linux-stable/lib/test_bpf.c

2048 lines
57 KiB
C
Raw Normal View History

/*
* Testsuite for BPF interpreter and BPF JIT compiler
*
* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/module.h>
#include <linux/filter.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_vlan.h>
/* General test specific settings */
#define MAX_SUBTESTS 3
#define MAX_TESTRUNS 10000
#define MAX_DATA 128
#define MAX_INSNS 512
#define MAX_K 0xffffFFFF
/* Few constants used to init test 'skb' */
#define SKB_TYPE 3
#define SKB_MARK 0x1234aaaa
#define SKB_HASH 0x1234aaab
#define SKB_QUEUE_MAP 123
#define SKB_VLAN_TCI 0xffff
#define SKB_DEV_IFINDEX 577
#define SKB_DEV_TYPE 588
/* Redefine REGs to make tests less verbose */
#define R0 BPF_REG_0
#define R1 BPF_REG_1
#define R2 BPF_REG_2
#define R3 BPF_REG_3
#define R4 BPF_REG_4
#define R5 BPF_REG_5
#define R6 BPF_REG_6
#define R7 BPF_REG_7
#define R8 BPF_REG_8
#define R9 BPF_REG_9
#define R10 BPF_REG_10
/* Flags that can be passed to test cases */
#define FLAG_NO_DATA BIT(0)
#define FLAG_EXPECTED_FAIL BIT(1)
enum {
CLASSIC = BIT(6), /* Old BPF instructions only. */
INTERNAL = BIT(7), /* Extended instruction set. */
};
#define TEST_TYPE_MASK (CLASSIC | INTERNAL)
struct bpf_test {
const char *descr;
union {
struct sock_filter insns[MAX_INSNS];
struct bpf_insn insns_int[MAX_INSNS];
} u;
__u8 aux;
__u8 data[MAX_DATA];
struct {
int data_size;
__u32 result;
} test[MAX_SUBTESTS];
};
static struct bpf_test tests[] = {
{
"TAX",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_ALU | BPF_NEG, 0), /* A == -3 */
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_LEN, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_MISC | BPF_TAX, 0), /* X == len - 3 */
BPF_STMT(BPF_LD | BPF_B | BPF_IND, 1),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ 10, 20, 30, 40, 50 },
{ { 2, 10 }, { 3, 20 }, { 4, 30 } },
},
{
"TXA",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0) /* A == len * 2 */
},
CLASSIC,
{ 10, 20, 30, 40, 50 },
{ { 1, 2 }, { 3, 6 }, { 4, 8 } },
},
{
"ADD_SUB_MUL_K",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 1),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 2),
BPF_STMT(BPF_LDX | BPF_IMM, 3),
BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 0xffffffff),
BPF_STMT(BPF_ALU | BPF_MUL | BPF_K, 3),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0xfffffffd } }
},
{
"DIV_MOD_KX",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 8),
BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 2),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff),
BPF_STMT(BPF_ALU | BPF_DIV | BPF_X, 0),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff),
BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 0x70000000),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff),
BPF_STMT(BPF_ALU | BPF_MOD | BPF_X, 0),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff),
BPF_STMT(BPF_ALU | BPF_MOD | BPF_K, 0x70000000),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0x20000000 } }
},
{
"AND_OR_LSH_K",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 0xff),
BPF_STMT(BPF_ALU | BPF_AND | BPF_K, 0xf0),
BPF_STMT(BPF_ALU | BPF_LSH | BPF_K, 27),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_IMM, 0xf),
BPF_STMT(BPF_ALU | BPF_OR | BPF_K, 0xf0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0x800000ff }, { 1, 0x800000ff } },
},
{
"LD_IMM_0",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 0), /* ld #0 */
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 0),
BPF_STMT(BPF_RET | BPF_K, 1),
},
CLASSIC,
{ },
{ { 1, 1 } },
},
{
"LD_IND",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_IND, MAX_K),
BPF_STMT(BPF_RET | BPF_K, 1)
},
CLASSIC,
{ },
{ { 1, 0 }, { 10, 0 }, { 60, 0 } },
},
{
"LD_ABS",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, 1000),
BPF_STMT(BPF_RET | BPF_K, 1)
},
CLASSIC,
{ },
{ { 1, 0 }, { 10, 0 }, { 60, 0 } },
},
{
"LD_ABS_LL",
.u.insns = {
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_LL_OFF),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_LL_OFF + 1),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ 1, 2, 3 },
{ { 1, 0 }, { 2, 3 } },
},
{
"LD_IND_LL",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, SKF_LL_OFF - 1),
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_IND, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ 1, 2, 3, 0xff },
{ { 1, 1 }, { 3, 3 }, { 4, 0xff } },
},
{
"LD_ABS_NET",
.u.insns = {
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_NET_OFF),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_NET_OFF + 1),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3 },
{ { 15, 0 }, { 16, 3 } },
},
{
"LD_IND_NET",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, SKF_NET_OFF - 15),
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_IND, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3 },
{ { 14, 0 }, { 15, 1 }, { 17, 3 } },
},
{
"LD_PKTTYPE",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PKTTYPE),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SKB_TYPE, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PKTTYPE),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SKB_TYPE, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PKTTYPE),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SKB_TYPE, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, 3 }, { 10, 3 } },
},
{
"LD_MARK",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_MARK),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, SKB_MARK}, { 10, SKB_MARK} },
},
{
"LD_RXHASH",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_RXHASH),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, SKB_HASH}, { 10, SKB_HASH} },
},
{
"LD_QUEUE",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_QUEUE),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, SKB_QUEUE_MAP }, { 10, SKB_QUEUE_MAP } },
},
{
"LD_PROTOCOL",
.u.insns = {
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 1),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 20, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 0),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PROTOCOL),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 30, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 0),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ 10, 20, 30 },
{ { 10, ETH_P_IP }, { 100, ETH_P_IP } },
},
{
"LD_VLAN_TAG",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_VLAN_TAG),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{
{ 1, SKB_VLAN_TCI & ~VLAN_TAG_PRESENT },
{ 10, SKB_VLAN_TCI & ~VLAN_TAG_PRESENT }
},
},
{
"LD_VLAN_TAG_PRESENT",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{
{ 1, !!(SKB_VLAN_TCI & VLAN_TAG_PRESENT) },
{ 10, !!(SKB_VLAN_TCI & VLAN_TAG_PRESENT) }
},
},
{
"LD_IFINDEX",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_IFINDEX),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, SKB_DEV_IFINDEX }, { 10, SKB_DEV_IFINDEX } },
},
{
"LD_HATYPE",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_HATYPE),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, SKB_DEV_TYPE }, { 10, SKB_DEV_TYPE } },
},
{
"LD_CPU",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_CPU),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_CPU),
BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, 0 }, { 10, 0 } },
},
{
"LD_NLATTR",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 2),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_LDX | BPF_IMM, 3),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
#ifdef __BIG_ENDIAN
{ 0xff, 0xff, 0, 4, 0, 2, 0, 4, 0, 3 },
#else
{ 0xff, 0xff, 4, 0, 2, 0, 4, 0, 3, 0 },
#endif
{ { 4, 0 }, { 20, 6 } },
},
{
"LD_NLATTR_NEST",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LDX | BPF_IMM, 3),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_NLATTR_NEST),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
#ifdef __BIG_ENDIAN
{ 0xff, 0xff, 0, 12, 0, 1, 0, 4, 0, 2, 0, 4, 0, 3 },
#else
{ 0xff, 0xff, 12, 0, 1, 0, 4, 0, 2, 0, 4, 0, 3, 0 },
#endif
{ { 4, 0 }, { 20, 10 } },
},
{
"LD_PAYLOAD_OFF",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PAY_OFFSET),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PAY_OFFSET),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PAY_OFFSET),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PAY_OFFSET),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_PAY_OFFSET),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
/* 00:00:00:00:00:00 > 00:00:00:00:00:00, ethtype IPv4 (0x0800),
* length 98: 127.0.0.1 > 127.0.0.1: ICMP echo request,
* id 9737, seq 1, length 64
*/
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x08, 0x00,
0x45, 0x00, 0x00, 0x54, 0xac, 0x8b, 0x40, 0x00, 0x40,
0x01, 0x90, 0x1b, 0x7f, 0x00, 0x00, 0x01 },
{ { 30, 0 }, { 100, 42 } },
},
{
"LD_ANC_XOR",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 10),
BPF_STMT(BPF_LDX | BPF_IMM, 300),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_ALU_XOR_X),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 4, 10 ^ 300 }, { 20, 10 ^ 300 } },
},
{
"SPILL_FILL",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_LD | BPF_IMM, 2),
BPF_STMT(BPF_ALU | BPF_RSH, 1),
BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0),
BPF_STMT(BPF_ST, 1), /* M1 = 1 ^ len */
BPF_STMT(BPF_ALU | BPF_XOR | BPF_K, 0x80000000),
BPF_STMT(BPF_ST, 2), /* M2 = 1 ^ len ^ 0x80000000 */
BPF_STMT(BPF_STX, 15), /* M3 = len */
BPF_STMT(BPF_LDX | BPF_MEM, 1),
BPF_STMT(BPF_LD | BPF_MEM, 2),
BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 15),
BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ { 1, 0x80000001 }, { 2, 0x80000002 }, { 60, 0x80000000 ^ 60 } }
},
{
"JEQ",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_X, 0, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_RET | BPF_K, MAX_K)
},
CLASSIC,
{ 3, 3, 3, 3, 3 },
{ { 1, 0 }, { 3, 1 }, { 4, MAX_K } },
},
{
"JGT",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
BPF_JUMP(BPF_JMP | BPF_JGT | BPF_X, 0, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 1),
BPF_STMT(BPF_RET | BPF_K, MAX_K)
},
CLASSIC,
{ 4, 4, 4, 3, 3 },
{ { 2, 0 }, { 3, 1 }, { 4, MAX_K } },
},
{
"JGE",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_LD | BPF_B | BPF_IND, MAX_K),
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 1, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 10),
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 2, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 20),
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 3, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 30),
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 4, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 40),
BPF_STMT(BPF_RET | BPF_K, MAX_K)
},
CLASSIC,
{ 1, 2, 3, 4, 5 },
{ { 1, 20 }, { 3, 40 }, { 5, MAX_K } },
},
{
"JSET",
.u.insns = {
BPF_JUMP(BPF_JMP | BPF_JA, 0, 0, 0),
BPF_JUMP(BPF_JMP | BPF_JA, 1, 1, 1),
BPF_JUMP(BPF_JMP | BPF_JA, 0, 0, 0),
BPF_JUMP(BPF_JMP | BPF_JA, 0, 0, 0),
BPF_STMT(BPF_LDX | BPF_LEN, 0),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_SUB | BPF_K, 4),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_LD | BPF_W | BPF_IND, 0),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 1, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 10),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0x80000000, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 20),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 30),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 30),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 30),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 30),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 30),
BPF_STMT(BPF_RET | BPF_K, MAX_K)
},
CLASSIC,
{ 0, 0xAA, 0x55, 1 },
{ { 4, 10 }, { 5, 20 }, { 6, MAX_K } },
},
{
"tcpdump port 22",
.u.insns = {
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 12),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x86dd, 0, 8), /* IPv6 */
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 20),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x84, 2, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x6, 1, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x11, 0, 17),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 54),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 14, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 56),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 12, 13),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x0800, 0, 12), /* IPv4 */
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 23),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x84, 2, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x6, 1, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x11, 0, 8),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 20),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0x1fff, 6, 0),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 14),
BPF_STMT(BPF_LD | BPF_H | BPF_IND, 14),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 2, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_IND, 16),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 0, 1),
BPF_STMT(BPF_RET | BPF_K, 0xffff),
BPF_STMT(BPF_RET | BPF_K, 0),
},
CLASSIC,
/* 3c:07:54:43:e5:76 > 10:bf:48:d6:43:d6, ethertype IPv4(0x0800)
* length 114: 10.1.1.149.49700 > 10.1.2.10.22: Flags [P.],
* seq 1305692979:1305693027, ack 3650467037, win 65535,
* options [nop,nop,TS val 2502645400 ecr 3971138], length 48
*/
{ 0x10, 0xbf, 0x48, 0xd6, 0x43, 0xd6,
0x3c, 0x07, 0x54, 0x43, 0xe5, 0x76,
0x08, 0x00,
0x45, 0x10, 0x00, 0x64, 0x75, 0xb5,
0x40, 0x00, 0x40, 0x06, 0xad, 0x2e, /* IP header */
0x0a, 0x01, 0x01, 0x95, /* ip src */
0x0a, 0x01, 0x02, 0x0a, /* ip dst */
0xc2, 0x24,
0x00, 0x16 /* dst port */ },
{ { 10, 0 }, { 30, 0 }, { 100, 65535 } },
},
{
"tcpdump complex",
.u.insns = {
/* tcpdump -nei eth0 'tcp port 22 and (((ip[2:2] -
* ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0) and
* (len > 115 or len < 30000000000)' -d
*/
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 12),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x86dd, 30, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x800, 0, 29),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 23),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x6, 0, 27),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 20),
BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0x1fff, 25, 0),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 14),
BPF_STMT(BPF_LD | BPF_H | BPF_IND, 14),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 2, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_IND, 16),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 0, 20),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 16),
BPF_STMT(BPF_ST, 1),
BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 14),
BPF_STMT(BPF_ALU | BPF_AND | BPF_K, 0xf),
BPF_STMT(BPF_ALU | BPF_LSH | BPF_K, 2),
BPF_STMT(BPF_MISC | BPF_TAX, 0x5), /* libpcap emits K on TAX */
BPF_STMT(BPF_LD | BPF_MEM, 1),
BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0),
BPF_STMT(BPF_ST, 5),
BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 14),
BPF_STMT(BPF_LD | BPF_B | BPF_IND, 26),
BPF_STMT(BPF_ALU | BPF_AND | BPF_K, 0xf0),
BPF_STMT(BPF_ALU | BPF_RSH | BPF_K, 2),
BPF_STMT(BPF_MISC | BPF_TAX, 0x9), /* libpcap emits K on TAX */
BPF_STMT(BPF_LD | BPF_MEM, 5),
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_X, 0, 4, 0),
BPF_STMT(BPF_LD | BPF_LEN, 0),
BPF_JUMP(BPF_JMP | BPF_JGT | BPF_K, 0x73, 1, 0),
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 0xfc23ac00, 1, 0),
BPF_STMT(BPF_RET | BPF_K, 0xffff),
BPF_STMT(BPF_RET | BPF_K, 0),
},
CLASSIC,
{ 0x10, 0xbf, 0x48, 0xd6, 0x43, 0xd6,
0x3c, 0x07, 0x54, 0x43, 0xe5, 0x76,
0x08, 0x00,
0x45, 0x10, 0x00, 0x64, 0x75, 0xb5,
0x40, 0x00, 0x40, 0x06, 0xad, 0x2e, /* IP header */
0x0a, 0x01, 0x01, 0x95, /* ip src */
0x0a, 0x01, 0x02, 0x0a, /* ip dst */
0xc2, 0x24,
0x00, 0x16 /* dst port */ },
{ { 10, 0 }, { 30, 0 }, { 100, 65535 } },
},
{
"RET_A",
.u.insns = {
/* check that unitialized X and A contain zeros */
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_RET | BPF_A, 0)
},
CLASSIC,
{ },
{ {1, 0}, {2, 0} },
},
{
"INT: ADD trivial",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R1, 1),
BPF_ALU64_IMM(BPF_ADD, R1, 2),
BPF_ALU64_IMM(BPF_MOV, R2, 3),
BPF_ALU64_REG(BPF_SUB, R1, R2),
BPF_ALU64_IMM(BPF_ADD, R1, -1),
BPF_ALU64_IMM(BPF_MUL, R1, 3),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0xfffffffd } }
},
{
"INT: MUL_X",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, -1),
BPF_ALU64_IMM(BPF_MOV, R1, -1),
BPF_ALU64_IMM(BPF_MOV, R2, 3),
BPF_ALU64_REG(BPF_MUL, R1, R2),
BPF_JMP_IMM(BPF_JEQ, R1, 0xfffffffd, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
"INT: MUL_X2",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -1),
BPF_ALU32_IMM(BPF_MOV, R1, -1),
BPF_ALU32_IMM(BPF_MOV, R2, 3),
BPF_ALU64_REG(BPF_MUL, R1, R2),
BPF_ALU64_IMM(BPF_RSH, R1, 8),
BPF_JMP_IMM(BPF_JEQ, R1, 0x2ffffff, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
"INT: MUL32_X",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, -1),
BPF_ALU64_IMM(BPF_MOV, R1, -1),
BPF_ALU32_IMM(BPF_MOV, R2, 3),
BPF_ALU32_REG(BPF_MUL, R1, R2),
BPF_ALU64_IMM(BPF_RSH, R1, 8),
BPF_JMP_IMM(BPF_JEQ, R1, 0xffffff, 1),
BPF_EXIT_INSN(),
BPF_ALU32_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
/* Have to test all register combinations, since
* JITing of different registers will produce
* different asm code.
*/
"INT: ADD 64-bit",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_ALU64_IMM(BPF_MOV, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R2, 2),
BPF_ALU64_IMM(BPF_MOV, R3, 3),
BPF_ALU64_IMM(BPF_MOV, R4, 4),
BPF_ALU64_IMM(BPF_MOV, R5, 5),
BPF_ALU64_IMM(BPF_MOV, R6, 6),
BPF_ALU64_IMM(BPF_MOV, R7, 7),
BPF_ALU64_IMM(BPF_MOV, R8, 8),
BPF_ALU64_IMM(BPF_MOV, R9, 9),
BPF_ALU64_IMM(BPF_ADD, R0, 20),
BPF_ALU64_IMM(BPF_ADD, R1, 20),
BPF_ALU64_IMM(BPF_ADD, R2, 20),
BPF_ALU64_IMM(BPF_ADD, R3, 20),
BPF_ALU64_IMM(BPF_ADD, R4, 20),
BPF_ALU64_IMM(BPF_ADD, R5, 20),
BPF_ALU64_IMM(BPF_ADD, R6, 20),
BPF_ALU64_IMM(BPF_ADD, R7, 20),
BPF_ALU64_IMM(BPF_ADD, R8, 20),
BPF_ALU64_IMM(BPF_ADD, R9, 20),
BPF_ALU64_IMM(BPF_SUB, R0, 10),
BPF_ALU64_IMM(BPF_SUB, R1, 10),
BPF_ALU64_IMM(BPF_SUB, R2, 10),
BPF_ALU64_IMM(BPF_SUB, R3, 10),
BPF_ALU64_IMM(BPF_SUB, R4, 10),
BPF_ALU64_IMM(BPF_SUB, R5, 10),
BPF_ALU64_IMM(BPF_SUB, R6, 10),
BPF_ALU64_IMM(BPF_SUB, R7, 10),
BPF_ALU64_IMM(BPF_SUB, R8, 10),
BPF_ALU64_IMM(BPF_SUB, R9, 10),
BPF_ALU64_REG(BPF_ADD, R0, R0),
BPF_ALU64_REG(BPF_ADD, R0, R1),
BPF_ALU64_REG(BPF_ADD, R0, R2),
BPF_ALU64_REG(BPF_ADD, R0, R3),
BPF_ALU64_REG(BPF_ADD, R0, R4),
BPF_ALU64_REG(BPF_ADD, R0, R5),
BPF_ALU64_REG(BPF_ADD, R0, R6),
BPF_ALU64_REG(BPF_ADD, R0, R7),
BPF_ALU64_REG(BPF_ADD, R0, R8),
BPF_ALU64_REG(BPF_ADD, R0, R9), /* R0 == 155 */
BPF_JMP_IMM(BPF_JEQ, R0, 155, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R1, R0),
BPF_ALU64_REG(BPF_ADD, R1, R1),
BPF_ALU64_REG(BPF_ADD, R1, R2),
BPF_ALU64_REG(BPF_ADD, R1, R3),
BPF_ALU64_REG(BPF_ADD, R1, R4),
BPF_ALU64_REG(BPF_ADD, R1, R5),
BPF_ALU64_REG(BPF_ADD, R1, R6),
BPF_ALU64_REG(BPF_ADD, R1, R7),
BPF_ALU64_REG(BPF_ADD, R1, R8),
BPF_ALU64_REG(BPF_ADD, R1, R9), /* R1 == 456 */
BPF_JMP_IMM(BPF_JEQ, R1, 456, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R2, R0),
BPF_ALU64_REG(BPF_ADD, R2, R1),
BPF_ALU64_REG(BPF_ADD, R2, R2),
BPF_ALU64_REG(BPF_ADD, R2, R3),
BPF_ALU64_REG(BPF_ADD, R2, R4),
BPF_ALU64_REG(BPF_ADD, R2, R5),
BPF_ALU64_REG(BPF_ADD, R2, R6),
BPF_ALU64_REG(BPF_ADD, R2, R7),
BPF_ALU64_REG(BPF_ADD, R2, R8),
BPF_ALU64_REG(BPF_ADD, R2, R9), /* R2 == 1358 */
BPF_JMP_IMM(BPF_JEQ, R2, 1358, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R3, R0),
BPF_ALU64_REG(BPF_ADD, R3, R1),
BPF_ALU64_REG(BPF_ADD, R3, R2),
BPF_ALU64_REG(BPF_ADD, R3, R3),
BPF_ALU64_REG(BPF_ADD, R3, R4),
BPF_ALU64_REG(BPF_ADD, R3, R5),
BPF_ALU64_REG(BPF_ADD, R3, R6),
BPF_ALU64_REG(BPF_ADD, R3, R7),
BPF_ALU64_REG(BPF_ADD, R3, R8),
BPF_ALU64_REG(BPF_ADD, R3, R9), /* R3 == 4063 */
BPF_JMP_IMM(BPF_JEQ, R3, 4063, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R4, R0),
BPF_ALU64_REG(BPF_ADD, R4, R1),
BPF_ALU64_REG(BPF_ADD, R4, R2),
BPF_ALU64_REG(BPF_ADD, R4, R3),
BPF_ALU64_REG(BPF_ADD, R4, R4),
BPF_ALU64_REG(BPF_ADD, R4, R5),
BPF_ALU64_REG(BPF_ADD, R4, R6),
BPF_ALU64_REG(BPF_ADD, R4, R7),
BPF_ALU64_REG(BPF_ADD, R4, R8),
BPF_ALU64_REG(BPF_ADD, R4, R9), /* R4 == 12177 */
BPF_JMP_IMM(BPF_JEQ, R4, 12177, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R5, R0),
BPF_ALU64_REG(BPF_ADD, R5, R1),
BPF_ALU64_REG(BPF_ADD, R5, R2),
BPF_ALU64_REG(BPF_ADD, R5, R3),
BPF_ALU64_REG(BPF_ADD, R5, R4),
BPF_ALU64_REG(BPF_ADD, R5, R5),
BPF_ALU64_REG(BPF_ADD, R5, R6),
BPF_ALU64_REG(BPF_ADD, R5, R7),
BPF_ALU64_REG(BPF_ADD, R5, R8),
BPF_ALU64_REG(BPF_ADD, R5, R9), /* R5 == 36518 */
BPF_JMP_IMM(BPF_JEQ, R5, 36518, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R6, R0),
BPF_ALU64_REG(BPF_ADD, R6, R1),
BPF_ALU64_REG(BPF_ADD, R6, R2),
BPF_ALU64_REG(BPF_ADD, R6, R3),
BPF_ALU64_REG(BPF_ADD, R6, R4),
BPF_ALU64_REG(BPF_ADD, R6, R5),
BPF_ALU64_REG(BPF_ADD, R6, R6),
BPF_ALU64_REG(BPF_ADD, R6, R7),
BPF_ALU64_REG(BPF_ADD, R6, R8),
BPF_ALU64_REG(BPF_ADD, R6, R9), /* R6 == 109540 */
BPF_JMP_IMM(BPF_JEQ, R6, 109540, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R7, R0),
BPF_ALU64_REG(BPF_ADD, R7, R1),
BPF_ALU64_REG(BPF_ADD, R7, R2),
BPF_ALU64_REG(BPF_ADD, R7, R3),
BPF_ALU64_REG(BPF_ADD, R7, R4),
BPF_ALU64_REG(BPF_ADD, R7, R5),
BPF_ALU64_REG(BPF_ADD, R7, R6),
BPF_ALU64_REG(BPF_ADD, R7, R7),
BPF_ALU64_REG(BPF_ADD, R7, R8),
BPF_ALU64_REG(BPF_ADD, R7, R9), /* R7 == 328605 */
BPF_JMP_IMM(BPF_JEQ, R7, 328605, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R8, R0),
BPF_ALU64_REG(BPF_ADD, R8, R1),
BPF_ALU64_REG(BPF_ADD, R8, R2),
BPF_ALU64_REG(BPF_ADD, R8, R3),
BPF_ALU64_REG(BPF_ADD, R8, R4),
BPF_ALU64_REG(BPF_ADD, R8, R5),
BPF_ALU64_REG(BPF_ADD, R8, R6),
BPF_ALU64_REG(BPF_ADD, R8, R7),
BPF_ALU64_REG(BPF_ADD, R8, R8),
BPF_ALU64_REG(BPF_ADD, R8, R9), /* R8 == 985799 */
BPF_JMP_IMM(BPF_JEQ, R8, 985799, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_ADD, R9, R0),
BPF_ALU64_REG(BPF_ADD, R9, R1),
BPF_ALU64_REG(BPF_ADD, R9, R2),
BPF_ALU64_REG(BPF_ADD, R9, R3),
BPF_ALU64_REG(BPF_ADD, R9, R4),
BPF_ALU64_REG(BPF_ADD, R9, R5),
BPF_ALU64_REG(BPF_ADD, R9, R6),
BPF_ALU64_REG(BPF_ADD, R9, R7),
BPF_ALU64_REG(BPF_ADD, R9, R8),
BPF_ALU64_REG(BPF_ADD, R9, R9), /* R9 == 2957380 */
BPF_ALU64_REG(BPF_MOV, R0, R9),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2957380 } }
},
{
"INT: ADD 32-bit",
.u.insns_int = {
BPF_ALU32_IMM(BPF_MOV, R0, 20),
BPF_ALU32_IMM(BPF_MOV, R1, 1),
BPF_ALU32_IMM(BPF_MOV, R2, 2),
BPF_ALU32_IMM(BPF_MOV, R3, 3),
BPF_ALU32_IMM(BPF_MOV, R4, 4),
BPF_ALU32_IMM(BPF_MOV, R5, 5),
BPF_ALU32_IMM(BPF_MOV, R6, 6),
BPF_ALU32_IMM(BPF_MOV, R7, 7),
BPF_ALU32_IMM(BPF_MOV, R8, 8),
BPF_ALU32_IMM(BPF_MOV, R9, 9),
BPF_ALU64_IMM(BPF_ADD, R1, 10),
BPF_ALU64_IMM(BPF_ADD, R2, 10),
BPF_ALU64_IMM(BPF_ADD, R3, 10),
BPF_ALU64_IMM(BPF_ADD, R4, 10),
BPF_ALU64_IMM(BPF_ADD, R5, 10),
BPF_ALU64_IMM(BPF_ADD, R6, 10),
BPF_ALU64_IMM(BPF_ADD, R7, 10),
BPF_ALU64_IMM(BPF_ADD, R8, 10),
BPF_ALU64_IMM(BPF_ADD, R9, 10),
BPF_ALU32_REG(BPF_ADD, R0, R1),
BPF_ALU32_REG(BPF_ADD, R0, R2),
BPF_ALU32_REG(BPF_ADD, R0, R3),
BPF_ALU32_REG(BPF_ADD, R0, R4),
BPF_ALU32_REG(BPF_ADD, R0, R5),
BPF_ALU32_REG(BPF_ADD, R0, R6),
BPF_ALU32_REG(BPF_ADD, R0, R7),
BPF_ALU32_REG(BPF_ADD, R0, R8),
BPF_ALU32_REG(BPF_ADD, R0, R9), /* R0 == 155 */
BPF_JMP_IMM(BPF_JEQ, R0, 155, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R1, R0),
BPF_ALU32_REG(BPF_ADD, R1, R1),
BPF_ALU32_REG(BPF_ADD, R1, R2),
BPF_ALU32_REG(BPF_ADD, R1, R3),
BPF_ALU32_REG(BPF_ADD, R1, R4),
BPF_ALU32_REG(BPF_ADD, R1, R5),
BPF_ALU32_REG(BPF_ADD, R1, R6),
BPF_ALU32_REG(BPF_ADD, R1, R7),
BPF_ALU32_REG(BPF_ADD, R1, R8),
BPF_ALU32_REG(BPF_ADD, R1, R9), /* R1 == 456 */
BPF_JMP_IMM(BPF_JEQ, R1, 456, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R2, R0),
BPF_ALU32_REG(BPF_ADD, R2, R1),
BPF_ALU32_REG(BPF_ADD, R2, R2),
BPF_ALU32_REG(BPF_ADD, R2, R3),
BPF_ALU32_REG(BPF_ADD, R2, R4),
BPF_ALU32_REG(BPF_ADD, R2, R5),
BPF_ALU32_REG(BPF_ADD, R2, R6),
BPF_ALU32_REG(BPF_ADD, R2, R7),
BPF_ALU32_REG(BPF_ADD, R2, R8),
BPF_ALU32_REG(BPF_ADD, R2, R9), /* R2 == 1358 */
BPF_JMP_IMM(BPF_JEQ, R2, 1358, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R3, R0),
BPF_ALU32_REG(BPF_ADD, R3, R1),
BPF_ALU32_REG(BPF_ADD, R3, R2),
BPF_ALU32_REG(BPF_ADD, R3, R3),
BPF_ALU32_REG(BPF_ADD, R3, R4),
BPF_ALU32_REG(BPF_ADD, R3, R5),
BPF_ALU32_REG(BPF_ADD, R3, R6),
BPF_ALU32_REG(BPF_ADD, R3, R7),
BPF_ALU32_REG(BPF_ADD, R3, R8),
BPF_ALU32_REG(BPF_ADD, R3, R9), /* R3 == 4063 */
BPF_JMP_IMM(BPF_JEQ, R3, 4063, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R4, R0),
BPF_ALU32_REG(BPF_ADD, R4, R1),
BPF_ALU32_REG(BPF_ADD, R4, R2),
BPF_ALU32_REG(BPF_ADD, R4, R3),
BPF_ALU32_REG(BPF_ADD, R4, R4),
BPF_ALU32_REG(BPF_ADD, R4, R5),
BPF_ALU32_REG(BPF_ADD, R4, R6),
BPF_ALU32_REG(BPF_ADD, R4, R7),
BPF_ALU32_REG(BPF_ADD, R4, R8),
BPF_ALU32_REG(BPF_ADD, R4, R9), /* R4 == 12177 */
BPF_JMP_IMM(BPF_JEQ, R4, 12177, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R5, R0),
BPF_ALU32_REG(BPF_ADD, R5, R1),
BPF_ALU32_REG(BPF_ADD, R5, R2),
BPF_ALU32_REG(BPF_ADD, R5, R3),
BPF_ALU32_REG(BPF_ADD, R5, R4),
BPF_ALU32_REG(BPF_ADD, R5, R5),
BPF_ALU32_REG(BPF_ADD, R5, R6),
BPF_ALU32_REG(BPF_ADD, R5, R7),
BPF_ALU32_REG(BPF_ADD, R5, R8),
BPF_ALU32_REG(BPF_ADD, R5, R9), /* R5 == 36518 */
BPF_JMP_IMM(BPF_JEQ, R5, 36518, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R6, R0),
BPF_ALU32_REG(BPF_ADD, R6, R1),
BPF_ALU32_REG(BPF_ADD, R6, R2),
BPF_ALU32_REG(BPF_ADD, R6, R3),
BPF_ALU32_REG(BPF_ADD, R6, R4),
BPF_ALU32_REG(BPF_ADD, R6, R5),
BPF_ALU32_REG(BPF_ADD, R6, R6),
BPF_ALU32_REG(BPF_ADD, R6, R7),
BPF_ALU32_REG(BPF_ADD, R6, R8),
BPF_ALU32_REG(BPF_ADD, R6, R9), /* R6 == 109540 */
BPF_JMP_IMM(BPF_JEQ, R6, 109540, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R7, R0),
BPF_ALU32_REG(BPF_ADD, R7, R1),
BPF_ALU32_REG(BPF_ADD, R7, R2),
BPF_ALU32_REG(BPF_ADD, R7, R3),
BPF_ALU32_REG(BPF_ADD, R7, R4),
BPF_ALU32_REG(BPF_ADD, R7, R5),
BPF_ALU32_REG(BPF_ADD, R7, R6),
BPF_ALU32_REG(BPF_ADD, R7, R7),
BPF_ALU32_REG(BPF_ADD, R7, R8),
BPF_ALU32_REG(BPF_ADD, R7, R9), /* R7 == 328605 */
BPF_JMP_IMM(BPF_JEQ, R7, 328605, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R8, R0),
BPF_ALU32_REG(BPF_ADD, R8, R1),
BPF_ALU32_REG(BPF_ADD, R8, R2),
BPF_ALU32_REG(BPF_ADD, R8, R3),
BPF_ALU32_REG(BPF_ADD, R8, R4),
BPF_ALU32_REG(BPF_ADD, R8, R5),
BPF_ALU32_REG(BPF_ADD, R8, R6),
BPF_ALU32_REG(BPF_ADD, R8, R7),
BPF_ALU32_REG(BPF_ADD, R8, R8),
BPF_ALU32_REG(BPF_ADD, R8, R9), /* R8 == 985799 */
BPF_JMP_IMM(BPF_JEQ, R8, 985799, 1),
BPF_EXIT_INSN(),
BPF_ALU32_REG(BPF_ADD, R9, R0),
BPF_ALU32_REG(BPF_ADD, R9, R1),
BPF_ALU32_REG(BPF_ADD, R9, R2),
BPF_ALU32_REG(BPF_ADD, R9, R3),
BPF_ALU32_REG(BPF_ADD, R9, R4),
BPF_ALU32_REG(BPF_ADD, R9, R5),
BPF_ALU32_REG(BPF_ADD, R9, R6),
BPF_ALU32_REG(BPF_ADD, R9, R7),
BPF_ALU32_REG(BPF_ADD, R9, R8),
BPF_ALU32_REG(BPF_ADD, R9, R9), /* R9 == 2957380 */
BPF_ALU32_REG(BPF_MOV, R0, R9),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 2957380 } }
},
{ /* Mainly checking JIT here. */
"INT: SUB",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_ALU64_IMM(BPF_MOV, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R2, 2),
BPF_ALU64_IMM(BPF_MOV, R3, 3),
BPF_ALU64_IMM(BPF_MOV, R4, 4),
BPF_ALU64_IMM(BPF_MOV, R5, 5),
BPF_ALU64_IMM(BPF_MOV, R6, 6),
BPF_ALU64_IMM(BPF_MOV, R7, 7),
BPF_ALU64_IMM(BPF_MOV, R8, 8),
BPF_ALU64_IMM(BPF_MOV, R9, 9),
BPF_ALU64_REG(BPF_SUB, R0, R0),
BPF_ALU64_REG(BPF_SUB, R0, R1),
BPF_ALU64_REG(BPF_SUB, R0, R2),
BPF_ALU64_REG(BPF_SUB, R0, R3),
BPF_ALU64_REG(BPF_SUB, R0, R4),
BPF_ALU64_REG(BPF_SUB, R0, R5),
BPF_ALU64_REG(BPF_SUB, R0, R6),
BPF_ALU64_REG(BPF_SUB, R0, R7),
BPF_ALU64_REG(BPF_SUB, R0, R8),
BPF_ALU64_REG(BPF_SUB, R0, R9),
BPF_ALU64_IMM(BPF_SUB, R0, 10),
BPF_JMP_IMM(BPF_JEQ, R0, -55, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R1, R0),
BPF_ALU64_REG(BPF_SUB, R1, R2),
BPF_ALU64_REG(BPF_SUB, R1, R3),
BPF_ALU64_REG(BPF_SUB, R1, R4),
BPF_ALU64_REG(BPF_SUB, R1, R5),
BPF_ALU64_REG(BPF_SUB, R1, R6),
BPF_ALU64_REG(BPF_SUB, R1, R7),
BPF_ALU64_REG(BPF_SUB, R1, R8),
BPF_ALU64_REG(BPF_SUB, R1, R9),
BPF_ALU64_IMM(BPF_SUB, R1, 10),
BPF_ALU64_REG(BPF_SUB, R2, R0),
BPF_ALU64_REG(BPF_SUB, R2, R1),
BPF_ALU64_REG(BPF_SUB, R2, R3),
BPF_ALU64_REG(BPF_SUB, R2, R4),
BPF_ALU64_REG(BPF_SUB, R2, R5),
BPF_ALU64_REG(BPF_SUB, R2, R6),
BPF_ALU64_REG(BPF_SUB, R2, R7),
BPF_ALU64_REG(BPF_SUB, R2, R8),
BPF_ALU64_REG(BPF_SUB, R2, R9),
BPF_ALU64_IMM(BPF_SUB, R2, 10),
BPF_ALU64_REG(BPF_SUB, R3, R0),
BPF_ALU64_REG(BPF_SUB, R3, R1),
BPF_ALU64_REG(BPF_SUB, R3, R2),
BPF_ALU64_REG(BPF_SUB, R3, R4),
BPF_ALU64_REG(BPF_SUB, R3, R5),
BPF_ALU64_REG(BPF_SUB, R3, R6),
BPF_ALU64_REG(BPF_SUB, R3, R7),
BPF_ALU64_REG(BPF_SUB, R3, R8),
BPF_ALU64_REG(BPF_SUB, R3, R9),
BPF_ALU64_IMM(BPF_SUB, R3, 10),
BPF_ALU64_REG(BPF_SUB, R4, R0),
BPF_ALU64_REG(BPF_SUB, R4, R1),
BPF_ALU64_REG(BPF_SUB, R4, R2),
BPF_ALU64_REG(BPF_SUB, R4, R3),
BPF_ALU64_REG(BPF_SUB, R4, R5),
BPF_ALU64_REG(BPF_SUB, R4, R6),
BPF_ALU64_REG(BPF_SUB, R4, R7),
BPF_ALU64_REG(BPF_SUB, R4, R8),
BPF_ALU64_REG(BPF_SUB, R4, R9),
BPF_ALU64_IMM(BPF_SUB, R4, 10),
BPF_ALU64_REG(BPF_SUB, R5, R0),
BPF_ALU64_REG(BPF_SUB, R5, R1),
BPF_ALU64_REG(BPF_SUB, R5, R2),
BPF_ALU64_REG(BPF_SUB, R5, R3),
BPF_ALU64_REG(BPF_SUB, R5, R4),
BPF_ALU64_REG(BPF_SUB, R5, R6),
BPF_ALU64_REG(BPF_SUB, R5, R7),
BPF_ALU64_REG(BPF_SUB, R5, R8),
BPF_ALU64_REG(BPF_SUB, R5, R9),
BPF_ALU64_IMM(BPF_SUB, R5, 10),
BPF_ALU64_REG(BPF_SUB, R6, R0),
BPF_ALU64_REG(BPF_SUB, R6, R1),
BPF_ALU64_REG(BPF_SUB, R6, R2),
BPF_ALU64_REG(BPF_SUB, R6, R3),
BPF_ALU64_REG(BPF_SUB, R6, R4),
BPF_ALU64_REG(BPF_SUB, R6, R5),
BPF_ALU64_REG(BPF_SUB, R6, R7),
BPF_ALU64_REG(BPF_SUB, R6, R8),
BPF_ALU64_REG(BPF_SUB, R6, R9),
BPF_ALU64_IMM(BPF_SUB, R6, 10),
BPF_ALU64_REG(BPF_SUB, R7, R0),
BPF_ALU64_REG(BPF_SUB, R7, R1),
BPF_ALU64_REG(BPF_SUB, R7, R2),
BPF_ALU64_REG(BPF_SUB, R7, R3),
BPF_ALU64_REG(BPF_SUB, R7, R4),
BPF_ALU64_REG(BPF_SUB, R7, R5),
BPF_ALU64_REG(BPF_SUB, R7, R6),
BPF_ALU64_REG(BPF_SUB, R7, R8),
BPF_ALU64_REG(BPF_SUB, R7, R9),
BPF_ALU64_IMM(BPF_SUB, R7, 10),
BPF_ALU64_REG(BPF_SUB, R8, R0),
BPF_ALU64_REG(BPF_SUB, R8, R1),
BPF_ALU64_REG(BPF_SUB, R8, R2),
BPF_ALU64_REG(BPF_SUB, R8, R3),
BPF_ALU64_REG(BPF_SUB, R8, R4),
BPF_ALU64_REG(BPF_SUB, R8, R5),
BPF_ALU64_REG(BPF_SUB, R8, R6),
BPF_ALU64_REG(BPF_SUB, R8, R7),
BPF_ALU64_REG(BPF_SUB, R8, R9),
BPF_ALU64_IMM(BPF_SUB, R8, 10),
BPF_ALU64_REG(BPF_SUB, R9, R0),
BPF_ALU64_REG(BPF_SUB, R9, R1),
BPF_ALU64_REG(BPF_SUB, R9, R2),
BPF_ALU64_REG(BPF_SUB, R9, R3),
BPF_ALU64_REG(BPF_SUB, R9, R4),
BPF_ALU64_REG(BPF_SUB, R9, R5),
BPF_ALU64_REG(BPF_SUB, R9, R6),
BPF_ALU64_REG(BPF_SUB, R9, R7),
BPF_ALU64_REG(BPF_SUB, R9, R8),
BPF_ALU64_IMM(BPF_SUB, R9, 10),
BPF_ALU64_IMM(BPF_SUB, R0, 10),
BPF_ALU64_IMM(BPF_NEG, R0, 0),
BPF_ALU64_REG(BPF_SUB, R0, R1),
BPF_ALU64_REG(BPF_SUB, R0, R2),
BPF_ALU64_REG(BPF_SUB, R0, R3),
BPF_ALU64_REG(BPF_SUB, R0, R4),
BPF_ALU64_REG(BPF_SUB, R0, R5),
BPF_ALU64_REG(BPF_SUB, R0, R6),
BPF_ALU64_REG(BPF_SUB, R0, R7),
BPF_ALU64_REG(BPF_SUB, R0, R8),
BPF_ALU64_REG(BPF_SUB, R0, R9),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 11 } }
},
{ /* Mainly checking JIT here. */
"INT: XOR",
.u.insns_int = {
BPF_ALU64_REG(BPF_SUB, R0, R0),
BPF_ALU64_REG(BPF_XOR, R1, R1),
BPF_JMP_REG(BPF_JEQ, R0, R1, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOV, R0, 10),
BPF_ALU64_IMM(BPF_MOV, R1, -1),
BPF_ALU64_REG(BPF_SUB, R1, R1),
BPF_ALU64_REG(BPF_XOR, R2, R2),
BPF_JMP_REG(BPF_JEQ, R1, R2, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R2, R2),
BPF_ALU64_REG(BPF_XOR, R3, R3),
BPF_ALU64_IMM(BPF_MOV, R0, 10),
BPF_ALU64_IMM(BPF_MOV, R1, -1),
BPF_JMP_REG(BPF_JEQ, R2, R3, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R3, R3),
BPF_ALU64_REG(BPF_XOR, R4, R4),
BPF_ALU64_IMM(BPF_MOV, R2, 1),
BPF_ALU64_IMM(BPF_MOV, R5, -1),
BPF_JMP_REG(BPF_JEQ, R3, R4, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R4, R4),
BPF_ALU64_REG(BPF_XOR, R5, R5),
BPF_ALU64_IMM(BPF_MOV, R3, 1),
BPF_ALU64_IMM(BPF_MOV, R7, -1),
BPF_JMP_REG(BPF_JEQ, R5, R4, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOV, R5, 1),
BPF_ALU64_REG(BPF_SUB, R5, R5),
BPF_ALU64_REG(BPF_XOR, R6, R6),
BPF_ALU64_IMM(BPF_MOV, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R8, -1),
BPF_JMP_REG(BPF_JEQ, R5, R6, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R6, R6),
BPF_ALU64_REG(BPF_XOR, R7, R7),
BPF_JMP_REG(BPF_JEQ, R7, R6, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R7, R7),
BPF_ALU64_REG(BPF_XOR, R8, R8),
BPF_JMP_REG(BPF_JEQ, R7, R8, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R8, R8),
BPF_ALU64_REG(BPF_XOR, R9, R9),
BPF_JMP_REG(BPF_JEQ, R9, R8, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R9, R9),
BPF_ALU64_REG(BPF_XOR, R0, R0),
BPF_JMP_REG(BPF_JEQ, R9, R0, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_SUB, R1, R1),
BPF_ALU64_REG(BPF_XOR, R0, R0),
BPF_JMP_REG(BPF_JEQ, R9, R0, 2),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{ /* Mainly checking JIT here. */
"INT: MUL",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 11),
BPF_ALU64_IMM(BPF_MOV, R1, 1),
BPF_ALU64_IMM(BPF_MOV, R2, 2),
BPF_ALU64_IMM(BPF_MOV, R3, 3),
BPF_ALU64_IMM(BPF_MOV, R4, 4),
BPF_ALU64_IMM(BPF_MOV, R5, 5),
BPF_ALU64_IMM(BPF_MOV, R6, 6),
BPF_ALU64_IMM(BPF_MOV, R7, 7),
BPF_ALU64_IMM(BPF_MOV, R8, 8),
BPF_ALU64_IMM(BPF_MOV, R9, 9),
BPF_ALU64_REG(BPF_MUL, R0, R0),
BPF_ALU64_REG(BPF_MUL, R0, R1),
BPF_ALU64_REG(BPF_MUL, R0, R2),
BPF_ALU64_REG(BPF_MUL, R0, R3),
BPF_ALU64_REG(BPF_MUL, R0, R4),
BPF_ALU64_REG(BPF_MUL, R0, R5),
BPF_ALU64_REG(BPF_MUL, R0, R6),
BPF_ALU64_REG(BPF_MUL, R0, R7),
BPF_ALU64_REG(BPF_MUL, R0, R8),
BPF_ALU64_REG(BPF_MUL, R0, R9),
BPF_ALU64_IMM(BPF_MUL, R0, 10),
BPF_JMP_IMM(BPF_JEQ, R0, 439084800, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_MUL, R1, R0),
BPF_ALU64_REG(BPF_MUL, R1, R2),
BPF_ALU64_REG(BPF_MUL, R1, R3),
BPF_ALU64_REG(BPF_MUL, R1, R4),
BPF_ALU64_REG(BPF_MUL, R1, R5),
BPF_ALU64_REG(BPF_MUL, R1, R6),
BPF_ALU64_REG(BPF_MUL, R1, R7),
BPF_ALU64_REG(BPF_MUL, R1, R8),
BPF_ALU64_REG(BPF_MUL, R1, R9),
BPF_ALU64_IMM(BPF_MUL, R1, 10),
BPF_ALU64_REG(BPF_MOV, R2, R1),
BPF_ALU64_IMM(BPF_RSH, R2, 32),
BPF_JMP_IMM(BPF_JEQ, R2, 0x5a924, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_LSH, R1, 32),
BPF_ALU64_IMM(BPF_ARSH, R1, 32),
BPF_JMP_IMM(BPF_JEQ, R1, 0xebb90000, 1),
BPF_EXIT_INSN(),
BPF_ALU64_REG(BPF_MUL, R2, R0),
BPF_ALU64_REG(BPF_MUL, R2, R1),
BPF_ALU64_REG(BPF_MUL, R2, R3),
BPF_ALU64_REG(BPF_MUL, R2, R4),
BPF_ALU64_REG(BPF_MUL, R2, R5),
BPF_ALU64_REG(BPF_MUL, R2, R6),
BPF_ALU64_REG(BPF_MUL, R2, R7),
BPF_ALU64_REG(BPF_MUL, R2, R8),
BPF_ALU64_REG(BPF_MUL, R2, R9),
BPF_ALU64_IMM(BPF_MUL, R2, 10),
BPF_ALU64_IMM(BPF_RSH, R2, 32),
BPF_ALU64_REG(BPF_MOV, R0, R2),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 0x35d97ef2 } }
},
{
"INT: ALU MIX",
.u.insns_int = {
BPF_ALU64_IMM(BPF_MOV, R0, 11),
BPF_ALU64_IMM(BPF_ADD, R0, -1),
BPF_ALU64_IMM(BPF_MOV, R2, 2),
BPF_ALU64_IMM(BPF_XOR, R2, 3),
BPF_ALU64_REG(BPF_DIV, R0, R2),
BPF_JMP_IMM(BPF_JEQ, R0, 10, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOD, R0, 3),
BPF_JMP_IMM(BPF_JEQ, R0, 1, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOV, R0, -1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -1 } }
},
{
"INT: shifts by register",
.u.insns_int = {
BPF_MOV64_IMM(R0, -1234),
BPF_MOV64_IMM(R1, 1),
BPF_ALU32_REG(BPF_RSH, R0, R1),
BPF_JMP_IMM(BPF_JEQ, R0, 0x7ffffd97, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(R2, 1),
BPF_ALU64_REG(BPF_LSH, R0, R2),
BPF_MOV32_IMM(R4, -1234),
BPF_JMP_REG(BPF_JEQ, R0, R4, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_AND, R4, 63),
BPF_ALU64_REG(BPF_LSH, R0, R4), /* R0 <= 46 */
BPF_MOV64_IMM(R3, 47),
BPF_ALU64_REG(BPF_ARSH, R0, R3),
BPF_JMP_IMM(BPF_JEQ, R0, -617, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(R2, 1),
BPF_ALU64_REG(BPF_LSH, R4, R2), /* R4 = 46 << 1 */
BPF_JMP_IMM(BPF_JEQ, R4, 92, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(R4, 4),
BPF_ALU64_REG(BPF_LSH, R4, R4), /* R4 = 4 << 4 */
BPF_JMP_IMM(BPF_JEQ, R4, 64, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(R4, 5),
BPF_ALU32_REG(BPF_LSH, R4, R4), /* R4 = 5 << 5 */
BPF_JMP_IMM(BPF_JEQ, R4, 160, 1),
BPF_EXIT_INSN(),
BPF_MOV64_IMM(R0, -1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, -1 } }
},
{
"INT: DIV + ABS",
.u.insns_int = {
BPF_ALU64_REG(BPF_MOV, R6, R1),
BPF_LD_ABS(BPF_B, 3),
BPF_ALU64_IMM(BPF_MOV, R2, 2),
BPF_ALU32_REG(BPF_DIV, R0, R2),
BPF_ALU64_REG(BPF_MOV, R8, R0),
BPF_LD_ABS(BPF_B, 4),
BPF_ALU64_REG(BPF_ADD, R8, R0),
BPF_LD_IND(BPF_B, R8, -70),
BPF_EXIT_INSN(),
},
INTERNAL,
{ 10, 20, 30, 40, 50 },
{ { 4, 0 }, { 5, 10 } }
},
{
"INT: DIV by zero",
.u.insns_int = {
BPF_ALU64_REG(BPF_MOV, R6, R1),
BPF_ALU64_IMM(BPF_MOV, R7, 0),
BPF_LD_ABS(BPF_B, 3),
BPF_ALU32_REG(BPF_DIV, R0, R7),
BPF_EXIT_INSN(),
},
INTERNAL,
{ 10, 20, 30, 40, 50 },
{ { 3, 0 }, { 4, 0 } }
},
{
"check: missing ret",
.u.insns = {
BPF_STMT(BPF_LD | BPF_IMM, 1),
},
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ }
},
{
"check: div_k_0",
.u.insns = {
BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 0),
BPF_STMT(BPF_RET | BPF_K, 0)
},
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ }
},
{
"check: unknown insn",
.u.insns = {
/* seccomp insn, rejected in socket filter */
BPF_STMT(BPF_LDX | BPF_W | BPF_ABS, 0),
BPF_STMT(BPF_RET | BPF_K, 0)
},
CLASSIC | FLAG_EXPECTED_FAIL,
{ },
{ }
},
{
"check: out of range spill/fill",
.u.insns = {
BPF_STMT(BPF_STX, 16),
BPF_STMT(BPF_RET | BPF_K, 0)
},
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ }
},
{
"JUMPS + HOLES",
.u.insns = {
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JGE, 0, 13, 15),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90c2894d, 3, 4),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90c2894d, 1, 2),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JGE, 0, 14, 15),
BPF_JUMP(BPF_JMP | BPF_JGE, 0, 13, 14),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ, 0x2ac28349, 2, 3),
BPF_JUMP(BPF_JMP | BPF_JEQ, 0x2ac28349, 1, 2),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JGE, 0, 14, 15),
BPF_JUMP(BPF_JMP | BPF_JGE, 0, 13, 14),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90d2ff41, 2, 3),
BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90d2ff41, 1, 2),
BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
BPF_STMT(BPF_RET | BPF_A, 0),
BPF_STMT(BPF_RET | BPF_A, 0),
},
CLASSIC,
{ 0x00, 0x1b, 0x21, 0x3c, 0x9d, 0xf8,
0x90, 0xe2, 0xba, 0x0a, 0x56, 0xb4,
0x08, 0x00,
0x45, 0x00, 0x00, 0x28, 0x00, 0x00,
0x20, 0x00, 0x40, 0x11, 0x00, 0x00, /* IP header */
0xc0, 0xa8, 0x33, 0x01,
0xc0, 0xa8, 0x33, 0x02,
0xbb, 0xb6,
0xa9, 0xfa,
0x00, 0x14, 0x00, 0x00,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
0xcc, 0xcc, 0xcc, 0xcc },
{ { 88, 0x001b } }
},
{
"check: RET X",
.u.insns = {
BPF_STMT(BPF_RET | BPF_X, 0),
},
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ },
},
{
"check: LDX + RET X",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 42),
BPF_STMT(BPF_RET | BPF_X, 0),
},
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ },
},
{ /* Mainly checking JIT here. */
"M[]: alt STX + LDX",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 100),
BPF_STMT(BPF_STX, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 0),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 1),
BPF_STMT(BPF_LDX | BPF_MEM, 1),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 2),
BPF_STMT(BPF_LDX | BPF_MEM, 2),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 3),
BPF_STMT(BPF_LDX | BPF_MEM, 3),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 4),
BPF_STMT(BPF_LDX | BPF_MEM, 4),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 5),
BPF_STMT(BPF_LDX | BPF_MEM, 5),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 6),
BPF_STMT(BPF_LDX | BPF_MEM, 6),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 7),
BPF_STMT(BPF_LDX | BPF_MEM, 7),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 8),
BPF_STMT(BPF_LDX | BPF_MEM, 8),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 9),
BPF_STMT(BPF_LDX | BPF_MEM, 9),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 10),
BPF_STMT(BPF_LDX | BPF_MEM, 10),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 11),
BPF_STMT(BPF_LDX | BPF_MEM, 11),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 12),
BPF_STMT(BPF_LDX | BPF_MEM, 12),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 13),
BPF_STMT(BPF_LDX | BPF_MEM, 13),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 14),
BPF_STMT(BPF_LDX | BPF_MEM, 14),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_STX, 15),
BPF_STMT(BPF_LDX | BPF_MEM, 15),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
BPF_STMT(BPF_MISC | BPF_TAX, 0),
BPF_STMT(BPF_RET | BPF_A, 0),
},
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 116 } },
},
{ /* Mainly checking JIT here. */
"M[]: full STX + full LDX",
.u.insns = {
BPF_STMT(BPF_LDX | BPF_IMM, 0xbadfeedb),
BPF_STMT(BPF_STX, 0),
BPF_STMT(BPF_LDX | BPF_IMM, 0xecabedae),
BPF_STMT(BPF_STX, 1),
BPF_STMT(BPF_LDX | BPF_IMM, 0xafccfeaf),
BPF_STMT(BPF_STX, 2),
BPF_STMT(BPF_LDX | BPF_IMM, 0xbffdcedc),
BPF_STMT(BPF_STX, 3),
BPF_STMT(BPF_LDX | BPF_IMM, 0xfbbbdccb),
BPF_STMT(BPF_STX, 4),
BPF_STMT(BPF_LDX | BPF_IMM, 0xfbabcbda),
BPF_STMT(BPF_STX, 5),
BPF_STMT(BPF_LDX | BPF_IMM, 0xaedecbdb),
BPF_STMT(BPF_STX, 6),
BPF_STMT(BPF_LDX | BPF_IMM, 0xadebbade),
BPF_STMT(BPF_STX, 7),
BPF_STMT(BPF_LDX | BPF_IMM, 0xfcfcfaec),
BPF_STMT(BPF_STX, 8),
BPF_STMT(BPF_LDX | BPF_IMM, 0xbcdddbdc),
BPF_STMT(BPF_STX, 9),
BPF_STMT(BPF_LDX | BPF_IMM, 0xfeefdfac),
BPF_STMT(BPF_STX, 10),
BPF_STMT(BPF_LDX | BPF_IMM, 0xcddcdeea),
BPF_STMT(BPF_STX, 11),
BPF_STMT(BPF_LDX | BPF_IMM, 0xaccfaebb),
BPF_STMT(BPF_STX, 12),
BPF_STMT(BPF_LDX | BPF_IMM, 0xbdcccdcf),
BPF_STMT(BPF_STX, 13),
BPF_STMT(BPF_LDX | BPF_IMM, 0xaaedecde),
BPF_STMT(BPF_STX, 14),
BPF_STMT(BPF_LDX | BPF_IMM, 0xfaeacdad),
BPF_STMT(BPF_STX, 15),
BPF_STMT(BPF_LDX | BPF_MEM, 0),
BPF_STMT(BPF_MISC | BPF_TXA, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 1),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 2),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 3),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 4),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 5),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 6),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 7),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 8),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 9),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 10),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 11),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 12),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 13),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 14),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_LDX | BPF_MEM, 15),
BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
BPF_STMT(BPF_RET | BPF_A, 0),
},
CLASSIC | FLAG_NO_DATA,
{ },
{ { 0, 0x2a5a5e5 } },
},
{
"check: SKF_AD_MAX",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF + SKF_AD_MAX),
BPF_STMT(BPF_RET | BPF_A, 0),
},
CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
{ },
{ },
},
{ /* Passes checker but fails during runtime. */
"LD [SKF_AD_OFF-1]",
.u.insns = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
SKF_AD_OFF - 1),
BPF_STMT(BPF_RET | BPF_K, 1),
},
CLASSIC,
{ },
{ { 1, 0 } },
},
net: filter: add "load 64-bit immediate" eBPF instruction add BPF_LD_IMM64 instruction to load 64-bit immediate value into a register. All previous instructions were 8-byte. This is first 16-byte instruction. Two consecutive 'struct bpf_insn' blocks are interpreted as single instruction: insn[0].code = BPF_LD | BPF_DW | BPF_IMM insn[0].dst_reg = destination register insn[0].imm = lower 32-bit insn[1].code = 0 insn[1].imm = upper 32-bit All unused fields must be zero. Classic BPF has similar instruction: BPF_LD | BPF_W | BPF_IMM which loads 32-bit immediate value into a register. x64 JITs it as single 'movabsq %rax, imm64' arm64 may JIT as sequence of four 'movk x0, #imm16, lsl #shift' insn Note that old eBPF programs are binary compatible with new interpreter. It helps eBPF programs load 64-bit constant into a register with one instruction instead of using two registers and 4 instructions: BPF_MOV32_IMM(R1, imm32) BPF_ALU64_IMM(BPF_LSH, R1, 32) BPF_MOV32_IMM(R2, imm32) BPF_ALU64_REG(BPF_OR, R1, R2) User space generated programs will use this instruction to load constants only. To tell kernel that user space needs a pointer the _pseudo_ variant of this instruction may be added later, which will use extra bits of encoding to indicate what type of pointer user space is asking kernel to provide. For example 'off' or 'src_reg' fields can be used for such purpose. src_reg = 1 could mean that user space is asking kernel to validate and load in-kernel map pointer. src_reg = 2 could mean that user space needs readonly data section pointer src_reg = 3 could mean that user space needs a pointer to per-cpu local data All such future pseudo instructions will not be carrying the actual pointer as part of the instruction, but rather will be treated as a request to kernel to provide one. The kernel will verify the request_for_a_pointer, then will drop _pseudo_ marking and will store actual internal pointer inside the instruction, so the end result is the interpreter and JITs never see pseudo BPF_LD_IMM64 insns and only operate on generic BPF_LD_IMM64 that loads 64-bit immediate into a register. User space never operates on direct pointers and verifier can easily recognize request_for_pointer vs other instructions. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-05 05:17:17 +00:00
{
"load 64-bit immediate",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x567800001234LL),
net: filter: add "load 64-bit immediate" eBPF instruction add BPF_LD_IMM64 instruction to load 64-bit immediate value into a register. All previous instructions were 8-byte. This is first 16-byte instruction. Two consecutive 'struct bpf_insn' blocks are interpreted as single instruction: insn[0].code = BPF_LD | BPF_DW | BPF_IMM insn[0].dst_reg = destination register insn[0].imm = lower 32-bit insn[1].code = 0 insn[1].imm = upper 32-bit All unused fields must be zero. Classic BPF has similar instruction: BPF_LD | BPF_W | BPF_IMM which loads 32-bit immediate value into a register. x64 JITs it as single 'movabsq %rax, imm64' arm64 may JIT as sequence of four 'movk x0, #imm16, lsl #shift' insn Note that old eBPF programs are binary compatible with new interpreter. It helps eBPF programs load 64-bit constant into a register with one instruction instead of using two registers and 4 instructions: BPF_MOV32_IMM(R1, imm32) BPF_ALU64_IMM(BPF_LSH, R1, 32) BPF_MOV32_IMM(R2, imm32) BPF_ALU64_REG(BPF_OR, R1, R2) User space generated programs will use this instruction to load constants only. To tell kernel that user space needs a pointer the _pseudo_ variant of this instruction may be added later, which will use extra bits of encoding to indicate what type of pointer user space is asking kernel to provide. For example 'off' or 'src_reg' fields can be used for such purpose. src_reg = 1 could mean that user space is asking kernel to validate and load in-kernel map pointer. src_reg = 2 could mean that user space needs readonly data section pointer src_reg = 3 could mean that user space needs a pointer to per-cpu local data All such future pseudo instructions will not be carrying the actual pointer as part of the instruction, but rather will be treated as a request to kernel to provide one. The kernel will verify the request_for_a_pointer, then will drop _pseudo_ marking and will store actual internal pointer inside the instruction, so the end result is the interpreter and JITs never see pseudo BPF_LD_IMM64 insns and only operate on generic BPF_LD_IMM64 that loads 64-bit immediate into a register. User space never operates on direct pointers and verifier can easily recognize request_for_pointer vs other instructions. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-05 05:17:17 +00:00
BPF_MOV64_REG(R2, R1),
BPF_MOV64_REG(R3, R2),
BPF_ALU64_IMM(BPF_RSH, R2, 32),
BPF_ALU64_IMM(BPF_LSH, R3, 32),
BPF_ALU64_IMM(BPF_RSH, R3, 32),
BPF_ALU64_IMM(BPF_MOV, R0, 0),
BPF_JMP_IMM(BPF_JEQ, R2, 0x5678, 1),
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JEQ, R3, 0x1234, 1),
BPF_EXIT_INSN(),
BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
INTERNAL,
{ },
{ { 0, 1 } }
},
{
"nmap reduced",
.u.insns_int = {
BPF_MOV64_REG(R6, R1),
BPF_LD_ABS(BPF_H, 12),
BPF_JMP_IMM(BPF_JNE, R0, 0x806, 28),
BPF_LD_ABS(BPF_H, 12),
BPF_JMP_IMM(BPF_JNE, R0, 0x806, 26),
BPF_MOV32_IMM(R0, 18),
BPF_STX_MEM(BPF_W, R10, R0, -64),
BPF_LDX_MEM(BPF_W, R7, R10, -64),
BPF_LD_IND(BPF_W, R7, 14),
BPF_STX_MEM(BPF_W, R10, R0, -60),
BPF_MOV32_IMM(R0, 280971478),
BPF_STX_MEM(BPF_W, R10, R0, -56),
BPF_LDX_MEM(BPF_W, R7, R10, -56),
BPF_LDX_MEM(BPF_W, R0, R10, -60),
BPF_ALU32_REG(BPF_SUB, R0, R7),
BPF_JMP_IMM(BPF_JNE, R0, 0, 15),
BPF_LD_ABS(BPF_H, 12),
BPF_JMP_IMM(BPF_JNE, R0, 0x806, 13),
BPF_MOV32_IMM(R0, 22),
BPF_STX_MEM(BPF_W, R10, R0, -56),
BPF_LDX_MEM(BPF_W, R7, R10, -56),
BPF_LD_IND(BPF_H, R7, 14),
BPF_STX_MEM(BPF_W, R10, R0, -52),
BPF_MOV32_IMM(R0, 17366),
BPF_STX_MEM(BPF_W, R10, R0, -48),
BPF_LDX_MEM(BPF_W, R7, R10, -48),
BPF_LDX_MEM(BPF_W, R0, R10, -52),
BPF_ALU32_REG(BPF_SUB, R0, R7),
BPF_JMP_IMM(BPF_JNE, R0, 0, 2),
BPF_MOV32_IMM(R0, 256),
BPF_EXIT_INSN(),
BPF_MOV32_IMM(R0, 0),
BPF_EXIT_INSN(),
},
INTERNAL,
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0x06, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0x10, 0xbf, 0x48, 0xd6, 0x43, 0xd6},
{ { 38, 256 } }
},
};
static struct net_device dev;
static struct sk_buff *populate_skb(char *buf, int size)
{
struct sk_buff *skb;
if (size >= MAX_DATA)
return NULL;
skb = alloc_skb(MAX_DATA, GFP_KERNEL);
if (!skb)
return NULL;
memcpy(__skb_put(skb, size), buf, size);
/* Initialize a fake skb with test pattern. */
skb_reset_mac_header(skb);
skb->protocol = htons(ETH_P_IP);
skb->pkt_type = SKB_TYPE;
skb->mark = SKB_MARK;
skb->hash = SKB_HASH;
skb->queue_mapping = SKB_QUEUE_MAP;
skb->vlan_tci = SKB_VLAN_TCI;
skb->dev = &dev;
skb->dev->ifindex = SKB_DEV_IFINDEX;
skb->dev->type = SKB_DEV_TYPE;
skb_set_network_header(skb, min(size, ETH_HLEN));
return skb;
}
static void *generate_test_data(struct bpf_test *test, int sub)
{
if (test->aux & FLAG_NO_DATA)
return NULL;
/* Test case expects an skb, so populate one. Various
* subtests generate skbs of different sizes based on
* the same data.
*/
return populate_skb(test->data, test->test[sub].data_size);
}
static void release_test_data(const struct bpf_test *test, void *data)
{
if (test->aux & FLAG_NO_DATA)
return;
kfree_skb(data);
}
static int probe_filter_length(struct sock_filter *fp)
{
int len = 0;
for (len = MAX_INSNS - 1; len > 0; --len)
if (fp[len].code != 0 || fp[len].k != 0)
break;
return len + 1;
}
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 03:34:16 +00:00
static struct bpf_prog *generate_filter(int which, int *err)
{
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 03:34:16 +00:00
struct bpf_prog *fp;
struct sock_fprog_kern fprog;
unsigned int flen = probe_filter_length(tests[which].u.insns);
__u8 test_type = tests[which].aux & TEST_TYPE_MASK;
switch (test_type) {
case CLASSIC:
fprog.filter = tests[which].u.insns;
fprog.len = flen;
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 03:34:16 +00:00
*err = bpf_prog_create(&fp, &fprog);
if (tests[which].aux & FLAG_EXPECTED_FAIL) {
if (*err == -EINVAL) {
pr_cont("PASS\n");
/* Verifier rejected filter as expected. */
*err = 0;
return NULL;
} else {
pr_cont("UNEXPECTED_PASS\n");
/* Verifier didn't reject the test that's
* bad enough, just return!
*/
*err = -EINVAL;
return NULL;
}
}
/* We don't expect to fail. */
if (*err) {
pr_cont("FAIL to attach err=%d len=%d\n",
*err, fprog.len);
return NULL;
}
break;
case INTERNAL:
net: bpf: make eBPF interpreter images read-only With eBPF getting more extended and exposure to user space is on it's way, hardening the memory range the interpreter uses to steer its command flow seems appropriate. This patch moves the to be interpreted bytecode to read-only pages. In case we execute a corrupted BPF interpreter image for some reason e.g. caused by an attacker which got past a verifier stage, it would not only provide arbitrary read/write memory access but arbitrary function calls as well. After setting up the BPF interpreter image, its contents do not change until destruction time, thus we can setup the image on immutable made pages in order to mitigate modifications to that code. The idea is derived from commit 314beb9bcabf ("x86: bpf_jit_comp: secure bpf jit against spraying attacks"). This is possible because bpf_prog is not part of sk_filter anymore. After setup bpf_prog cannot be altered during its life-time. This prevents any modifications to the entire bpf_prog structure (incl. function/JIT image pointer). Every eBPF program (including classic BPF that are migrated) have to call bpf_prog_select_runtime() to select either interpreter or a JIT image as a last setup step, and they all are being freed via bpf_prog_free(), including non-JIT. Therefore, we can easily integrate this into the eBPF life-time, plus since we directly allocate a bpf_prog, we have no performance penalty. Tested with seccomp and test_bpf testsuite in JIT/non-JIT mode and manual inspection of kernel_page_tables. Brad Spengler proposed the same idea via Twitter during development of this patch. Joint work with Hannes Frederic Sowa. Suggested-by: Brad Spengler <spender@grsecurity.net> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: Alexei Starovoitov <ast@plumgrid.com> Cc: Kees Cook <keescook@chromium.org> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-02 20:53:44 +00:00
fp = bpf_prog_alloc(bpf_prog_size(flen), 0);
if (fp == NULL) {
pr_cont("UNEXPECTED_FAIL no memory left\n");
*err = -ENOMEM;
return NULL;
}
fp->len = flen;
memcpy(fp->insnsi, tests[which].u.insns_int,
fp->len * sizeof(struct bpf_insn));
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 03:34:16 +00:00
bpf_prog_select_runtime(fp);
break;
}
*err = 0;
return fp;
}
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 03:34:16 +00:00
static void release_filter(struct bpf_prog *fp, int which)
{
__u8 test_type = tests[which].aux & TEST_TYPE_MASK;
switch (test_type) {
case CLASSIC:
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 03:34:16 +00:00
bpf_prog_destroy(fp);
break;
case INTERNAL:
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 03:34:16 +00:00
bpf_prog_free(fp);
break;
}
}
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 03:34:16 +00:00
static int __run_one(const struct bpf_prog *fp, const void *data,
int runs, u64 *duration)
{
u64 start, finish;
int ret = 0, i;
start = ktime_to_us(ktime_get());
for (i = 0; i < runs; i++)
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 03:34:16 +00:00
ret = BPF_PROG_RUN(fp, data);
finish = ktime_to_us(ktime_get());
*duration = (finish - start) * 1000ULL;
do_div(*duration, runs);
return ret;
}
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 03:34:16 +00:00
static int run_one(const struct bpf_prog *fp, struct bpf_test *test)
{
int err_cnt = 0, i, runs = MAX_TESTRUNS;
for (i = 0; i < MAX_SUBTESTS; i++) {
void *data;
u64 duration;
u32 ret;
if (test->test[i].data_size == 0 &&
test->test[i].result == 0)
break;
data = generate_test_data(test, i);
ret = __run_one(fp, data, runs, &duration);
release_test_data(test, data);
if (ret == test->test[i].result) {
pr_cont("%lld ", duration);
} else {
pr_cont("ret %d != %d ", ret,
test->test[i].result);
err_cnt++;
}
}
return err_cnt;
}
static __init int test_bpf(void)
{
int i, err_cnt = 0, pass_cnt = 0;
int jit_cnt = 0, run_cnt = 0;
for (i = 0; i < ARRAY_SIZE(tests); i++) {
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 03:34:16 +00:00
struct bpf_prog *fp;
int err;
pr_info("#%d %s ", i, tests[i].descr);
fp = generate_filter(i, &err);
if (fp == NULL) {
if (err == 0) {
pass_cnt++;
continue;
}
return err;
}
pr_cont("jited:%u ", fp->jited);
run_cnt++;
if (fp->jited)
jit_cnt++;
err = run_one(fp, &tests[i]);
release_filter(fp, i);
if (err) {
pr_cont("FAIL (%d times)\n", err);
err_cnt++;
} else {
pr_cont("PASS\n");
pass_cnt++;
}
}
pr_info("Summary: %d PASSED, %d FAILED, [%d/%d JIT'ed]\n",
pass_cnt, err_cnt, jit_cnt, run_cnt);
return err_cnt ? -EINVAL : 0;
}
static int __init test_bpf_init(void)
{
return test_bpf();
}
static void __exit test_bpf_exit(void)
{
}
module_init(test_bpf_init);
module_exit(test_bpf_exit);
MODULE_LICENSE("GPL");