookup_type {
NFSD_FILE_KEY_INODE,
NFSD_FILE_KEY_FULL,
};
struct nfsd_file_lookup_key {
struct inode *inode;
struct net *net;
const struct cred *cred;
unsigned char need;
bool gc;
enum nfsd_file_lookup_type type;
};
/*
* The returned hash value is based solely on the address of an in-code
* inode, a pointer to a slab-allocated object. The entropy in such a
* pointer is concentrated in its middle bits.
*/
static u32 nfsd_file_inode_hash(const struct inode *inode, u32 seed)
{
unsigned long ptr = (unsigned long)inode;
u32 k;
k = ptr >> L1_CACHE_SHIFT;
k &= 0x00ffffff;
return jhash2(&k, 1, seed);
}
/**
* nfsd_file_key_hashfn - Compute the hash value of a lookup key
* @data: key on which to compute the hash value
* @len: rhash table's key_len parameter (unused)
* @seed: rhash table's random seed of the day
*
* Return value:
* Computed 32-bit hash value
*/
static u32 nfsd_file_key_hashfn(const void *data, u32 len, u32 seed)
{
const struct nfsd_file_lookup_key *key = data;
return nfsd_file_inode_hash(key->inode, seed);
}
/**
* nfsd_file_obj_hashfn - Compute the hash value of an nfsd_file
* @data: object on which to compute the hash value
* @len: rhash table's key_len parameter (unused)
* @seed: rhash table's random seed of the day
*
* Return value:
* Computed 32-bit hash value
*/
static u32 nfsd_file_obj_hashfn(const void *data, u32 len, u32 seed)
{
const struct nfsd_file *nf = data;
return nfsd_file_inode_hash(nf->nf_inode, seed);
}
2019-08-18 14:18:48 -04:00
static bool
nfsd_match_cred(const struct cred *c1, const struct cred *c2)
{
int i;
if (!uid_eq(c1->fsuid, c2->fsuid))
return false;
if (!gid_eq(c1->fsgid, c2->fsgid))
return false;
if (c1->group_info == NULL || c2->group_info == NULL)
return c1->group_info == c2->group_info;
if (c1->group_info->ngroups != c2->group_info->ngroups)
return false;
for (i = 0; i < c1->group_info->ngroups; i++) {
if (!gid_eq(c1->group_info->gid[i], c2->group_info->gid[i]))
return false;
}
return true;
}
/**
* nfsd_file_obj_cmpfn - Match a cache item against search criteria
* @arg: search criteria
* @ptr: cache item to check
*
* Return values:
* %0 - Item matches search criteria
* %1 - Item does not match search criteria
*/
static int nfsd_file_obj_cmpfn(struct rhashtable_compare_arg *arg,
const void *ptr)
{
const struct nfsd_file_lookup_key *key = arg->key;
const struct nfsd_file *nf = ptr;
switch (key->type) {
case NFSD_FILE_KEY_INODE:
if (nf->nf_inode != key->inode)
return 1;
break;
case NFSD_FILE_KEY_FULL:
if (nf->nf_inode != key->inode)
return 1;
if (nf->nf_may != key->need)
return 1;
if (nf->nf_net != key->net)
return 1;
if (!nfsd_match_cred(nf->nf_cred, key->cred))
return 1;
if (!!test_bit(NFSD_FILE_GC, &nf->nf_flags) != key->gc)
return 1;
if (test_bit(NFSD_FILE_HASHED, &nf->nf_flags) == 0)
return 1;
break;
}
return 0;
}
static const struct rhashtable_params nfsd_file_rhash_params = {
.key_len = sizeof_field(struct nfsd_file, nf_inode),
.key_offset = offsetof(struct nfsd_file, nf_inode),
.head_offset = offsetof(struct nfsd_file, nf_rhash),
.hashfn = nfsd_file_key_hashfn,
.obj_hashfn = nfsd_file_obj_hashfn,
.obj_cmpfn = nfsd_file_obj_cmpfn,
/* Reduce resizing churn on light workloads */
.min_size = 512, /* buckets */
.automatic_shrinking = true,
};
2019-08-18 14:18:48 -04:00
static void
nfsd_file_schedule_laundrette(void)
2019-08-18 14:18:48 -04:00
{
if ((atomic_read(&nfsd_file_rhash_tbl.nelems) == 0) ||
test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 0)
2019-08-18 14:18:48 -04:00
return;
queue_delayed_work(system_wq, &nfsd_filecache_laundrette,
NFSD_LAUNDRETTE_DELAY);
2019-08-18 14:18:48 -04:00
}
static void
nfsd_file_slab_free(struct rcu_head *rcu)
{
struct nfsd_file *nf = container_of(rcu, struct nfsd_file, nf_rcu);
put_cred(nf->nf_cred);
kmem_cache_free(nfsd_file_slab, nf);
}
static void
nfsd_file_mark_free(struct fsnotify_mark *mark)
{
struct nfsd_file_mark *nfm = container_of(mark, struct nfsd_file_mark,
nfm_mark);
kmem_cache_free(nfsd_file_mark_slab, nfm);
}
static struct nfsd_file_mark *
nfsd_file_mark_get(struct nfsd_file_mark *nfm)
{
if (!refcount_inc_not_zero(&nfm->nfm_ref))
2019-08-18 14:18:48 -04:00
return NULL;
return nfm;
}
static void
nfsd_file_mark_put(struct nfsd_file_mark *nfm)
{
if (refcount_dec_and_test(&nfm->nfm_ref)) {
2019-08-18 14:18:48 -04:00
fsnotify_destroy_mark(&nfm->nfm_mark, nfsd_file_fsnotify_group);
fsnotify_put_mark(&nfm->nfm_mark);
}
}
static struct nfsd_file_mark *
nfsd_file_mark_find_or_create(struct nfsd_file *nf, struct inode *inode)
2019-08-18 14:18:48 -04:00
{
int err;
struct fsnotify_mark *mark;
struct nfsd_file_mark *nfm = NULL, *new;
do {
fsnotify_group_lock(nfsd_file_fsnotify_group);
2019-08-18 14:18:48 -04:00
mark = fsnotify_find_mark(&inode->i_fsnotify_marks,
nfsd_file_fsnotify_group);
2019-08-18 14:18:48 -04:00
if (mark) {
nfm = nfsd_file_mark_get(container_of(mark,
struct nfsd_file_mark,
nfm_mark));
fsnotify_group_unlock(nfsd_file_fsnotify_group);
if (nfm) {
fsnotify_put_mark(mark);
2019-08-18 14:18:48 -04:00
break;
}
/* Avoid soft lockup race with nfsd_file_mark_put() */
fsnotify_destroy_mark(mark, nfsd_file_fsnotify_group);
fsnotify_put_mark(mark);
} else {
fsnotify_group_unlock(nfsd_file_fsnotify_group);
}
2019-08-18 14:18:48 -04:00
/* allocate a new nfm */
new = kmem_cache_alloc(nfsd_file_mark_slab, GFP_KERNEL);
if (!new)
return NULL;
fsnotify_init_mark(&new->nfm_mark, nfsd_file_fsnotify_group);
new->nfm_mark.mask = FS_ATTRIB|FS_DELETE_SELF;
refcount_set(&new->nfm_ref, 1);
2019-08-18 14:18:48 -04:00
err = fsnotify_add_inode_mark(&new->nfm_mark, inode, 0);
/*
* If the add was successful, then return the object.
* Otherwise, we need to put the reference we hold on the
* nfm_mark. The fsnotify code will take a reference and put
* it on failure, so we can't just free it directly. It's also
* not safe to call fsnotify_destroy_mark on it as the
* mark->group will be NULL. Thus, we can't let the nfm_ref
* counter drive the destruction at this point.
*/
if (likely(!err))
nfm = new;
else
fsnotify_put_mark(&new->nfm_mark);
} while (unlikely(err == -EEXIST));
return nfm;
}
static struct nfsd_file *
nfsd_file_alloc(struct nfsd_file_lookup_key *key, unsigned int may)
2019-08-18 14:18:48 -04:00
{
struct nfsd_file *nf;
nf = kmem_cache_alloc(nfsd_file_slab, GFP_KERNEL);
if (nf) {
INIT_LIST_HEAD(&nf->nf_lru);
nf->nf_birthtime = ktime_get();
2019-08-18 14:18:48 -04:00
nf->nf_file = NULL;
nf->nf_cred = get_current_cred();
nf->nf_net = key->net;
2019-08-18 14:18:48 -04:00
nf->nf_flags = 0;
__set_bit(NFSD_FILE_HASHED, &nf->nf_flags);
__set_bit(NFSD_FILE_PENDING, &nf->nf_flags);
if (key->gc)
__set_bit(NFSD_FILE_GC, &nf->nf_flags);
nf->nf_inode = key->inode;
/* nf_ref is pre-incremented for hash table */
refcount_set(&nf->nf_ref, 2);
nf->nf_may = key->need;
2019-08-18 14:18:48 -04:00
nf->nf_mark = NULL;
}
return nf;
}
static bool
nfsd_file_free(struct nfsd_file *nf)
{
s64 age = ktime_to_ms(ktime_sub(ktime_get(), nf->nf_birthtime));
2019-08-18 14:18:48 -04:00
bool flush = false;
this_cpu_inc(nfsd_file_releases);
this_cpu_add(nfsd_file_total_age, age);
2019-08-18 14:18:48 -04:00
trace_nfsd_file_put_final(nf);
if (nf->nf_mark)
nfsd_file_mark_put(nf->nf_mark);
if (nf->nf_file) {
get_file(nf->nf_file);
filp_close(nf->nf_file, NULL);
fput(nf->nf_file);
flush = true;
}
/*
* If this item is still linked via nf_lru, that's a bug.
* WARN and leak it to preserve system stability.
*/
if (WARN_ON_ONCE(!list_empty(&nf->nf_lru)))
return flush;
2019-08-18 14:18:48 -04:00
call_rcu(&nf->nf_rcu, nfsd_file_slab_free);
return flush;
}
static bool
nfsd_file_check_writeback(struct nfsd_file *nf)
{
struct file *file = nf->nf_file;
struct address_space *mapping;
if (!file || !(file->f_mode & FMODE_WRITE))
return false;
mapping = file->f_mapping;
return mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) ||
mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
}
static int
nfsd_file_check_write_error(struct nfsd_file *nf)
{
struct file *file = nf->nf_file;
if (!file || !(file->f_mode & FMODE_WRITE))
return 0;
return filemap_check_wb_err(file->f_mapping, READ_ONCE(file->f_wb_err));
}
static void
nfsd_file_flush(struct nfsd_file *nf)
{
struct file *file = nf->nf_file;
if (!file || !(file->f_mode & FMODE_WRITE))
return;
this_cpu_add(nfsd_file_pages_flushed, file->f_mapping->nrpages);
if (vfs_fsync(file, 1) != 0)
nfsd_reset_write_verifier(net_generic(nf->nf_net, nfsd_net_id));
}
static void nfsd_file_lru_add(struct nfsd_file *nf)
2019-08-18 14:18:48 -04:00
{
set_bit(NFSD_FILE_REFERENCED, &nf->nf_flags);
if (list_lru_add(&nfsd_file_lru, &nf->nf_lru))
trace_nfsd_file_lru_add(nf);
}
2019-08-18 14:18:48 -04:00
static void nfsd_file_lru_remove(struct nfsd_file *nf)
{
if (list_lru_del(&nfsd_file_lru, &nf->nf_lru))
trace_nfsd_file_lru_del(nf);
}
2019-08-18 14:18:48 -04:00
static void
nfsd_file_hash_remove(struct nfsd_file *nf)
2019-08-18 14:18:48 -04:00
{
trace_nfsd_file_unhash(nf);
if (nfsd_file_check_write_error(nf))
nfsd_reset_write_verifier(net_generic(nf->nf_net, nfsd_net_id));
rhashtable_remove_fast(&nfsd_file_rhash_tbl, &nf->nf_rhash,
nfsd_file_rhash_params);
2019-08-18 14:18:48 -04:00
}
static bool
nfsd_file_unhash(struct nfsd_file *nf)
{
if (test_and_clear_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
nfsd_file_hash_remove(nf);
2019-08-18 14:18:48 -04:00
return true;
}
return false;
}
static void
nfsd_file_unhash_and_dispose(struct nfsd_file *nf, struct list_head *dispose)
2019-08-18 14:18:48 -04:00
{
trace_nfsd_file_unhash_and_dispose(nf);
if (nfsd_file_unhash(nf)) {
/* caller must call nfsd_file_dispose_list() later */
nfsd_file_lru_remove(nf);
list_add(&nf->nf_lru, dispose);
}
2019-08-18 14:18:48 -04:00
}
static void
2019-08-18 14:18:48 -04:00
nfsd_file_put_noref(struct nfsd_file *nf)
{
trace_nfsd_file_put(nf);
if (refcount_dec_and_test(&nf->nf_ref)) {
2019-08-18 14:18:48 -04:00
WARN_ON(test_bit(NFSD_FILE_HASHED, &nf->nf_flags));
nfsd_file_lru_remove(nf);
2019-08-18 14:18:48 -04:00
nfsd_file_free(nf);
}
}
static void
nfsd_file_unhash_and_put(struct nfsd_file *nf)
{
if (nfsd_file_unhash(nf))
nfsd_file_put_noref(nf);
}
2019-08-18 14:18:48 -04:00
void
nfsd_file_put(struct nfsd_file *nf)
{
might_sleep();
if (test_bit(NFSD_FILE_GC, &nf->nf_flags))
nfsd_file_lru_add(nf);
else if (refcount_read(&nf->nf_ref) == 2)
nfsd_file_unhash_and_put(nf);
if (!test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
nfsd_file_flush(nf);
nfsd_file_put_noref(nf);
} else if (nf->nf_file && test_bit(NFSD_FILE_GC, &nf->nf_flags)) {
nfsd_file_put_noref(nf);
nfsd_file_schedule_laundrette();
} else
nfsd_file_put_noref(nf);
2019-08-18 14:18:48 -04:00
}
2019-08-18 14:18:48 -04:00
struct nfsd_file *
nfsd_file_get(struct nfsd_file *nf)
{
if (likely(refcount_inc_not_zero(&nf->nf_ref)))
2019-08-18 14:18:48 -04:00
return nf;
return NULL;
}
static void
nfsd_file_dispose_list(struct list_head *dispose)
{
struct nfsd_file *nf;
while(!list_empty(dispose)) {
nf = list_first_entry(dispose, struct nfsd_file, nf_lru);
list_del_init(&nf->nf_lru);
nfsd_file_flush(nf);
2019-08-18 14:18:48 -04:00
nfsd_file_put_noref(nf);
}
}
static void
nfsd_file_dispose_list_sync(struct list_head *dispose)
{
bool flush = false;
struct nfsd_file *nf;
while(!list_empty(dispose)) {
nf = list_first_entry(dispose, struct nfsd_file, nf_lru);
list_del_init(&nf->nf_lru);
nfsd_file_flush(nf);
if (!refcount_dec_and_test(&nf->nf_ref))
2019-08-18 14:18:48 -04:00
continue;
if (nfsd_file_free(nf))
flush = true;
}
if (flush)
flush_delayed_fput();
}
static void
nfsd_file_list_remove_disposal(struct list_head *dst,
struct nfsd_fcache_disposal *l)
{
spin_lock(&l->lock);
list_splice_init(&l->freeme, dst);
spin_unlock(&l->lock);
}
static void
nfsd_file_list_add_disposal(struct list_head *files, struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
struct nfsd_fcache_disposal *l = nn->fcache_disposal;
spin_lock(&l->lock);
list_splice_tail_init(files, &l->freeme);
spin_unlock(&l->lock);
queue_work(nfsd_filecache_wq, &l->work);
}
static void
nfsd_file_list_add_pernet(struct list_head *dst, struct list_head *src,
struct net *net)
{
struct nfsd_file *nf, *tmp;
list_for_each_entry_safe(nf, tmp, src, nf_lru) {
if (nf->nf_net == net)
list_move_tail(&nf->nf_lru, dst);
}
}
static void
nfsd_file_dispose_list_delayed(struct list_head *dispose)
{
LIST_HEAD(list);
struct nfsd_file *nf;
while(!list_empty(dispose)) {
nf = list_first_entry(dispose, struct nfsd_file, nf_lru);
nfsd_file_list_add_pernet(&list, dispose, nf->nf_net);
nfsd_file_list_add_disposal(&list, nf->nf_net);
}
}
/**
* nfsd_file_lru_cb - Examine an entry on the LRU list
* @item: LRU entry to examine
* @lru: controlling LRU
* @lock: LRU list lock (unused)
* @arg: dispose list
*
* Return values:
* %LRU_REMOVED: @item was removed from the LRU
* %LRU_ROTATE: @item is to be moved to the LRU tail
* %LRU_SKIP: @item cannot be evicted
2019-08-18 14:18:48 -04:00
*/
static enum lru_status
nfsd_file_lru_cb(struct list_head *item, struct list_lru_one *lru,
spinlock_t *lock, void *arg)
__releases(lock)
__acquires(lock)
{
struct list_head *head = arg;
struct nfsd_file *nf = list_entry(item, struct nfsd_file, nf_lru);
/*
* Do a lockless refcount check. The hashtable holds one reference, so
* we look to see if anything else has a reference, or if any have
* been put since the shrinker last ran. Those don't get unhashed and
* released.
*
* Note that in the put path, we set the flag and then decrement the
* counter. Here we check the counter and then test and clear the flag.
* That order is deliberate to ensure that we can do this locklessly.
*/
if (refcount_read(&nf->nf_ref) > 1) {
list_lru_isolate(lru, &nf->nf_lru);
trace_nfsd_file_gc_in_use(nf);
return LRU_REMOVED;
}
/*
* Don't throw out files that are still undergoing I/O or
* that have uncleared errors pending.
*/
if (nfsd_file_check_writeback(nf)) {
trace_nfsd_file_gc_writeback(nf);
return LRU_SKIP;
}
if (test_and_clear_bit(NFSD_FILE_REFERENCED, &nf->nf_flags)) {
trace_nfsd_file_gc_referenced(nf);
return LRU_ROTATE;
}
2019-08-18 14:18:48 -04:00
if (!test_and_clear_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
trace_nfsd_file_gc_hashed(nf);
return LRU_SKIP;
}
2019-08-18 14:18:48 -04:00
list_lru_isolate_move(lru, &nf->nf_lru, head);
this_cpu_inc(nfsd_file_evictions);
trace_nfsd_file_gc_disposed(nf);
2019-08-18 14:18:48 -04:00
return LRU_REMOVED;
}
/*
* Unhash items on @dispose immediately, then queue them on the
* disposal workqueue to finish releasing them in the background.
*
* cel: Note that between the time list_lru_shrink_walk runs and
* now, these items are in the hash table but marked unhashed.
* Why release these outside of lru_cb ? There's no lock ordering
* problem since lru_cb currently takes no lock.
*/
static void nfsd_file_gc_dispose_list(struct list_head *dispose)
2019-08-18 14:18:48 -04:00
{
struct nfsd_file *nf;
list_for_each_entry(nf, dispose, nf_lru)
nfsd_file_hash_remove(nf);
nfsd_file_dispose_list_delayed(dispose);
}
static void
nfsd_file_gc(void)
{
LIST_HEAD(dispose);
unsigned long ret;
ret = list_lru_walk(&nfsd_file_lru, nfsd_file_lru_cb,
&dispose, list_lru_count(&nfsd_file_lru));
trace_nfsd_file_gc_removed(ret, list_lru_count(&nfsd_file_lru));
nfsd_file_gc_dispose_list(&dispose);
}
static void
nfsd_file_gc_worker(struct work_struct *work)
{
nfsd_file_gc();
nfsd_file_schedule_laundrette();
2019-08-18 14:18:48 -04:00
}
static unsigned long
nfsd_file_lru_count(struct shrinker *s, struct shrink_control *sc)
{
return list_lru_count(&nfsd_file_lru);
}
static unsigned long
nfsd_file_lru_scan(struct shrinker *s, struct shrink_control *sc)
{
LIST_HEAD(dispose);
unsigned long ret;
ret = list_lru_shrink_walk(&nfsd_file_lru, sc,
nfsd_file_lru_cb, &dispose);
trace_nfsd_file_shrinker_removed(ret, list_lru_count(&nfsd_file_lru));
nfsd_file_gc_dispose_list(&dispose);
return ret;
2019-08-18 14:18:48 -04:00
}
static struct shrinker nfsd_file_shrinker = {
.scan_objects = nfsd_file_lru_scan,
.count_objects = nfsd_file_lru_count,
.seeks = 1,
};
/*
* Find all cache items across all net namespaces that match @inode and
* move them to @dispose. The lookup is atomic wrt nfsd_file_acquire().
*/
static unsigned int
__nfsd_file_close_inode(struct inode *inode, struct list_head *dispose)
2019-08-18 14:18:48 -04:00
{
struct nfsd_file_lookup_key key = {
.type = NFSD_FILE_KEY_INODE,
.inode = inode,
};
unsigned int count = 0;
struct nfsd_file *nf;
2019-08-18 14:18:48 -04:00
rcu_read_lock();
do {
nf = rhashtable_lookup(&nfsd_file_rhash_tbl, &key,
nfsd_file_rhash_params);
if (!nf)
break;
nfsd_file_unhash_and_dispose(nf, dispose);
count++;
} while (1);
rcu_read_unlock();
return count;
2019-08-18 14:18:48 -04:00
}
/**
* nfsd_file_close_inode_sync - attempt to forcibly close a nfsd_file
* @inode: inode of the file to attempt to remove
*
* Unhash and put, then flush and fput all cache items associated with @inode.
2019-08-18 14:18:48 -04:00
*/
void
nfsd_file_close_inode_sync(struct inode *inode)
{
LIST_HEAD(dispose);
unsigned int count;
2019-08-18 14:18:48 -04:00
count = __nfsd_file_close_inode(inode, &dispose);
trace_nfsd_file_close_inode_sync(inode, count);
2019-08-18 14:18:48 -04:00
nfsd_file_dispose_list_sync(&dispose);
}
/**
* nfsd_file_close_inode - attempt a delayed close of a nfsd_file
2019-08-18 14:18:48 -04:00
* @inode: inode of the file to attempt to remove
*
* Unhash and put all cache item associated with @inode.
2019-08-18 14:18:48 -04:00
*/
static void
nfsd_file_close_inode(struct inode *inode)
{
LIST_HEAD(dispose);
unsigned int count;
2019-08-18 14:18:48 -04:00
count = __nfsd_file_close_inode(inode, &dispose);
trace_nfsd_file_close_inode(inode, count);
nfsd_file_dispose_list_delayed(&dispose);
2019-08-18 14:18:48 -04:00
}
/**
* nfsd_file_delayed_close - close unused nfsd_files
* @work: dummy
*
* Walk the LRU list and close any entries that have not been used since
* the last scan.
*/
static void
nfsd_file_delayed_close(struct work_struct *work)
{
LIST_HEAD(head);
struct nfsd_fcache_disposal *l = container_of(work,
struct nfsd_fcache_disposal, work);
2019-08-18 14:18:48 -04:00
nfsd_file_list_remove_disposal(&head, l);
nfsd_file_dispose_list(&head);
2019-08-18 14:18:48 -04:00
}
static int
nfsd_file_lease_notifier_call(struct notifier_block *nb, unsigned long arg,
void *data)
{
struct file_lock *fl = data;
/* Only close files for F_SETLEASE leases */
if (fl->fl_flags & FL_LEASE)
nfsd_file_close_inode_sync(file_inode(fl->fl_file));
return 0;
}
static struct notifier_block nfsd_file_lease_notifier = {
.notifier_call = nfsd_file_lease_notifier_call,
};
static int
nfsd_file_fsnotify_handle_event(struct fsnotify_mark *mark, u32 mask,
struct inode *inode, struct inode *dir,
const struct qstr *name, u32 cookie)
2019-08-18 14:18:48 -04:00
{
if (WARN_ON_ONCE(!inode))
return 0;
2019-08-18 14:18:48 -04:00
trace_nfsd_file_fsnotify_handle_event(inode, mask);
/* Should be no marks on non-regular files */
if (!S_ISREG(inode->i_mode)) {
WARN_ON_ONCE(1);
return 0;
}
/* don't close files if this was not the last link */
if (mask & FS_ATTRIB) {
if (inode->i_nlink)
return 0;
}
nfsd_file_close_inode(inode);
return 0;
}
static const struct fsnotify_ops nfsd_file_fsnotify_ops = {
.handle_inode_event = nfsd_file_fsnotify_handle_event,
2019-08-18 14:18:48 -04:00
.free_mark = nfsd_file_mark_free,
};
int
nfsd_file_cache_init(void)
{
int ret;
2019-08-18 14:18:48 -04:00
lockdep_assert_held(&nfsd_mutex);
if (test_and_set_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1)
2019-08-18 14:18:48 -04:00
return 0;
ret = rhashtable_init(&nfsd_file_rhash_tbl, &nfsd_file_rhash_params);
if (ret)
return ret;
ret = -ENOMEM;
nfsd_filecache_wq = alloc_workqueue("nfsd_filecache", 0, 0);
if (!nfsd_filecache_wq)
goto out;
2019-08-18 14:18:48 -04:00
nfsd_file_slab = kmem_cache_create("nfsd_file",
sizeof(struct nfsd_file), 0, 0, NULL);
if (!nfsd_file_slab) {
pr_err("nfsd: unable to create nfsd_file_slab\n");
goto out_err;
}
nfsd_file_mark_slab = kmem_cache_create("nfsd_file_mark",
sizeof(struct nfsd_file_mark), 0, 0, NULL);
if (!nfsd_file_mark_slab) {
pr_err("nfsd: unable to create nfsd_file_mark_slab\n");
goto out_err;
}
ret = list_lru_init(&nfsd_file_lru);
if (ret) {
pr_err("nfsd: failed to init nfsd_file_lru: %d\n", ret);
goto out_err;
}
mm: shrinkers: provide shrinkers with names Currently shrinkers are anonymous objects. For debugging purposes they can be identified by count/scan function names, but it's not always useful: e.g. for superblock's shrinkers it's nice to have at least an idea of to which superblock the shrinker belongs. This commit adds names to shrinkers. register_shrinker() and prealloc_shrinker() functions are extended to take a format and arguments to master a name. In some cases it's not possible to determine a good name at the time when a shrinker is allocated. For such cases shrinker_debugfs_rename() is provided. The expected format is: <subsystem>-<shrinker_type>[:<instance>]-<id> For some shrinkers an instance can be encoded as (MAJOR:MINOR) pair. After this change the shrinker debugfs directory looks like: $ cd /sys/kernel/debug/shrinker/ $ ls dquota-cache-16 sb-devpts-28 sb-proc-47 sb-tmpfs-42 mm-shadow-18 sb-devtmpfs-5 sb-proc-48 sb-tmpfs-43 mm-zspool:zram0-34 sb-hugetlbfs-17 sb-pstore-31 sb-tmpfs-44 rcu-kfree-0 sb-hugetlbfs-33 sb-rootfs-2 sb-tmpfs-49 sb-aio-20 sb-iomem-12 sb-securityfs-6 sb-tracefs-13 sb-anon_inodefs-15 sb-mqueue-21 sb-selinuxfs-22 sb-xfs:vda1-36 sb-bdev-3 sb-nsfs-4 sb-sockfs-8 sb-zsmalloc-19 sb-bpf-32 sb-pipefs-14 sb-sysfs-26 thp-deferred_split-10 sb-btrfs:vda2-24 sb-proc-25 sb-tmpfs-1 thp-zero-9 sb-cgroup2-30 sb-proc-39 sb-tmpfs-27 xfs-buf:vda1-37 sb-configfs-23 sb-proc-41 sb-tmpfs-29 xfs-inodegc:vda1-38 sb-dax-11 sb-proc-45 sb-tmpfs-35 sb-debugfs-7 sb-proc-46 sb-tmpfs-40 [roman.gushchin@linux.dev: fix build warnings] Link: https://lkml.kernel.org/r/Yr+ZTnLb9lJk6fJO@castle Reported-by: kernel test robot <lkp@intel.com> Link: https://lkml.kernel.org/r/20220601032227.4076670-4-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Cc: Dave Chinner <dchinner@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-31 20:22:24 -07:00
ret = register_shrinker(&nfsd_file_shrinker, "nfsd-filecache");
2019-08-18 14:18:48 -04:00
if (ret) {
pr_err("nfsd: failed to register nfsd_file_shrinker: %d\n", ret);
goto out_lru;
}
ret = lease_register_notifier(&nfsd_file_lease_notifier);
if (ret) {
pr_err("nfsd: unable to register lease notifier: %d\n", ret);
goto out_shrinker;
}
nfsd_file_fsnotify_group = fsnotify_alloc_group(&nfsd_file_fsnotify_ops,
FSNOTIFY_GROUP_NOFS);
2019-08-18 14:18:48 -04:00
if (IS_ERR(nfsd_file_fsnotify_group)) {
pr_err("nfsd: unable to create fsnotify group: %ld\n",
PTR_ERR(nfsd_file_fsnotify_group));
ret = PTR_ERR(nfsd_file_fsnotify_group);
2019-08-18 14:18:48 -04:00
nfsd_file_fsnotify_group = NULL;
goto out_notifier;
}
INIT_DELAYED_WORK(&nfsd_filecache_laundrette, nfsd_file_gc_worker);
2019-08-18 14:18:48 -04:00
out:
return ret;
out_notifier:
lease_unregister_notifier(&nfsd_file_lease_notifier);
out_shrinker:
unregister_shrinker(&nfsd_file_shrinker);
out_lru:
list_lru_destroy(&nfsd_file_lru);
out_err:
kmem_cache_destroy(nfsd_file_slab);
nfsd_file_slab = NULL;
kmem_cache_destroy(nfsd_file_mark_slab);
nfsd_file_mark_slab = NULL;
destroy_workqueue(nfsd_filecache_wq);
nfsd_filecache_wq = NULL;
rhashtable_destroy(&nfsd_file_rhash_tbl);
2019-08-18 14:18:48 -04:00
goto out;
}
static void
__nfsd_file_cache_purge(struct net *net)
2019-08-18 14:18:48 -04:00
{
struct rhashtable_iter iter;
struct nfsd_file *nf;
2019-08-18 14:18:48 -04:00
LIST_HEAD(dispose);
rhashtable_walk_enter(&nfsd_file_rhash_tbl, &iter);
do {
rhashtable_walk_start(&iter);
nf = rhashtable_walk_next(&iter);
while (!IS_ERR_OR_NULL(nf)) {
if (!net || nf->nf_net == net)
nfsd_file_unhash_and_dispose(nf, &dispose);
nf = rhashtable_walk_next(&iter);
2019-08-18 14:18:48 -04:00
}
rhashtable_walk_stop(&iter);
} while (nf == ERR_PTR(-EAGAIN));
rhashtable_walk_exit(&iter);
nfsd_file_dispose_list(&dispose);
2019-08-18 14:18:48 -04:00
}
static struct nfsd_fcache_disposal *
nfsd_alloc_fcache_disposal(void)
{
struct nfsd_fcache_disposal *l;
l = kmalloc(sizeof(*l), GFP_KERNEL);
if (!l)
return NULL;
INIT_WORK(&l->work, nfsd_file_delayed_close);
spin_lock_init(&l->lock);
INIT_LIST_HEAD(&l->freeme);
return l;
}
static void
nfsd_free_fcache_disposal(struct nfsd_fcache_disposal *l)
{
cancel_work_sync(&l->work);
nfsd_file_dispose_list(&l->freeme);
kfree(l);
}
static void
nfsd_free_fcache_disposal_net(struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
struct nfsd_fcache_disposal *l = nn->fcache_disposal;
nfsd_free_fcache_disposal(l);
}
int
nfsd_file_cache_start_net(struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
nn->fcache_disposal = nfsd_alloc_fcache_disposal();
return nn->fcache_disposal ? 0 : -ENOMEM;
}
/**
* nfsd_file_cache_purge - Remove all cache items associated with @net
* @net: target net namespace
*
*/
void
nfsd_file_cache_purge(struct net *net)
{
lockdep_assert_held(&nfsd_mutex);
if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1)
__nfsd_file_cache_purge(net);
}
void
nfsd_file_cache_shutdown_net(struct net *net)
{
nfsd_file_cache_purge(net);
nfsd_free_fcache_disposal_net(net);
}
2019-08-18 14:18:48 -04:00
void
nfsd_file_cache_shutdown(void)
{
int i;
lockdep_assert_held(&nfsd_mutex);
if (test_and_clear_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 0)
return;
2019-08-18 14:18:48 -04:00
lease_unregister_notifier(&nfsd_file_lease_notifier);
unregister_shrinker(&nfsd_file_shrinker);
/*
* make sure all callers of nfsd_file_lru_cb are done before
* calling nfsd_file_cache_purge
*/
cancel_delayed_work_sync(&nfsd_filecache_laundrette);
__nfsd_file_cache_purge(NULL);
2019-08-18 14:18:48 -04:00
list_lru_destroy(&nfsd_file_lru);
rcu_barrier();
fsnotify_put_group(nfsd_file_fsnotify_group);
nfsd_file_fsnotify_group = NULL;
kmem_cache_destroy(nfsd_file_slab);
nfsd_file_slab = NULL;
fsnotify_wait_marks_destroyed();
kmem_cache_destroy(nfsd_file_mark_slab);
nfsd_file_mark_slab = NULL;
destroy_workqueue(nfsd_filecache_wq);
nfsd_filecache_wq = NULL;
rhashtable_destroy(&nfsd_file_rhash_tbl);
for_each_possible_cpu(i) {
per_cpu(nfsd_file_cache_hits, i) = 0;
per_cpu(nfsd_file_acquisitions, i) = 0;
per_cpu(nfsd_file_releases, i) = 0;
per_cpu(nfsd_file_total_age, i) = 0;
per_cpu(nfsd_file_pages_flushed, i) = 0;
per_cpu(nfsd_file_evictions, i) = 0;
2019-08-18 14:18:48 -04:00
}
}
/**
* nfsd_file_is_cached - are there any cached open files for this inode?
* @inode: inode to check
*
* The lookup matches inodes in all net namespaces and is atomic wrt
* nfsd_file_acquire().
2019-08-18 14:18:48 -04:00
*
* Return values:
* %true: filecache contains at least one file matching this inode
* %false: filecache contains no files matching this inode
2019-08-18 14:18:48 -04:00
*/
bool
nfsd_file_is_cached(struct inode *inode)
{
struct nfsd_file_lookup_key key = {
.type = NFSD_FILE_KEY_INODE,
.inode = inode,
};
bool ret = false;
if (rhashtable_lookup_fast(&nfsd_file_rhash_tbl, &key,
nfsd_file_rhash_params) != NULL)
ret = true;
trace_nfsd_file_is_cached(inode, (int)ret);
2019-08-18 14:18:48 -04:00
return ret;
}
static __be32
nfsd_file_do_acquire(struct svc_rqst *rqstp, struct svc_fh *fhp,
unsigned int may_flags, struct nfsd_file **pnf,
bool open, bool want_gc)
2019-08-18 14:18:48 -04:00
{
struct nfsd_file_lookup_key key = {
.type = NFSD_FILE_KEY_FULL,
.need = may_flags & NFSD_FILE_MAY_MASK,
.net = SVC_NET(rqstp),
.gc = want_gc,
};
bool open_retry = true;
struct nfsd_file *nf;
__be32 status;
int ret;
2019-08-18 14:18:48 -04:00
status = fh_verify(rqstp, fhp, S_IFREG,
may_flags|NFSD_MAY_OWNER_OVERRIDE);
if (status != nfs_ok)
return status;
key.inode = d_inode(fhp->fh_dentry);
key.cred = get_current_cred();
2019-08-18 14:18:48 -04:00
retry:
rcu_read_lock();
nf = rhashtable_lookup(&nfsd_file_rhash_tbl, &key,
nfsd_file_rhash_params);
if (nf)
nf = nfsd_file_get(nf);
rcu_read_unlock();
2019-08-18 14:18:48 -04:00
if (nf)
goto wait_for_construction;
nf = nfsd_file_alloc(&key, may_flags);
if (!nf) {
status = nfserr_jukebox;
goto out_status;
2019-08-18 14:18:48 -04:00
}
ret = rhashtable_lookup_insert_key(&nfsd_file_rhash_tbl,
&key, &nf->nf_rhash,
nfsd_file_rhash_params);
if (likely(ret == 0))
2019-08-18 14:18:48 -04:00
goto open_file;
nfsd_file_slab_free(&nf->nf_rcu);
nf = NULL;
if (ret == -EEXIST)
goto retry;
trace_nfsd_file_insert_err(rqstp, key.inode, may_flags, ret);
status = nfserr_jukebox;
goto out_status;
2019-08-18 14:18:48 -04:00
wait_for_construction:
wait_on_bit(&nf->nf_flags, NFSD_FILE_PENDING, TASK_UNINTERRUPTIBLE);
/* Did construction of this file fail? */
if (!test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
trace_nfsd_file_cons_err(rqstp, key.inode, may_flags, nf);
if (!open_retry) {
status = nfserr_jukebox;
goto out;
}
open_retry = false;
2019-08-18 14:18:48 -04:00
nfsd_file_put_noref(nf);
goto retry;
}
nfsd_file_lru_remove(nf);
2019-08-18 14:18:48 -04:00
this_cpu_inc(nfsd_file_cache_hits);
nfsd: eliminate the NFSD_FILE_BREAK_* flags We had a report from the spring Bake-a-thon of data corruption in some nfstest_interop tests. Looking at the traces showed the NFS server allowing a v3 WRITE to proceed while a read delegation was still outstanding. Currently, we only set NFSD_FILE_BREAK_* flags if NFSD_MAY_NOT_BREAK_LEASE was set when we call nfsd_file_alloc. NFSD_MAY_NOT_BREAK_LEASE was intended to be set when finding files for COMMIT ops, where we need a writeable filehandle but don't need to break read leases. It doesn't make any sense to consult that flag when allocating a file since the file may be used on subsequent calls where we do want to break the lease (and the usage of it here seems to be reverse from what it should be anyway). Also, after calling nfsd_open_break_lease, we don't want to clear the BREAK_* bits. A lease could end up being set on it later (more than once) and we need to be able to break those leases as well. This means that the NFSD_FILE_BREAK_* flags now just mirror NFSD_MAY_{READ,WRITE} flags, so there's no need for them at all. Just drop those flags and unconditionally call nfsd_open_break_lease every time. Reported-by: Olga Kornieskaia <kolga@netapp.com> Link: https://bugzilla.redhat.com/show_bug.cgi?id=2107360 Fixes: 65294c1f2c5e (nfsd: add a new struct file caching facility to nfsd) Cc: <stable@vger.kernel.org> # 5.4.x : bb283ca18d1e NFSD: Clean up the show_nf_flags() macro Cc: <stable@vger.kernel.org> # 5.4.x Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2022-07-29 17:01:07 -04:00
status = nfserrno(nfsd_open_break_lease(file_inode(nf->nf_file), may_flags));
2019-08-18 14:18:48 -04:00
out:
if (status == nfs_ok) {
if (open)
this_cpu_inc(nfsd_file_acquisitions);
2019-08-18 14:18:48 -04:00
*pnf = nf;
} else {
nfsd_file_put(nf);
nf = NULL;
}
out_status:
put_cred(key.cred);
if (open)
trace_nfsd_file_acquire(rqstp, key.inode, may_flags, nf, status);
2019-08-18 14:18:48 -04:00
return status;
2019-08-18 14:18:48 -04:00
open_file:
trace_nfsd_file_alloc(nf);
nf->nf_mark = nfsd_file_mark_find_or_create(nf, key.inode);
if (nf->nf_mark) {
if (open) {
status = nfsd_open_verified(rqstp, fhp, may_flags,
&nf->nf_file);
trace_nfsd_file_open(nf, status);
} else
status = nfs_ok;
} else
2019-08-18 14:18:48 -04:00
status = nfserr_jukebox;
/*
* If construction failed, or we raced with a call to unlink()
* then unhash.
*/
if (status != nfs_ok || key.inode->i_nlink == 0)
nfsd_file_unhash_and_put(nf);
2019-08-18 14:18:48 -04:00
clear_bit_unlock(NFSD_FILE_PENDING, &nf->nf_flags);
smp_mb__after_atomic();
wake_up_bit(&nf->nf_flags, NFSD_FILE_PENDING);
goto out;
}
/**
* nfsd_file_acquire_gc - Get a struct nfsd_file with an open file
* @rqstp: the RPC transaction being executed
* @fhp: the NFS filehandle of the file to be opened
* @may_flags: NFSD_MAY_ settings for the file
* @pnf: OUT: new or found "struct nfsd_file" object
*
* The nfsd_file object returned by this API is reference-counted
* and garbage-collected. The object is retained for a few
* seconds after the final nfsd_file_put() in case the caller
* wants to re-use it.
*
* Returns nfs_ok and sets @pnf on success; otherwise an nfsstat in
* network byte order is returned.
*/
__be32
nfsd_file_acquire_gc(struct svc_rqst *rqstp, struct svc_fh *fhp,
unsigned int may_flags, struct nfsd_file **pnf)
{
return nfsd_file_do_acquire(rqstp, fhp, may_flags, pnf, true, true);
}
/**
* nfsd_file_acquire - Get a struct nfsd_file with an open file
* @rqstp: the RPC transaction being executed
* @fhp: the NFS filehandle of the file to be opened
* @may_flags: NFSD_MAY_ settings for the file
* @pnf: OUT: new or found "struct nfsd_file" object
*
* The nfsd_file_object returned by this API is reference-counted
* but not garbage-collected. The object is unhashed after the
* final nfsd_file_put().
*
* Returns nfs_ok and sets @pnf on success; otherwise an nfsstat in
* network byte order is returned.
*/
__be32
nfsd_file_acquire(struct svc_rqst *rqstp, struct svc_fh *fhp,
unsigned int may_flags, struct nfsd_file **pnf)
{
return nfsd_file_do_acquire(rqstp, fhp, may_flags, pnf, true, false);
}
/**
* nfsd_file_create - Get a struct nfsd_file, do not open
* @rqstp: the RPC transaction being executed
* @fhp: the NFS filehandle of the file just created
* @may_flags: NFSD_MAY_ settings for the file
* @pnf: OUT: new or found "struct nfsd_file" object
*
* The nfsd_file_object returned by this API is reference-counted
* but not garbage-collected. The object is released immediately
* one RCU grace period after the final nfsd_file_put().
*
* Returns nfs_ok and sets @pnf on success; otherwise an nfsstat in
* network byte order is returned.
*/
__be32
nfsd_file_create(struct svc_rqst *rqstp, struct svc_fh *fhp,
unsigned int may_flags, struct nfsd_file **pnf)
{
return nfsd_file_do_acquire(rqstp, fhp, may_flags, pnf, false, false);
}
2019-08-18 14:18:48 -04:00
/*
* Note that fields may be added, removed or reordered in the future. Programs
* scraping this file for info should test the labels to ensure they're
* getting the correct field.
*/
int nfsd_file_cache_stats_show(struct seq_file *m, void *v)
2019-08-18 14:18:48 -04:00
{
unsigned long releases = 0, pages_flushed = 0, evictions = 0;
unsigned long hits = 0, acquisitions = 0;
unsigned int i, count = 0, buckets = 0;
unsigned long lru = 0, total_age = 0;
2019-08-18 14:18:48 -04:00
/* Serialize with server shutdown */
2019-08-18 14:18:48 -04:00
mutex_lock(&nfsd_mutex);
if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1) {
struct bucket_table *tbl;
struct rhashtable *ht;
lru = list_lru_count(&nfsd_file_lru);
rcu_read_lock();
ht = &nfsd_file_rhash_tbl;
count = atomic_read(&ht->nelems);
tbl = rht_dereference_rcu(ht->tbl, ht);
buckets = tbl->size;
rcu_read_unlock();
2019-08-18 14:18:48 -04:00
}
mutex_unlock(&nfsd_mutex);
for_each_possible_cpu(i) {
2019-08-18 14:18:48 -04:00
hits += per_cpu(nfsd_file_cache_hits, i);
acquisitions += per_cpu(nfsd_file_acquisitions, i);
releases += per_cpu(nfsd_file_releases, i);
total_age += per_cpu(nfsd_file_total_age, i);
evictions += per_cpu(nfsd_file_evictions, i);
pages_flushed += per_cpu(nfsd_file_pages_flushed, i);
}
2019-08-18 14:18:48 -04:00
seq_printf(m, "total entries: %u\n", count);
seq_printf(m, "hash buckets: %u\n", buckets);
seq_printf(m, "lru entries: %lu\n", lru);
2019-08-18 14:18:48 -04:00
seq_printf(m, "cache hits: %lu\n", hits);
seq_printf(m, "acquisitions: %lu\n", acquisitions);
seq_printf(m, "releases: %lu\n", releases);
seq_printf(m, "evictions: %lu\n", evictions);
if (releases)
seq_printf(m, "mean age (ms): %ld\n", total_age / releases);
else
seq_printf(m, "mean age (ms): -\n");
seq_printf(m, "pages flushed: %lu\n", pages_flushed);
2019-08-18 14:18:48 -04:00
return 0;
}