918 lines
22 KiB
C
Raw Normal View History

/*
* linux/net/sunrpc/xdr.c
*
* Generic XDR support.
*
* Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
*/
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/pagemap.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/net.h>
#include <net/sock.h>
#include <linux/sunrpc/xdr.h>
#include <linux/sunrpc/msg_prot.h>
/*
* XDR functions for basic NFS types
*/
u32 *
xdr_encode_netobj(u32 *p, const struct xdr_netobj *obj)
{
unsigned int quadlen = XDR_QUADLEN(obj->len);
p[quadlen] = 0; /* zero trailing bytes */
*p++ = htonl(obj->len);
memcpy(p, obj->data, obj->len);
return p + XDR_QUADLEN(obj->len);
}
u32 *
xdr_decode_netobj(u32 *p, struct xdr_netobj *obj)
{
unsigned int len;
if ((len = ntohl(*p++)) > XDR_MAX_NETOBJ)
return NULL;
obj->len = len;
obj->data = (u8 *) p;
return p + XDR_QUADLEN(len);
}
/**
* xdr_encode_opaque_fixed - Encode fixed length opaque data
* @p - pointer to current position in XDR buffer.
* @ptr - pointer to data to encode (or NULL)
* @nbytes - size of data.
*
* Copy the array of data of length nbytes at ptr to the XDR buffer
* at position p, then align to the next 32-bit boundary by padding
* with zero bytes (see RFC1832).
* Note: if ptr is NULL, only the padding is performed.
*
* Returns the updated current XDR buffer position
*
*/
u32 *xdr_encode_opaque_fixed(u32 *p, const void *ptr, unsigned int nbytes)
{
if (likely(nbytes != 0)) {
unsigned int quadlen = XDR_QUADLEN(nbytes);
unsigned int padding = (quadlen << 2) - nbytes;
if (ptr != NULL)
memcpy(p, ptr, nbytes);
if (padding != 0)
memset((char *)p + nbytes, 0, padding);
p += quadlen;
}
return p;
}
EXPORT_SYMBOL(xdr_encode_opaque_fixed);
/**
* xdr_encode_opaque - Encode variable length opaque data
* @p - pointer to current position in XDR buffer.
* @ptr - pointer to data to encode (or NULL)
* @nbytes - size of data.
*
* Returns the updated current XDR buffer position
*/
u32 *xdr_encode_opaque(u32 *p, const void *ptr, unsigned int nbytes)
{
*p++ = htonl(nbytes);
return xdr_encode_opaque_fixed(p, ptr, nbytes);
}
EXPORT_SYMBOL(xdr_encode_opaque);
u32 *
xdr_encode_string(u32 *p, const char *string)
{
return xdr_encode_array(p, string, strlen(string));
}
u32 *
xdr_decode_string(u32 *p, char **sp, int *lenp, int maxlen)
{
unsigned int len;
char *string;
if ((len = ntohl(*p++)) > maxlen)
return NULL;
if (lenp)
*lenp = len;
if ((len % 4) != 0) {
string = (char *) p;
} else {
string = (char *) (p - 1);
memmove(string, p, len);
}
string[len] = '\0';
*sp = string;
return p + XDR_QUADLEN(len);
}
u32 *
xdr_decode_string_inplace(u32 *p, char **sp, int *lenp, int maxlen)
{
unsigned int len;
if ((len = ntohl(*p++)) > maxlen)
return NULL;
*lenp = len;
*sp = (char *) p;
return p + XDR_QUADLEN(len);
}
void
xdr_encode_pages(struct xdr_buf *xdr, struct page **pages, unsigned int base,
unsigned int len)
{
struct kvec *tail = xdr->tail;
u32 *p;
xdr->pages = pages;
xdr->page_base = base;
xdr->page_len = len;
p = (u32 *)xdr->head[0].iov_base + XDR_QUADLEN(xdr->head[0].iov_len);
tail->iov_base = p;
tail->iov_len = 0;
if (len & 3) {
unsigned int pad = 4 - (len & 3);
*p = 0;
tail->iov_base = (char *)p + (len & 3);
tail->iov_len = pad;
len += pad;
}
xdr->buflen += len;
xdr->len += len;
}
void
xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
struct page **pages, unsigned int base, unsigned int len)
{
struct kvec *head = xdr->head;
struct kvec *tail = xdr->tail;
char *buf = (char *)head->iov_base;
unsigned int buflen = head->iov_len;
head->iov_len = offset;
xdr->pages = pages;
xdr->page_base = base;
xdr->page_len = len;
tail->iov_base = buf + offset;
tail->iov_len = buflen - offset;
xdr->buflen += len;
}
void
xdr_partial_copy_from_skb(struct xdr_buf *xdr, unsigned int base,
skb_reader_t *desc,
skb_read_actor_t copy_actor)
{
struct page **ppage = xdr->pages;
unsigned int len, pglen = xdr->page_len;
int ret;
len = xdr->head[0].iov_len;
if (base < len) {
len -= base;
ret = copy_actor(desc, (char *)xdr->head[0].iov_base + base, len);
if (ret != len || !desc->count)
return;
base = 0;
} else
base -= len;
if (pglen == 0)
goto copy_tail;
if (base >= pglen) {
base -= pglen;
goto copy_tail;
}
if (base || xdr->page_base) {
pglen -= base;
base += xdr->page_base;
ppage += base >> PAGE_CACHE_SHIFT;
base &= ~PAGE_CACHE_MASK;
}
do {
char *kaddr;
len = PAGE_CACHE_SIZE;
kaddr = kmap_atomic(*ppage, KM_SKB_SUNRPC_DATA);
if (base) {
len -= base;
if (pglen < len)
len = pglen;
ret = copy_actor(desc, kaddr + base, len);
base = 0;
} else {
if (pglen < len)
len = pglen;
ret = copy_actor(desc, kaddr, len);
}
flush_dcache_page(*ppage);
kunmap_atomic(kaddr, KM_SKB_SUNRPC_DATA);
if (ret != len || !desc->count)
return;
ppage++;
} while ((pglen -= len) != 0);
copy_tail:
len = xdr->tail[0].iov_len;
if (base < len)
copy_actor(desc, (char *)xdr->tail[0].iov_base + base, len - base);
}
int
xdr_sendpages(struct socket *sock, struct sockaddr *addr, int addrlen,
struct xdr_buf *xdr, unsigned int base, int msgflags)
{
struct page **ppage = xdr->pages;
unsigned int len, pglen = xdr->page_len;
int err, ret = 0;
ssize_t (*sendpage)(struct socket *, struct page *, int, size_t, int);
len = xdr->head[0].iov_len;
if (base < len || (addr != NULL && base == 0)) {
struct kvec iov = {
.iov_base = xdr->head[0].iov_base + base,
.iov_len = len - base,
};
struct msghdr msg = {
.msg_name = addr,
.msg_namelen = addrlen,
.msg_flags = msgflags,
};
if (xdr->len > len)
msg.msg_flags |= MSG_MORE;
if (iov.iov_len != 0)
err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
else
err = kernel_sendmsg(sock, &msg, NULL, 0, 0);
if (ret == 0)
ret = err;
else if (err > 0)
ret += err;
if (err != iov.iov_len)
goto out;
base = 0;
} else
base -= len;
if (pglen == 0)
goto copy_tail;
if (base >= pglen) {
base -= pglen;
goto copy_tail;
}
if (base || xdr->page_base) {
pglen -= base;
base += xdr->page_base;
ppage += base >> PAGE_CACHE_SHIFT;
base &= ~PAGE_CACHE_MASK;
}
sendpage = sock->ops->sendpage ? : sock_no_sendpage;
do {
int flags = msgflags;
len = PAGE_CACHE_SIZE;
if (base)
len -= base;
if (pglen < len)
len = pglen;
if (pglen != len || xdr->tail[0].iov_len != 0)
flags |= MSG_MORE;
/* Hmm... We might be dealing with highmem pages */
if (PageHighMem(*ppage))
sendpage = sock_no_sendpage;
err = sendpage(sock, *ppage, base, len, flags);
if (ret == 0)
ret = err;
else if (err > 0)
ret += err;
if (err != len)
goto out;
base = 0;
ppage++;
} while ((pglen -= len) != 0);
copy_tail:
len = xdr->tail[0].iov_len;
if (base < len) {
struct kvec iov = {
.iov_base = xdr->tail[0].iov_base + base,
.iov_len = len - base,
};
struct msghdr msg = {
.msg_flags = msgflags,
};
err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
if (ret == 0)
ret = err;
else if (err > 0)
ret += err;
}
out:
return ret;
}
/*
* Helper routines for doing 'memmove' like operations on a struct xdr_buf
*
* _shift_data_right_pages
* @pages: vector of pages containing both the source and dest memory area.
* @pgto_base: page vector address of destination
* @pgfrom_base: page vector address of source
* @len: number of bytes to copy
*
* Note: the addresses pgto_base and pgfrom_base are both calculated in
* the same way:
* if a memory area starts at byte 'base' in page 'pages[i]',
* then its address is given as (i << PAGE_CACHE_SHIFT) + base
* Also note: pgfrom_base must be < pgto_base, but the memory areas
* they point to may overlap.
*/
static void
_shift_data_right_pages(struct page **pages, size_t pgto_base,
size_t pgfrom_base, size_t len)
{
struct page **pgfrom, **pgto;
char *vfrom, *vto;
size_t copy;
BUG_ON(pgto_base <= pgfrom_base);
pgto_base += len;
pgfrom_base += len;
pgto = pages + (pgto_base >> PAGE_CACHE_SHIFT);
pgfrom = pages + (pgfrom_base >> PAGE_CACHE_SHIFT);
pgto_base &= ~PAGE_CACHE_MASK;
pgfrom_base &= ~PAGE_CACHE_MASK;
do {
/* Are any pointers crossing a page boundary? */
if (pgto_base == 0) {
flush_dcache_page(*pgto);
pgto_base = PAGE_CACHE_SIZE;
pgto--;
}
if (pgfrom_base == 0) {
pgfrom_base = PAGE_CACHE_SIZE;
pgfrom--;
}
copy = len;
if (copy > pgto_base)
copy = pgto_base;
if (copy > pgfrom_base)
copy = pgfrom_base;
pgto_base -= copy;
pgfrom_base -= copy;
vto = kmap_atomic(*pgto, KM_USER0);
vfrom = kmap_atomic(*pgfrom, KM_USER1);
memmove(vto + pgto_base, vfrom + pgfrom_base, copy);
kunmap_atomic(vfrom, KM_USER1);
kunmap_atomic(vto, KM_USER0);
} while ((len -= copy) != 0);
flush_dcache_page(*pgto);
}
/*
* _copy_to_pages
* @pages: array of pages
* @pgbase: page vector address of destination
* @p: pointer to source data
* @len: length
*
* Copies data from an arbitrary memory location into an array of pages
* The copy is assumed to be non-overlapping.
*/
static void
_copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
{
struct page **pgto;
char *vto;
size_t copy;
pgto = pages + (pgbase >> PAGE_CACHE_SHIFT);
pgbase &= ~PAGE_CACHE_MASK;
do {
copy = PAGE_CACHE_SIZE - pgbase;
if (copy > len)
copy = len;
vto = kmap_atomic(*pgto, KM_USER0);
memcpy(vto + pgbase, p, copy);
kunmap_atomic(vto, KM_USER0);
pgbase += copy;
if (pgbase == PAGE_CACHE_SIZE) {
flush_dcache_page(*pgto);
pgbase = 0;
pgto++;
}
p += copy;
} while ((len -= copy) != 0);
flush_dcache_page(*pgto);
}
/*
* _copy_from_pages
* @p: pointer to destination
* @pages: array of pages
* @pgbase: offset of source data
* @len: length
*
* Copies data into an arbitrary memory location from an array of pages
* The copy is assumed to be non-overlapping.
*/
static void
_copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
{
struct page **pgfrom;
char *vfrom;
size_t copy;
pgfrom = pages + (pgbase >> PAGE_CACHE_SHIFT);
pgbase &= ~PAGE_CACHE_MASK;
do {
copy = PAGE_CACHE_SIZE - pgbase;
if (copy > len)
copy = len;
vfrom = kmap_atomic(*pgfrom, KM_USER0);
memcpy(p, vfrom + pgbase, copy);
kunmap_atomic(vfrom, KM_USER0);
pgbase += copy;
if (pgbase == PAGE_CACHE_SIZE) {
pgbase = 0;
pgfrom++;
}
p += copy;
} while ((len -= copy) != 0);
}
/*
* xdr_shrink_bufhead
* @buf: xdr_buf
* @len: bytes to remove from buf->head[0]
*
* Shrinks XDR buffer's header kvec buf->head[0] by
* 'len' bytes. The extra data is not lost, but is instead
* moved into the inlined pages and/or the tail.
*/
static void
xdr_shrink_bufhead(struct xdr_buf *buf, size_t len)
{
struct kvec *head, *tail;
size_t copy, offs;
unsigned int pglen = buf->page_len;
tail = buf->tail;
head = buf->head;
BUG_ON (len > head->iov_len);
/* Shift the tail first */
if (tail->iov_len != 0) {
if (tail->iov_len > len) {
copy = tail->iov_len - len;
memmove((char *)tail->iov_base + len,
tail->iov_base, copy);
}
/* Copy from the inlined pages into the tail */
copy = len;
if (copy > pglen)
copy = pglen;
offs = len - copy;
if (offs >= tail->iov_len)
copy = 0;
else if (copy > tail->iov_len - offs)
copy = tail->iov_len - offs;
if (copy != 0)
_copy_from_pages((char *)tail->iov_base + offs,
buf->pages,
buf->page_base + pglen + offs - len,
copy);
/* Do we also need to copy data from the head into the tail ? */
if (len > pglen) {
offs = copy = len - pglen;
if (copy > tail->iov_len)
copy = tail->iov_len;
memcpy(tail->iov_base,
(char *)head->iov_base +
head->iov_len - offs,
copy);
}
}
/* Now handle pages */
if (pglen != 0) {
if (pglen > len)
_shift_data_right_pages(buf->pages,
buf->page_base + len,
buf->page_base,
pglen - len);
copy = len;
if (len > pglen)
copy = pglen;
_copy_to_pages(buf->pages, buf->page_base,
(char *)head->iov_base + head->iov_len - len,
copy);
}
head->iov_len -= len;
buf->buflen -= len;
/* Have we truncated the message? */
if (buf->len > buf->buflen)
buf->len = buf->buflen;
}
/*
* xdr_shrink_pagelen
* @buf: xdr_buf
* @len: bytes to remove from buf->pages
*
* Shrinks XDR buffer's page array buf->pages by
* 'len' bytes. The extra data is not lost, but is instead
* moved into the tail.
*/
static void
xdr_shrink_pagelen(struct xdr_buf *buf, size_t len)
{
struct kvec *tail;
size_t copy;
char *p;
unsigned int pglen = buf->page_len;
tail = buf->tail;
BUG_ON (len > pglen);
/* Shift the tail first */
if (tail->iov_len != 0) {
p = (char *)tail->iov_base + len;
if (tail->iov_len > len) {
copy = tail->iov_len - len;
memmove(p, tail->iov_base, copy);
} else
buf->buflen -= len;
/* Copy from the inlined pages into the tail */
copy = len;
if (copy > tail->iov_len)
copy = tail->iov_len;
_copy_from_pages((char *)tail->iov_base,
buf->pages, buf->page_base + pglen - len,
copy);
}
buf->page_len -= len;
buf->buflen -= len;
/* Have we truncated the message? */
if (buf->len > buf->buflen)
buf->len = buf->buflen;
}
void
xdr_shift_buf(struct xdr_buf *buf, size_t len)
{
xdr_shrink_bufhead(buf, len);
}
/**
* xdr_init_encode - Initialize a struct xdr_stream for sending data.
* @xdr: pointer to xdr_stream struct
* @buf: pointer to XDR buffer in which to encode data
* @p: current pointer inside XDR buffer
*
* Note: at the moment the RPC client only passes the length of our
* scratch buffer in the xdr_buf's header kvec. Previously this
* meant we needed to call xdr_adjust_iovec() after encoding the
* data. With the new scheme, the xdr_stream manages the details
* of the buffer length, and takes care of adjusting the kvec
* length for us.
*/
void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
{
struct kvec *iov = buf->head;
xdr->buf = buf;
xdr->iov = iov;
xdr->end = (uint32_t *)((char *)iov->iov_base + iov->iov_len);
buf->len = iov->iov_len = (char *)p - (char *)iov->iov_base;
xdr->p = p;
}
EXPORT_SYMBOL(xdr_init_encode);
/**
* xdr_reserve_space - Reserve buffer space for sending
* @xdr: pointer to xdr_stream
* @nbytes: number of bytes to reserve
*
* Checks that we have enough buffer space to encode 'nbytes' more
* bytes of data. If so, update the total xdr_buf length, and
* adjust the length of the current kvec.
*/
uint32_t * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
{
uint32_t *p = xdr->p;
uint32_t *q;
/* align nbytes on the next 32-bit boundary */
nbytes += 3;
nbytes &= ~3;
q = p + (nbytes >> 2);
if (unlikely(q > xdr->end || q < p))
return NULL;
xdr->p = q;
xdr->iov->iov_len += nbytes;
xdr->buf->len += nbytes;
return p;
}
EXPORT_SYMBOL(xdr_reserve_space);
/**
* xdr_write_pages - Insert a list of pages into an XDR buffer for sending
* @xdr: pointer to xdr_stream
* @pages: list of pages
* @base: offset of first byte
* @len: length of data in bytes
*
*/
void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
unsigned int len)
{
struct xdr_buf *buf = xdr->buf;
struct kvec *iov = buf->tail;
buf->pages = pages;
buf->page_base = base;
buf->page_len = len;
iov->iov_base = (char *)xdr->p;
iov->iov_len = 0;
xdr->iov = iov;
if (len & 3) {
unsigned int pad = 4 - (len & 3);
BUG_ON(xdr->p >= xdr->end);
iov->iov_base = (char *)xdr->p + (len & 3);
iov->iov_len += pad;
len += pad;
*xdr->p++ = 0;
}
buf->buflen += len;
buf->len += len;
}
EXPORT_SYMBOL(xdr_write_pages);
/**
* xdr_init_decode - Initialize an xdr_stream for decoding data.
* @xdr: pointer to xdr_stream struct
* @buf: pointer to XDR buffer from which to decode data
* @p: current pointer inside XDR buffer
*/
void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
{
struct kvec *iov = buf->head;
unsigned int len = iov->iov_len;
if (len > buf->len)
len = buf->len;
xdr->buf = buf;
xdr->iov = iov;
xdr->p = p;
xdr->end = (uint32_t *)((char *)iov->iov_base + len);
}
EXPORT_SYMBOL(xdr_init_decode);
/**
* xdr_inline_decode - Retrieve non-page XDR data to decode
* @xdr: pointer to xdr_stream struct
* @nbytes: number of bytes of data to decode
*
* Check if the input buffer is long enough to enable us to decode
* 'nbytes' more bytes of data starting at the current position.
* If so return the current pointer, then update the current
* pointer position.
*/
uint32_t * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
{
uint32_t *p = xdr->p;
uint32_t *q = p + XDR_QUADLEN(nbytes);
if (unlikely(q > xdr->end || q < p))
return NULL;
xdr->p = q;
return p;
}
EXPORT_SYMBOL(xdr_inline_decode);
/**
* xdr_read_pages - Ensure page-based XDR data to decode is aligned at current pointer position
* @xdr: pointer to xdr_stream struct
* @len: number of bytes of page data
*
* Moves data beyond the current pointer position from the XDR head[] buffer
* into the page list. Any data that lies beyond current position + "len"
* bytes is moved into the XDR tail[]. The current pointer is then
* repositioned at the beginning of the XDR tail.
*/
void xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
{
struct xdr_buf *buf = xdr->buf;
struct kvec *iov;
ssize_t shift;
unsigned int end;
int padding;
/* Realign pages to current pointer position */
iov = buf->head;
shift = iov->iov_len + (char *)iov->iov_base - (char *)xdr->p;
if (shift > 0)
xdr_shrink_bufhead(buf, shift);
/* Truncate page data and move it into the tail */
if (buf->page_len > len)
xdr_shrink_pagelen(buf, buf->page_len - len);
padding = (XDR_QUADLEN(len) << 2) - len;
xdr->iov = iov = buf->tail;
/* Compute remaining message length. */
end = iov->iov_len;
shift = buf->buflen - buf->len;
if (shift < end)
end -= shift;
else if (shift > 0)
end = 0;
/*
* Position current pointer at beginning of tail, and
* set remaining message length.
*/
xdr->p = (uint32_t *)((char *)iov->iov_base + padding);
xdr->end = (uint32_t *)((char *)iov->iov_base + end);
}
EXPORT_SYMBOL(xdr_read_pages);
static struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
void
xdr_buf_from_iov(struct kvec *iov, struct xdr_buf *buf)
{
buf->head[0] = *iov;
buf->tail[0] = empty_iov;
buf->page_len = 0;
buf->buflen = buf->len = iov->iov_len;
}
/* Sets subiov to the intersection of iov with the buffer of length len
* starting base bytes after iov. Indicates empty intersection by setting
* length of subiov to zero. Decrements len by length of subiov, sets base
* to zero (or decrements it by length of iov if subiov is empty). */
static void
iov_subsegment(struct kvec *iov, struct kvec *subiov, int *base, int *len)
{
if (*base > iov->iov_len) {
subiov->iov_base = NULL;
subiov->iov_len = 0;
*base -= iov->iov_len;
} else {
subiov->iov_base = iov->iov_base + *base;
subiov->iov_len = min(*len, (int)iov->iov_len - *base);
*base = 0;
}
*len -= subiov->iov_len;
}
/* Sets subbuf to the portion of buf of length len beginning base bytes
* from the start of buf. Returns -1 if base of length are out of bounds. */
int
xdr_buf_subsegment(struct xdr_buf *buf, struct xdr_buf *subbuf,
int base, int len)
{
int i;
subbuf->buflen = subbuf->len = len;
iov_subsegment(buf->head, subbuf->head, &base, &len);
if (base < buf->page_len) {
i = (base + buf->page_base) >> PAGE_CACHE_SHIFT;
subbuf->pages = &buf->pages[i];
subbuf->page_base = (base + buf->page_base) & ~PAGE_CACHE_MASK;
subbuf->page_len = min((int)buf->page_len - base, len);
len -= subbuf->page_len;
base = 0;
} else {
base -= buf->page_len;
subbuf->page_len = 0;
}
iov_subsegment(buf->tail, subbuf->tail, &base, &len);
if (base || len)
return -1;
return 0;
}
/* obj is assumed to point to allocated memory of size at least len: */
int
read_bytes_from_xdr_buf(struct xdr_buf *buf, int base, void *obj, int len)
{
struct xdr_buf subbuf;
int this_len;
int status;
status = xdr_buf_subsegment(buf, &subbuf, base, len);
if (status)
goto out;
this_len = min(len, (int)subbuf.head[0].iov_len);
memcpy(obj, subbuf.head[0].iov_base, this_len);
len -= this_len;
obj += this_len;
this_len = min(len, (int)subbuf.page_len);
if (this_len)
_copy_from_pages(obj, subbuf.pages, subbuf.page_base, this_len);
len -= this_len;
obj += this_len;
this_len = min(len, (int)subbuf.tail[0].iov_len);
memcpy(obj, subbuf.tail[0].iov_base, this_len);
out:
return status;
}
static int
read_u32_from_xdr_buf(struct xdr_buf *buf, int base, u32 *obj)
{
u32 raw;
int status;
status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
if (status)
return status;
*obj = ntohl(raw);
return 0;
}
/* If the netobj starting offset bytes from the start of xdr_buf is contained
* entirely in the head or the tail, set object to point to it; otherwise
* try to find space for it at the end of the tail, copy it there, and
* set obj to point to it. */
int
xdr_buf_read_netobj(struct xdr_buf *buf, struct xdr_netobj *obj, int offset)
{
u32 tail_offset = buf->head[0].iov_len + buf->page_len;
u32 obj_end_offset;
if (read_u32_from_xdr_buf(buf, offset, &obj->len))
goto out;
obj_end_offset = offset + 4 + obj->len;
if (obj_end_offset <= buf->head[0].iov_len) {
/* The obj is contained entirely in the head: */
obj->data = buf->head[0].iov_base + offset + 4;
} else if (offset + 4 >= tail_offset) {
if (obj_end_offset - tail_offset
> buf->tail[0].iov_len)
goto out;
/* The obj is contained entirely in the tail: */
obj->data = buf->tail[0].iov_base
+ offset - tail_offset + 4;
} else {
/* use end of tail as storage for obj:
* (We don't copy to the beginning because then we'd have
* to worry about doing a potentially overlapping copy.
* This assumes the object is at most half the length of the
* tail.) */
if (obj->len > buf->tail[0].iov_len)
goto out;
obj->data = buf->tail[0].iov_base + buf->tail[0].iov_len -
obj->len;
if (read_bytes_from_xdr_buf(buf, offset + 4,
obj->data, obj->len))
goto out;
}
return 0;
out:
return -1;
}