196 lines
6.1 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* padata.h - header for the padata parallelization interface
*
* Copyright (C) 2008, 2009 secunet Security Networks AG
* Copyright (C) 2008, 2009 Steffen Klassert <steffen.klassert@secunet.com>
padata: add basic support for multithreaded jobs Sometimes the kernel doesn't take full advantage of system memory bandwidth, leading to a single CPU spending excessive time in initialization paths where the data scales with memory size. Multithreading naturally addresses this problem. Extend padata, a framework that handles many parallel yet singlethreaded jobs, to also handle multithreaded jobs by adding support for splitting up the work evenly, specifying a minimum amount of work that's appropriate for one helper thread to do, load balancing between helpers, and coordinating them. This is inspired by work from Pavel Tatashin and Steve Sistare. Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Josh Triplett <josh@joshtriplett.org> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Robert Elliott <elliott@hpe.com> Cc: Shile Zhang <shile.zhang@linux.alibaba.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Tejun Heo <tj@kernel.org> Cc: Zi Yan <ziy@nvidia.com> Link: http://lkml.kernel.org/r/20200527173608.2885243-5-daniel.m.jordan@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 15:59:43 -07:00
*
* Copyright (c) 2020 Oracle and/or its affiliates.
* Author: Daniel Jordan <daniel.m.jordan@oracle.com>
*/
#ifndef PADATA_H
#define PADATA_H
#include <linux/refcount.h>
crypto: pcrypt - Avoid deadlock by using per-instance padata queues If the pcrypt template is used multiple times in an algorithm, then a deadlock occurs because all pcrypt instances share the same padata_instance, which completes requests in the order submitted. That is, the inner pcrypt request waits for the outer pcrypt request while the outer request is already waiting for the inner. This patch fixes this by allocating a set of queues for each pcrypt instance instead of using two global queues. In order to maintain the existing user-space interface, the pinst structure remains global so any sysfs modifications will apply to every pcrypt instance. Note that when an update occurs we have to allocate memory for every pcrypt instance. Should one of the allocations fail we will abort the update without rolling back changes already made. The new per-instance data structure is called padata_shell and is essentially a wrapper around parallel_data. Reproducer: #include <linux/if_alg.h> #include <sys/socket.h> #include <unistd.h> int main() { struct sockaddr_alg addr = { .salg_type = "aead", .salg_name = "pcrypt(pcrypt(rfc4106-gcm-aesni))" }; int algfd, reqfd; char buf[32] = { 0 }; algfd = socket(AF_ALG, SOCK_SEQPACKET, 0); bind(algfd, (void *)&addr, sizeof(addr)); setsockopt(algfd, SOL_ALG, ALG_SET_KEY, buf, 20); reqfd = accept(algfd, 0, 0); write(reqfd, buf, 32); read(reqfd, buf, 16); } Reported-by: syzbot+56c7151cad94eec37c521f0e47d2eee53f9361c4@syzkaller.appspotmail.com Fixes: 5068c7a883d1 ("crypto: pcrypt - Add pcrypt crypto parallelization wrapper") Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Tested-by: Eric Biggers <ebiggers@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-26 15:58:45 +08:00
#include <linux/compiler_types.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/kobject.h>
#define PADATA_CPU_SERIAL 0x01
#define PADATA_CPU_PARALLEL 0x02
/**
* struct padata_priv - Represents one job
*
* @list: List entry, to attach to the padata lists.
* @pd: Pointer to the internal control structure.
* @cb_cpu: Callback cpu for serializatioon.
* @seq_nr: Sequence number of the parallelized data object.
* @info: Used to pass information from the parallel to the serial function.
* @parallel: Parallel execution function.
* @serial: Serial complete function.
*/
struct padata_priv {
struct list_head list;
struct parallel_data *pd;
int cb_cpu;
padata: unbind parallel jobs from specific CPUs Padata binds the parallel part of a job to a single CPU and round-robins over all CPUs in the system for each successive job. Though the serial parts rely on per-CPU queues for correct ordering, they're not necessary for parallel work, and it improves performance to run the job locally on NUMA machines and let the scheduler pick the CPU within a node on a busy system. So, make the parallel workqueue unbound. Update the parallel workqueue's cpumask when the instance's parallel cpumask changes. Now that parallel jobs no longer run on max_active=1 workqueues, two or more parallel works that hash to the same CPU may run simultaneously, finish out of order, and so be serialized out of order. Prevent this by keeping the works sorted on the reorder list by sequence number and checking that in the reordering logic. padata_get_next becomes padata_find_next so it can be reused for the end of padata_reorder, where it's used to avoid uselessly queueing work when the next job by sequence number isn't finished yet but a later job that hashed to the same CPU has. The ENODATA case in padata_find_next no longer makes sense because parallel jobs aren't bound to specific CPUs. The EINPROGRESS case takes care of the scenario where a parallel job is potentially running on the same CPU as padata_find_next, and with only one error code left, just use NULL instead. Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Tejun Heo <tj@kernel.org> Cc: linux-crypto@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-09-05 21:40:28 -04:00
unsigned int seq_nr;
int info;
void (*parallel)(struct padata_priv *padata);
void (*serial)(struct padata_priv *padata);
};
/**
* struct padata_list - one per work type per CPU
*
* @list: List head.
* @lock: List lock.
*/
struct padata_list {
struct list_head list;
spinlock_t lock;
};
/**
* struct padata_serial_queue - The percpu padata serial queue
*
* @serial: List to wait for serialization after reordering.
* @work: work struct for serialization.
* @pd: Backpointer to the internal control structure.
*/
struct padata_serial_queue {
struct padata_list serial;
struct work_struct work;
struct parallel_data *pd;
};
/**
* struct padata_cpumask - The cpumasks for the parallel/serial workers
*
* @pcpu: cpumask for the parallel workers.
* @cbcpu: cpumask for the serial (callback) workers.
*/
struct padata_cpumask {
cpumask_var_t pcpu;
cpumask_var_t cbcpu;
};
/**
* struct parallel_data - Internal control structure, covers everything
* that depends on the cpumask in use.
*
* @ps: padata_shell object.
* @reorder_list: percpu reorder lists
* @squeue: percpu padata queues used for serialuzation.
* @refcnt: Number of objects holding a reference on this parallel_data.
* @seq_nr: Sequence number of the parallelized data object.
padata: unbind parallel jobs from specific CPUs Padata binds the parallel part of a job to a single CPU and round-robins over all CPUs in the system for each successive job. Though the serial parts rely on per-CPU queues for correct ordering, they're not necessary for parallel work, and it improves performance to run the job locally on NUMA machines and let the scheduler pick the CPU within a node on a busy system. So, make the parallel workqueue unbound. Update the parallel workqueue's cpumask when the instance's parallel cpumask changes. Now that parallel jobs no longer run on max_active=1 workqueues, two or more parallel works that hash to the same CPU may run simultaneously, finish out of order, and so be serialized out of order. Prevent this by keeping the works sorted on the reorder list by sequence number and checking that in the reordering logic. padata_get_next becomes padata_find_next so it can be reused for the end of padata_reorder, where it's used to avoid uselessly queueing work when the next job by sequence number isn't finished yet but a later job that hashed to the same CPU has. The ENODATA case in padata_find_next no longer makes sense because parallel jobs aren't bound to specific CPUs. The EINPROGRESS case takes care of the scenario where a parallel job is potentially running on the same CPU as padata_find_next, and with only one error code left, just use NULL instead. Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Tejun Heo <tj@kernel.org> Cc: linux-crypto@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-09-05 21:40:28 -04:00
* @processed: Number of already processed objects.
* @cpu: Next CPU to be processed.
* @cpumask: The cpumasks in use for parallel and serial workers.
* @reorder_work: work struct for reordering.
* @lock: Reorder lock.
*/
struct parallel_data {
crypto: pcrypt - Avoid deadlock by using per-instance padata queues If the pcrypt template is used multiple times in an algorithm, then a deadlock occurs because all pcrypt instances share the same padata_instance, which completes requests in the order submitted. That is, the inner pcrypt request waits for the outer pcrypt request while the outer request is already waiting for the inner. This patch fixes this by allocating a set of queues for each pcrypt instance instead of using two global queues. In order to maintain the existing user-space interface, the pinst structure remains global so any sysfs modifications will apply to every pcrypt instance. Note that when an update occurs we have to allocate memory for every pcrypt instance. Should one of the allocations fail we will abort the update without rolling back changes already made. The new per-instance data structure is called padata_shell and is essentially a wrapper around parallel_data. Reproducer: #include <linux/if_alg.h> #include <sys/socket.h> #include <unistd.h> int main() { struct sockaddr_alg addr = { .salg_type = "aead", .salg_name = "pcrypt(pcrypt(rfc4106-gcm-aesni))" }; int algfd, reqfd; char buf[32] = { 0 }; algfd = socket(AF_ALG, SOCK_SEQPACKET, 0); bind(algfd, (void *)&addr, sizeof(addr)); setsockopt(algfd, SOL_ALG, ALG_SET_KEY, buf, 20); reqfd = accept(algfd, 0, 0); write(reqfd, buf, 32); read(reqfd, buf, 16); } Reported-by: syzbot+56c7151cad94eec37c521f0e47d2eee53f9361c4@syzkaller.appspotmail.com Fixes: 5068c7a883d1 ("crypto: pcrypt - Add pcrypt crypto parallelization wrapper") Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Tested-by: Eric Biggers <ebiggers@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-26 15:58:45 +08:00
struct padata_shell *ps;
struct padata_list __percpu *reorder_list;
struct padata_serial_queue __percpu *squeue;
refcount_t refcnt;
padata: allocate work structures for parallel jobs from a pool padata allocates per-CPU, per-instance work structs for parallel jobs. A do_parallel call assigns a job to a sequence number and hashes the number to a CPU, where the job will eventually run using the corresponding work. This approach fit with how padata used to bind a job to each CPU round-robin, makes less sense after commit bfde23ce200e6 ("padata: unbind parallel jobs from specific CPUs") because a work isn't bound to a particular CPU anymore, and isn't needed at all for multithreaded jobs because they don't have sequence numbers. Replace the per-CPU works with a preallocated pool, which allows sharing them between existing padata users and the upcoming multithreaded user. The pool will also facilitate setting NUMA-aware concurrency limits with later users. The pool is sized according to the number of possible CPUs. With this limit, MAX_OBJ_NUM no longer makes sense, so remove it. If the global pool is exhausted, a parallel job is run in the current task instead to throttle a system trying to do too much in parallel. Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Josh Triplett <josh@joshtriplett.org> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Robert Elliott <elliott@hpe.com> Cc: Shile Zhang <shile.zhang@linux.alibaba.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Tejun Heo <tj@kernel.org> Cc: Zi Yan <ziy@nvidia.com> Link: http://lkml.kernel.org/r/20200527173608.2885243-4-daniel.m.jordan@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 15:59:39 -07:00
unsigned int seq_nr;
padata: unbind parallel jobs from specific CPUs Padata binds the parallel part of a job to a single CPU and round-robins over all CPUs in the system for each successive job. Though the serial parts rely on per-CPU queues for correct ordering, they're not necessary for parallel work, and it improves performance to run the job locally on NUMA machines and let the scheduler pick the CPU within a node on a busy system. So, make the parallel workqueue unbound. Update the parallel workqueue's cpumask when the instance's parallel cpumask changes. Now that parallel jobs no longer run on max_active=1 workqueues, two or more parallel works that hash to the same CPU may run simultaneously, finish out of order, and so be serialized out of order. Prevent this by keeping the works sorted on the reorder list by sequence number and checking that in the reordering logic. padata_get_next becomes padata_find_next so it can be reused for the end of padata_reorder, where it's used to avoid uselessly queueing work when the next job by sequence number isn't finished yet but a later job that hashed to the same CPU has. The ENODATA case in padata_find_next no longer makes sense because parallel jobs aren't bound to specific CPUs. The EINPROGRESS case takes care of the scenario where a parallel job is potentially running on the same CPU as padata_find_next, and with only one error code left, just use NULL instead. Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Tejun Heo <tj@kernel.org> Cc: linux-crypto@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-09-05 21:40:28 -04:00
unsigned int processed;
int cpu;
struct padata_cpumask cpumask;
struct work_struct reorder_work;
spinlock_t ____cacheline_aligned lock;
};
crypto: pcrypt - Avoid deadlock by using per-instance padata queues If the pcrypt template is used multiple times in an algorithm, then a deadlock occurs because all pcrypt instances share the same padata_instance, which completes requests in the order submitted. That is, the inner pcrypt request waits for the outer pcrypt request while the outer request is already waiting for the inner. This patch fixes this by allocating a set of queues for each pcrypt instance instead of using two global queues. In order to maintain the existing user-space interface, the pinst structure remains global so any sysfs modifications will apply to every pcrypt instance. Note that when an update occurs we have to allocate memory for every pcrypt instance. Should one of the allocations fail we will abort the update without rolling back changes already made. The new per-instance data structure is called padata_shell and is essentially a wrapper around parallel_data. Reproducer: #include <linux/if_alg.h> #include <sys/socket.h> #include <unistd.h> int main() { struct sockaddr_alg addr = { .salg_type = "aead", .salg_name = "pcrypt(pcrypt(rfc4106-gcm-aesni))" }; int algfd, reqfd; char buf[32] = { 0 }; algfd = socket(AF_ALG, SOCK_SEQPACKET, 0); bind(algfd, (void *)&addr, sizeof(addr)); setsockopt(algfd, SOL_ALG, ALG_SET_KEY, buf, 20); reqfd = accept(algfd, 0, 0); write(reqfd, buf, 32); read(reqfd, buf, 16); } Reported-by: syzbot+56c7151cad94eec37c521f0e47d2eee53f9361c4@syzkaller.appspotmail.com Fixes: 5068c7a883d1 ("crypto: pcrypt - Add pcrypt crypto parallelization wrapper") Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Tested-by: Eric Biggers <ebiggers@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-26 15:58:45 +08:00
/**
* struct padata_shell - Wrapper around struct parallel_data, its
* purpose is to allow the underlying control structure to be replaced
* on the fly using RCU.
*
* @pinst: padat instance.
* @pd: Actual parallel_data structure which may be substituted on the fly.
* @opd: Pointer to old pd to be freed by padata_replace.
* @list: List entry in padata_instance list.
*/
struct padata_shell {
struct padata_instance *pinst;
struct parallel_data __rcu *pd;
struct parallel_data *opd;
struct list_head list;
};
padata: add basic support for multithreaded jobs Sometimes the kernel doesn't take full advantage of system memory bandwidth, leading to a single CPU spending excessive time in initialization paths where the data scales with memory size. Multithreading naturally addresses this problem. Extend padata, a framework that handles many parallel yet singlethreaded jobs, to also handle multithreaded jobs by adding support for splitting up the work evenly, specifying a minimum amount of work that's appropriate for one helper thread to do, load balancing between helpers, and coordinating them. This is inspired by work from Pavel Tatashin and Steve Sistare. Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Josh Triplett <josh@joshtriplett.org> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Robert Elliott <elliott@hpe.com> Cc: Shile Zhang <shile.zhang@linux.alibaba.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Tejun Heo <tj@kernel.org> Cc: Zi Yan <ziy@nvidia.com> Link: http://lkml.kernel.org/r/20200527173608.2885243-5-daniel.m.jordan@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 15:59:43 -07:00
/**
* struct padata_mt_job - represents one multithreaded job
*
* @thread_fn: Called for each chunk of work that a padata thread does.
* @fn_arg: The thread function argument.
* @start: The start of the job (units are job-specific).
* @size: size of this node's work (units are job-specific).
* @align: Ranges passed to the thread function fall on this boundary, with the
* possible exceptions of the beginning and end of the job.
* @min_chunk: The minimum chunk size in job-specific units. This allows
* the client to communicate the minimum amount of work that's
* appropriate for one worker thread to do at once.
* @max_threads: Max threads to use for the job, actual number may be less
* depending on task size and minimum chunk size.
*/
struct padata_mt_job {
void (*thread_fn)(unsigned long start, unsigned long end, void *arg);
void *fn_arg;
unsigned long start;
unsigned long size;
unsigned long align;
unsigned long min_chunk;
int max_threads;
};
/**
* struct padata_instance - The overall control structure.
*
* @cpu_online_node: Linkage for CPU online callback.
* @cpu_dead_node: Linkage for CPU offline callback.
* @parallel_wq: The workqueue used for parallel work.
* @serial_wq: The workqueue used for serial work.
crypto: pcrypt - Avoid deadlock by using per-instance padata queues If the pcrypt template is used multiple times in an algorithm, then a deadlock occurs because all pcrypt instances share the same padata_instance, which completes requests in the order submitted. That is, the inner pcrypt request waits for the outer pcrypt request while the outer request is already waiting for the inner. This patch fixes this by allocating a set of queues for each pcrypt instance instead of using two global queues. In order to maintain the existing user-space interface, the pinst structure remains global so any sysfs modifications will apply to every pcrypt instance. Note that when an update occurs we have to allocate memory for every pcrypt instance. Should one of the allocations fail we will abort the update without rolling back changes already made. The new per-instance data structure is called padata_shell and is essentially a wrapper around parallel_data. Reproducer: #include <linux/if_alg.h> #include <sys/socket.h> #include <unistd.h> int main() { struct sockaddr_alg addr = { .salg_type = "aead", .salg_name = "pcrypt(pcrypt(rfc4106-gcm-aesni))" }; int algfd, reqfd; char buf[32] = { 0 }; algfd = socket(AF_ALG, SOCK_SEQPACKET, 0); bind(algfd, (void *)&addr, sizeof(addr)); setsockopt(algfd, SOL_ALG, ALG_SET_KEY, buf, 20); reqfd = accept(algfd, 0, 0); write(reqfd, buf, 32); read(reqfd, buf, 16); } Reported-by: syzbot+56c7151cad94eec37c521f0e47d2eee53f9361c4@syzkaller.appspotmail.com Fixes: 5068c7a883d1 ("crypto: pcrypt - Add pcrypt crypto parallelization wrapper") Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Tested-by: Eric Biggers <ebiggers@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-26 15:58:45 +08:00
* @pslist: List of padata_shell objects attached to this instance.
* @cpumask: User supplied cpumasks for parallel and serial works.
* @kobj: padata instance kernel object.
* @lock: padata instance lock.
* @flags: padata flags.
*/
struct padata_instance {
struct hlist_node cpu_online_node;
struct hlist_node cpu_dead_node;
struct workqueue_struct *parallel_wq;
struct workqueue_struct *serial_wq;
crypto: pcrypt - Avoid deadlock by using per-instance padata queues If the pcrypt template is used multiple times in an algorithm, then a deadlock occurs because all pcrypt instances share the same padata_instance, which completes requests in the order submitted. That is, the inner pcrypt request waits for the outer pcrypt request while the outer request is already waiting for the inner. This patch fixes this by allocating a set of queues for each pcrypt instance instead of using two global queues. In order to maintain the existing user-space interface, the pinst structure remains global so any sysfs modifications will apply to every pcrypt instance. Note that when an update occurs we have to allocate memory for every pcrypt instance. Should one of the allocations fail we will abort the update without rolling back changes already made. The new per-instance data structure is called padata_shell and is essentially a wrapper around parallel_data. Reproducer: #include <linux/if_alg.h> #include <sys/socket.h> #include <unistd.h> int main() { struct sockaddr_alg addr = { .salg_type = "aead", .salg_name = "pcrypt(pcrypt(rfc4106-gcm-aesni))" }; int algfd, reqfd; char buf[32] = { 0 }; algfd = socket(AF_ALG, SOCK_SEQPACKET, 0); bind(algfd, (void *)&addr, sizeof(addr)); setsockopt(algfd, SOL_ALG, ALG_SET_KEY, buf, 20); reqfd = accept(algfd, 0, 0); write(reqfd, buf, 32); read(reqfd, buf, 16); } Reported-by: syzbot+56c7151cad94eec37c521f0e47d2eee53f9361c4@syzkaller.appspotmail.com Fixes: 5068c7a883d1 ("crypto: pcrypt - Add pcrypt crypto parallelization wrapper") Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Tested-by: Eric Biggers <ebiggers@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-26 15:58:45 +08:00
struct list_head pslist;
struct padata_cpumask cpumask;
struct kobject kobj;
struct mutex lock;
u8 flags;
#define PADATA_INIT 1
#define PADATA_RESET 2
#define PADATA_INVALID 4
};
#ifdef CONFIG_PADATA
extern void __init padata_init(void);
#else
static inline void __init padata_init(void) {}
#endif
extern struct padata_instance *padata_alloc(const char *name);
extern void padata_free(struct padata_instance *pinst);
crypto: pcrypt - Avoid deadlock by using per-instance padata queues If the pcrypt template is used multiple times in an algorithm, then a deadlock occurs because all pcrypt instances share the same padata_instance, which completes requests in the order submitted. That is, the inner pcrypt request waits for the outer pcrypt request while the outer request is already waiting for the inner. This patch fixes this by allocating a set of queues for each pcrypt instance instead of using two global queues. In order to maintain the existing user-space interface, the pinst structure remains global so any sysfs modifications will apply to every pcrypt instance. Note that when an update occurs we have to allocate memory for every pcrypt instance. Should one of the allocations fail we will abort the update without rolling back changes already made. The new per-instance data structure is called padata_shell and is essentially a wrapper around parallel_data. Reproducer: #include <linux/if_alg.h> #include <sys/socket.h> #include <unistd.h> int main() { struct sockaddr_alg addr = { .salg_type = "aead", .salg_name = "pcrypt(pcrypt(rfc4106-gcm-aesni))" }; int algfd, reqfd; char buf[32] = { 0 }; algfd = socket(AF_ALG, SOCK_SEQPACKET, 0); bind(algfd, (void *)&addr, sizeof(addr)); setsockopt(algfd, SOL_ALG, ALG_SET_KEY, buf, 20); reqfd = accept(algfd, 0, 0); write(reqfd, buf, 32); read(reqfd, buf, 16); } Reported-by: syzbot+56c7151cad94eec37c521f0e47d2eee53f9361c4@syzkaller.appspotmail.com Fixes: 5068c7a883d1 ("crypto: pcrypt - Add pcrypt crypto parallelization wrapper") Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Tested-by: Eric Biggers <ebiggers@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-26 15:58:45 +08:00
extern struct padata_shell *padata_alloc_shell(struct padata_instance *pinst);
extern void padata_free_shell(struct padata_shell *ps);
extern int padata_do_parallel(struct padata_shell *ps,
struct padata_priv *padata, int *cb_cpu);
extern void padata_do_serial(struct padata_priv *padata);
padata: add basic support for multithreaded jobs Sometimes the kernel doesn't take full advantage of system memory bandwidth, leading to a single CPU spending excessive time in initialization paths where the data scales with memory size. Multithreading naturally addresses this problem. Extend padata, a framework that handles many parallel yet singlethreaded jobs, to also handle multithreaded jobs by adding support for splitting up the work evenly, specifying a minimum amount of work that's appropriate for one helper thread to do, load balancing between helpers, and coordinating them. This is inspired by work from Pavel Tatashin and Steve Sistare. Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Josh Triplett <josh@joshtriplett.org> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Robert Elliott <elliott@hpe.com> Cc: Shile Zhang <shile.zhang@linux.alibaba.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Tejun Heo <tj@kernel.org> Cc: Zi Yan <ziy@nvidia.com> Link: http://lkml.kernel.org/r/20200527173608.2885243-5-daniel.m.jordan@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 15:59:43 -07:00
extern void __init padata_do_multithreaded(struct padata_mt_job *job);
extern int padata_set_cpumask(struct padata_instance *pinst, int cpumask_type,
cpumask_var_t cpumask);
#endif