linux-stable/include/linux/dmaengine.h

871 lines
28 KiB
C
Raw Normal View History

/*
* Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution in the
* file called COPYING.
*/
#ifndef DMAENGINE_H
#define DMAENGINE_H
#include <linux/device.h>
#include <linux/uio.h>
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
#include <linux/dma-mapping.h>
/**
* typedef dma_cookie_t - an opaque DMA cookie
*
* if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
*/
typedef s32 dma_cookie_t;
#define DMA_MIN_COOKIE 1
#define DMA_MAX_COOKIE INT_MAX
#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
/**
* enum dma_status - DMA transaction status
* @DMA_SUCCESS: transaction completed successfully
* @DMA_IN_PROGRESS: transaction not yet processed
* @DMA_PAUSED: transaction is paused
* @DMA_ERROR: transaction failed
*/
enum dma_status {
DMA_SUCCESS,
DMA_IN_PROGRESS,
DMA_PAUSED,
DMA_ERROR,
};
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
/**
* enum dma_transaction_type - DMA transaction types/indexes
*
* Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
* automatically set as dma devices are registered.
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
*/
enum dma_transaction_type {
DMA_MEMCPY,
DMA_XOR,
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-14 12:20:36 -07:00
DMA_PQ,
DMA_XOR_VAL,
DMA_PQ_VAL,
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
DMA_MEMSET,
DMA_INTERRUPT,
DMA_SG,
DMA_PRIVATE,
DMA_ASYNC_TX,
dmaengine: Add slave DMA interface This patch adds the necessary interfaces to the DMA Engine framework to use functionality found on most embedded DMA controllers: DMA from and to I/O registers with hardware handshaking. In this context, hardware hanshaking means that the peripheral that owns the I/O registers in question is able to tell the DMA controller when more data is available for reading, or when there is room for more data to be written. This usually happens internally on the chip, but these signals may also be exported outside the chip for things like IDE DMA, etc. A new struct dma_slave is introduced. This contains information that the DMA engine driver needs to set up slave transfers to and from a slave device. Most engines supporting DMA slave transfers will want to extend this structure with controller-specific parameters. This additional information is usually passed from the platform/board code through the client driver. A "slave" pointer is added to the dma_client struct. This must point to a valid dma_slave structure iff the DMA_SLAVE capability is requested. The DMA engine driver may use this information in its device_alloc_chan_resources hook to configure the DMA controller for slave transfers from and to the given slave device. A new operation for preparing slave DMA transfers is added to struct dma_device. This takes a scatterlist and returns a single descriptor representing the whole transfer. Another new operation for terminating all pending transfers is added as well. The latter is needed because there may be errors outside the scope of the DMA Engine framework that may require DMA operations to be terminated prematurely. DMA Engine drivers may extend the dma_device, dma_chan and/or dma_slave_descriptor structures to allow controller-specific operations. The client driver can detect such extensions by looking at the DMA Engine's struct device, or it can request a specific DMA Engine device by setting the dma_dev field in struct dma_slave. dmaslave interface changes since v4: * Fix checkpatch errors * Fix changelog (there are no slave descriptors anymore) dmaslave interface changes since v3: * Use dma_data_direction instead of a new enum * Submit slave transfers as scatterlists * Remove the DMA slave descriptor struct dmaslave interface changes since v2: * Add a dma_dev field to struct dma_slave. If set, the client can only be bound to the DMA controller that corresponds to this device. This allows controller-specific extensions of the dma_slave structure; if the device matches, the controller may safely assume its extensions are present. * Move reg_width into struct dma_slave as there are currently no users that need to be able to set the width on a per-transfer basis. dmaslave interface changes since v1: * Drop the set_direction and set_width descriptor hooks. Pass the direction and width to the prep function instead. * Declare a dma_slave struct with fixed information about a slave, i.e. register addresses, handshake interfaces and such. * Add pointer to a dma_slave struct to dma_client. Can be NULL if the DMA_SLAVE capability isn't requested. * Drop the set_slave device hook since the alloc_chan_resources hook now has enough information to set up the channel for slave transfers. Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 11:59:35 -07:00
DMA_SLAVE,
DMA_CYCLIC,
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
};
/* last transaction type for creation of the capabilities mask */
#define DMA_TX_TYPE_END (DMA_CYCLIC + 1)
dmaengine: Add slave DMA interface This patch adds the necessary interfaces to the DMA Engine framework to use functionality found on most embedded DMA controllers: DMA from and to I/O registers with hardware handshaking. In this context, hardware hanshaking means that the peripheral that owns the I/O registers in question is able to tell the DMA controller when more data is available for reading, or when there is room for more data to be written. This usually happens internally on the chip, but these signals may also be exported outside the chip for things like IDE DMA, etc. A new struct dma_slave is introduced. This contains information that the DMA engine driver needs to set up slave transfers to and from a slave device. Most engines supporting DMA slave transfers will want to extend this structure with controller-specific parameters. This additional information is usually passed from the platform/board code through the client driver. A "slave" pointer is added to the dma_client struct. This must point to a valid dma_slave structure iff the DMA_SLAVE capability is requested. The DMA engine driver may use this information in its device_alloc_chan_resources hook to configure the DMA controller for slave transfers from and to the given slave device. A new operation for preparing slave DMA transfers is added to struct dma_device. This takes a scatterlist and returns a single descriptor representing the whole transfer. Another new operation for terminating all pending transfers is added as well. The latter is needed because there may be errors outside the scope of the DMA Engine framework that may require DMA operations to be terminated prematurely. DMA Engine drivers may extend the dma_device, dma_chan and/or dma_slave_descriptor structures to allow controller-specific operations. The client driver can detect such extensions by looking at the DMA Engine's struct device, or it can request a specific DMA Engine device by setting the dma_dev field in struct dma_slave. dmaslave interface changes since v4: * Fix checkpatch errors * Fix changelog (there are no slave descriptors anymore) dmaslave interface changes since v3: * Use dma_data_direction instead of a new enum * Submit slave transfers as scatterlists * Remove the DMA slave descriptor struct dmaslave interface changes since v2: * Add a dma_dev field to struct dma_slave. If set, the client can only be bound to the DMA controller that corresponds to this device. This allows controller-specific extensions of the dma_slave structure; if the device matches, the controller may safely assume its extensions are present. * Move reg_width into struct dma_slave as there are currently no users that need to be able to set the width on a per-transfer basis. dmaslave interface changes since v1: * Drop the set_direction and set_width descriptor hooks. Pass the direction and width to the prep function instead. * Declare a dma_slave struct with fixed information about a slave, i.e. register addresses, handshake interfaces and such. * Add pointer to a dma_slave struct to dma_client. Can be NULL if the DMA_SLAVE capability isn't requested. * Drop the set_slave device hook since the alloc_chan_resources hook now has enough information to set up the channel for slave transfers. Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 11:59:35 -07:00
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
/**
* enum dma_ctrl_flags - DMA flags to augment operation preparation,
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-14 12:20:36 -07:00
* control completion, and communicate status.
* @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-14 12:20:36 -07:00
* this transaction
* @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-14 12:20:36 -07:00
* acknowledges receipt, i.e. has has a chance to establish any dependency
* chains
* @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
* @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
* @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
* (if not set, do the source dma-unmapping as page)
* @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
* (if not set, do the destination dma-unmapping as page)
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-14 12:20:36 -07:00
* @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
* @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
* @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
* sources that were the result of a previous operation, in the case of a PQ
* operation it continues the calculation with new sources
* @DMA_PREP_FENCE - tell the driver that subsequent operations depend
* on the result of this operation
*/
enum dma_ctrl_flags {
DMA_PREP_INTERRUPT = (1 << 0),
DMA_CTRL_ACK = (1 << 1),
DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
DMA_PREP_PQ_DISABLE_P = (1 << 6),
DMA_PREP_PQ_DISABLE_Q = (1 << 7),
DMA_PREP_CONTINUE = (1 << 8),
DMA_PREP_FENCE = (1 << 9),
};
/**
* enum dma_ctrl_cmd - DMA operations that can optionally be exercised
* on a running channel.
* @DMA_TERMINATE_ALL: terminate all ongoing transfers
* @DMA_PAUSE: pause ongoing transfers
* @DMA_RESUME: resume paused transfer
* @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
* that need to runtime reconfigure the slave channels (as opposed to passing
* configuration data in statically from the platform). An additional
* argument of struct dma_slave_config must be passed in with this
* command.
* @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
* into external start mode.
*/
enum dma_ctrl_cmd {
DMA_TERMINATE_ALL,
DMA_PAUSE,
DMA_RESUME,
DMA_SLAVE_CONFIG,
FSLDMA_EXTERNAL_START,
};
/**
* enum sum_check_bits - bit position of pq_check_flags
*/
enum sum_check_bits {
SUM_CHECK_P = 0,
SUM_CHECK_Q = 1,
};
/**
* enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
* @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
* @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
*/
enum sum_check_flags {
SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
};
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
/**
* dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
* See linux/cpumask.h
*/
typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
/**
* struct dma_chan_percpu - the per-CPU part of struct dma_chan
* @memcpy_count: transaction counter
* @bytes_transferred: byte counter
*/
struct dma_chan_percpu {
/* stats */
unsigned long memcpy_count;
unsigned long bytes_transferred;
};
/**
* struct dma_chan - devices supply DMA channels, clients use them
* @device: ptr to the dma device who supplies this channel, always !%NULL
* @cookie: last cookie value returned to client
* @chan_id: channel ID for sysfs
* @dev: class device for sysfs
* @device_node: used to add this to the device chan list
* @local: per-cpu pointer to a struct dma_chan_percpu
* @client-count: how many clients are using this channel
* @table_count: number of appearances in the mem-to-mem allocation table
* @private: private data for certain client-channel associations
*/
struct dma_chan {
struct dma_device *device;
dma_cookie_t cookie;
/* sysfs */
int chan_id;
struct dma_chan_dev *dev;
struct list_head device_node;
struct dma_chan_percpu __percpu *local;
int client_count;
int table_count;
void *private;
};
/**
* struct dma_chan_dev - relate sysfs device node to backing channel device
* @chan - driver channel device
* @device - sysfs device
* @dev_id - parent dma_device dev_id
* @idr_ref - reference count to gate release of dma_device dev_id
*/
struct dma_chan_dev {
struct dma_chan *chan;
struct device device;
int dev_id;
atomic_t *idr_ref;
};
/**
* enum dma_slave_buswidth - defines bus with of the DMA slave
* device, source or target buses
*/
enum dma_slave_buswidth {
DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
};
/**
* struct dma_slave_config - dma slave channel runtime config
* @direction: whether the data shall go in or out on this slave
* channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
* legal values, DMA_BIDIRECTIONAL is not acceptable since we
* need to differentiate source and target addresses.
* @src_addr: this is the physical address where DMA slave data
* should be read (RX), if the source is memory this argument is
* ignored.
* @dst_addr: this is the physical address where DMA slave data
* should be written (TX), if the source is memory this argument
* is ignored.
* @src_addr_width: this is the width in bytes of the source (RX)
* register where DMA data shall be read. If the source
* is memory this may be ignored depending on architecture.
* Legal values: 1, 2, 4, 8.
* @dst_addr_width: same as src_addr_width but for destination
* target (TX) mutatis mutandis.
* @src_maxburst: the maximum number of words (note: words, as in
* units of the src_addr_width member, not bytes) that can be sent
* in one burst to the device. Typically something like half the
* FIFO depth on I/O peripherals so you don't overflow it. This
* may or may not be applicable on memory sources.
* @dst_maxburst: same as src_maxburst but for destination target
* mutatis mutandis.
*
* This struct is passed in as configuration data to a DMA engine
* in order to set up a certain channel for DMA transport at runtime.
* The DMA device/engine has to provide support for an additional
* command in the channel config interface, DMA_SLAVE_CONFIG
* and this struct will then be passed in as an argument to the
* DMA engine device_control() function.
*
* The rationale for adding configuration information to this struct
* is as follows: if it is likely that most DMA slave controllers in
* the world will support the configuration option, then make it
* generic. If not: if it is fixed so that it be sent in static from
* the platform data, then prefer to do that. Else, if it is neither
* fixed at runtime, nor generic enough (such as bus mastership on
* some CPU family and whatnot) then create a custom slave config
* struct and pass that, then make this config a member of that
* struct, if applicable.
*/
struct dma_slave_config {
enum dma_data_direction direction;
dma_addr_t src_addr;
dma_addr_t dst_addr;
enum dma_slave_buswidth src_addr_width;
enum dma_slave_buswidth dst_addr_width;
u32 src_maxburst;
u32 dst_maxburst;
};
static inline const char *dma_chan_name(struct dma_chan *chan)
{
return dev_name(&chan->dev->device);
}
void dma_chan_cleanup(struct kref *kref);
/**
* typedef dma_filter_fn - callback filter for dma_request_channel
* @chan: channel to be reviewed
* @filter_param: opaque parameter passed through dma_request_channel
*
* When this optional parameter is specified in a call to dma_request_channel a
* suitable channel is passed to this routine for further dispositioning before
* being returned. Where 'suitable' indicates a non-busy channel that
* satisfies the given capability mask. It returns 'true' to indicate that the
* channel is suitable.
*/
typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
typedef void (*dma_async_tx_callback)(void *dma_async_param);
/**
* struct dma_async_tx_descriptor - async transaction descriptor
* ---dma generic offload fields---
* @cookie: tracking cookie for this transaction, set to -EBUSY if
* this tx is sitting on a dependency list
* @flags: flags to augment operation preparation, control completion, and
* communicate status
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
* @phys: physical address of the descriptor
* @chan: target channel for this operation
* @tx_submit: set the prepared descriptor(s) to be executed by the engine
* @callback: routine to call after this operation is complete
* @callback_param: general parameter to pass to the callback routine
* ---async_tx api specific fields---
* @next: at completion submit this descriptor
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
* @parent: pointer to the next level up in the dependency chain
* @lock: protect the parent and next pointers
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
*/
struct dma_async_tx_descriptor {
dma_cookie_t cookie;
enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
dma_addr_t phys;
struct dma_chan *chan;
dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
dma_async_tx_callback callback;
void *callback_param;
#ifndef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
struct dma_async_tx_descriptor *next;
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
struct dma_async_tx_descriptor *parent;
spinlock_t lock;
#endif
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
};
#ifdef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
static inline void txd_lock(struct dma_async_tx_descriptor *txd)
{
}
static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
{
}
static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
{
BUG();
}
static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
{
}
static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
{
}
static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
{
return NULL;
}
static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
{
return NULL;
}
#else
static inline void txd_lock(struct dma_async_tx_descriptor *txd)
{
spin_lock_bh(&txd->lock);
}
static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
{
spin_unlock_bh(&txd->lock);
}
static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
{
txd->next = next;
next->parent = txd;
}
static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
{
txd->parent = NULL;
}
static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
{
txd->next = NULL;
}
static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
{
return txd->parent;
}
static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
{
return txd->next;
}
#endif
/**
* struct dma_tx_state - filled in to report the status of
* a transfer.
* @last: last completed DMA cookie
* @used: last issued DMA cookie (i.e. the one in progress)
* @residue: the remaining number of bytes left to transmit
* on the selected transfer for states DMA_IN_PROGRESS and
* DMA_PAUSED if this is implemented in the driver, else 0
*/
struct dma_tx_state {
dma_cookie_t last;
dma_cookie_t used;
u32 residue;
};
/**
* struct dma_device - info on the entity supplying DMA services
* @chancnt: how many DMA channels are supported
* @privatecnt: how many DMA channels are requested by dma_request_channel
* @channels: the list of struct dma_chan
* @global_node: list_head for global dma_device_list
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
* @cap_mask: one or more dma_capability flags
* @max_xor: maximum number of xor sources, 0 if no capability
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-14 12:20:36 -07:00
* @max_pq: maximum number of PQ sources and PQ-continue capability
* @copy_align: alignment shift for memcpy operations
* @xor_align: alignment shift for xor operations
* @pq_align: alignment shift for pq operations
* @fill_align: alignment shift for memset operations
* @dev_id: unique device ID
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
* @dev: struct device reference for dma mapping api
* @device_alloc_chan_resources: allocate resources and return the
* number of allocated descriptors
* @device_free_chan_resources: release DMA channel's resources
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
* @device_prep_dma_memcpy: prepares a memcpy operation
* @device_prep_dma_xor: prepares a xor operation
* @device_prep_dma_xor_val: prepares a xor validation operation
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-14 12:20:36 -07:00
* @device_prep_dma_pq: prepares a pq operation
* @device_prep_dma_pq_val: prepares a pqzero_sum operation
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
* @device_prep_dma_memset: prepares a memset operation
* @device_prep_dma_interrupt: prepares an end of chain interrupt operation
dmaengine: Add slave DMA interface This patch adds the necessary interfaces to the DMA Engine framework to use functionality found on most embedded DMA controllers: DMA from and to I/O registers with hardware handshaking. In this context, hardware hanshaking means that the peripheral that owns the I/O registers in question is able to tell the DMA controller when more data is available for reading, or when there is room for more data to be written. This usually happens internally on the chip, but these signals may also be exported outside the chip for things like IDE DMA, etc. A new struct dma_slave is introduced. This contains information that the DMA engine driver needs to set up slave transfers to and from a slave device. Most engines supporting DMA slave transfers will want to extend this structure with controller-specific parameters. This additional information is usually passed from the platform/board code through the client driver. A "slave" pointer is added to the dma_client struct. This must point to a valid dma_slave structure iff the DMA_SLAVE capability is requested. The DMA engine driver may use this information in its device_alloc_chan_resources hook to configure the DMA controller for slave transfers from and to the given slave device. A new operation for preparing slave DMA transfers is added to struct dma_device. This takes a scatterlist and returns a single descriptor representing the whole transfer. Another new operation for terminating all pending transfers is added as well. The latter is needed because there may be errors outside the scope of the DMA Engine framework that may require DMA operations to be terminated prematurely. DMA Engine drivers may extend the dma_device, dma_chan and/or dma_slave_descriptor structures to allow controller-specific operations. The client driver can detect such extensions by looking at the DMA Engine's struct device, or it can request a specific DMA Engine device by setting the dma_dev field in struct dma_slave. dmaslave interface changes since v4: * Fix checkpatch errors * Fix changelog (there are no slave descriptors anymore) dmaslave interface changes since v3: * Use dma_data_direction instead of a new enum * Submit slave transfers as scatterlists * Remove the DMA slave descriptor struct dmaslave interface changes since v2: * Add a dma_dev field to struct dma_slave. If set, the client can only be bound to the DMA controller that corresponds to this device. This allows controller-specific extensions of the dma_slave structure; if the device matches, the controller may safely assume its extensions are present. * Move reg_width into struct dma_slave as there are currently no users that need to be able to set the width on a per-transfer basis. dmaslave interface changes since v1: * Drop the set_direction and set_width descriptor hooks. Pass the direction and width to the prep function instead. * Declare a dma_slave struct with fixed information about a slave, i.e. register addresses, handshake interfaces and such. * Add pointer to a dma_slave struct to dma_client. Can be NULL if the DMA_SLAVE capability isn't requested. * Drop the set_slave device hook since the alloc_chan_resources hook now has enough information to set up the channel for slave transfers. Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 11:59:35 -07:00
* @device_prep_slave_sg: prepares a slave dma operation
* @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
* The function takes a buffer of size buf_len. The callback function will
* be called after period_len bytes have been transferred.
* @device_control: manipulate all pending operations on a channel, returns
* zero or error code
* @device_tx_status: poll for transaction completion, the optional
* txstate parameter can be supplied with a pointer to get a
* struct with auxilary transfer status information, otherwise the call
* will just return a simple status code
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
* @device_issue_pending: push pending transactions to hardware
*/
struct dma_device {
unsigned int chancnt;
unsigned int privatecnt;
struct list_head channels;
struct list_head global_node;
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
dma_cap_mask_t cap_mask;
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-14 12:20:36 -07:00
unsigned short max_xor;
unsigned short max_pq;
u8 copy_align;
u8 xor_align;
u8 pq_align;
u8 fill_align;
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-14 12:20:36 -07:00
#define DMA_HAS_PQ_CONTINUE (1 << 15)
int dev_id;
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
struct device *dev;
int (*device_alloc_chan_resources)(struct dma_chan *chan);
void (*device_free_chan_resources)(struct dma_chan *chan);
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags);
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
size_t len, enum sum_check_flags *result, unsigned long flags);
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-14 12:20:36 -07:00
struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf,
size_t len, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
enum sum_check_flags *pqres, unsigned long flags);
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
unsigned long flags);
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
struct dma_chan *chan, unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
struct dma_chan *chan,
struct scatterlist *dst_sg, unsigned int dst_nents,
struct scatterlist *src_sg, unsigned int src_nents,
unsigned long flags);
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
dmaengine: Add slave DMA interface This patch adds the necessary interfaces to the DMA Engine framework to use functionality found on most embedded DMA controllers: DMA from and to I/O registers with hardware handshaking. In this context, hardware hanshaking means that the peripheral that owns the I/O registers in question is able to tell the DMA controller when more data is available for reading, or when there is room for more data to be written. This usually happens internally on the chip, but these signals may also be exported outside the chip for things like IDE DMA, etc. A new struct dma_slave is introduced. This contains information that the DMA engine driver needs to set up slave transfers to and from a slave device. Most engines supporting DMA slave transfers will want to extend this structure with controller-specific parameters. This additional information is usually passed from the platform/board code through the client driver. A "slave" pointer is added to the dma_client struct. This must point to a valid dma_slave structure iff the DMA_SLAVE capability is requested. The DMA engine driver may use this information in its device_alloc_chan_resources hook to configure the DMA controller for slave transfers from and to the given slave device. A new operation for preparing slave DMA transfers is added to struct dma_device. This takes a scatterlist and returns a single descriptor representing the whole transfer. Another new operation for terminating all pending transfers is added as well. The latter is needed because there may be errors outside the scope of the DMA Engine framework that may require DMA operations to be terminated prematurely. DMA Engine drivers may extend the dma_device, dma_chan and/or dma_slave_descriptor structures to allow controller-specific operations. The client driver can detect such extensions by looking at the DMA Engine's struct device, or it can request a specific DMA Engine device by setting the dma_dev field in struct dma_slave. dmaslave interface changes since v4: * Fix checkpatch errors * Fix changelog (there are no slave descriptors anymore) dmaslave interface changes since v3: * Use dma_data_direction instead of a new enum * Submit slave transfers as scatterlists * Remove the DMA slave descriptor struct dmaslave interface changes since v2: * Add a dma_dev field to struct dma_slave. If set, the client can only be bound to the DMA controller that corresponds to this device. This allows controller-specific extensions of the dma_slave structure; if the device matches, the controller may safely assume its extensions are present. * Move reg_width into struct dma_slave as there are currently no users that need to be able to set the width on a per-transfer basis. dmaslave interface changes since v1: * Drop the set_direction and set_width descriptor hooks. Pass the direction and width to the prep function instead. * Declare a dma_slave struct with fixed information about a slave, i.e. register addresses, handshake interfaces and such. * Add pointer to a dma_slave struct to dma_client. Can be NULL if the DMA_SLAVE capability isn't requested. * Drop the set_slave device hook since the alloc_chan_resources hook now has enough information to set up the channel for slave transfers. Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 11:59:35 -07:00
struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_data_direction direction,
unsigned long flags);
struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_data_direction direction);
int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg);
dmaengine: Add slave DMA interface This patch adds the necessary interfaces to the DMA Engine framework to use functionality found on most embedded DMA controllers: DMA from and to I/O registers with hardware handshaking. In this context, hardware hanshaking means that the peripheral that owns the I/O registers in question is able to tell the DMA controller when more data is available for reading, or when there is room for more data to be written. This usually happens internally on the chip, but these signals may also be exported outside the chip for things like IDE DMA, etc. A new struct dma_slave is introduced. This contains information that the DMA engine driver needs to set up slave transfers to and from a slave device. Most engines supporting DMA slave transfers will want to extend this structure with controller-specific parameters. This additional information is usually passed from the platform/board code through the client driver. A "slave" pointer is added to the dma_client struct. This must point to a valid dma_slave structure iff the DMA_SLAVE capability is requested. The DMA engine driver may use this information in its device_alloc_chan_resources hook to configure the DMA controller for slave transfers from and to the given slave device. A new operation for preparing slave DMA transfers is added to struct dma_device. This takes a scatterlist and returns a single descriptor representing the whole transfer. Another new operation for terminating all pending transfers is added as well. The latter is needed because there may be errors outside the scope of the DMA Engine framework that may require DMA operations to be terminated prematurely. DMA Engine drivers may extend the dma_device, dma_chan and/or dma_slave_descriptor structures to allow controller-specific operations. The client driver can detect such extensions by looking at the DMA Engine's struct device, or it can request a specific DMA Engine device by setting the dma_dev field in struct dma_slave. dmaslave interface changes since v4: * Fix checkpatch errors * Fix changelog (there are no slave descriptors anymore) dmaslave interface changes since v3: * Use dma_data_direction instead of a new enum * Submit slave transfers as scatterlists * Remove the DMA slave descriptor struct dmaslave interface changes since v2: * Add a dma_dev field to struct dma_slave. If set, the client can only be bound to the DMA controller that corresponds to this device. This allows controller-specific extensions of the dma_slave structure; if the device matches, the controller may safely assume its extensions are present. * Move reg_width into struct dma_slave as there are currently no users that need to be able to set the width on a per-transfer basis. dmaslave interface changes since v1: * Drop the set_direction and set_width descriptor hooks. Pass the direction and width to the prep function instead. * Declare a dma_slave struct with fixed information about a slave, i.e. register addresses, handshake interfaces and such. * Add pointer to a dma_slave struct to dma_client. Can be NULL if the DMA_SLAVE capability isn't requested. * Drop the set_slave device hook since the alloc_chan_resources hook now has enough information to set up the channel for slave transfers. Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 11:59:35 -07:00
enum dma_status (*device_tx_status)(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate);
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
void (*device_issue_pending)(struct dma_chan *chan);
};
static inline int dmaengine_device_control(struct dma_chan *chan,
enum dma_ctrl_cmd cmd,
unsigned long arg)
{
return chan->device->device_control(chan, cmd, arg);
}
static inline int dmaengine_slave_config(struct dma_chan *chan,
struct dma_slave_config *config)
{
return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
(unsigned long)config);
}
static inline int dmaengine_terminate_all(struct dma_chan *chan)
{
return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
}
static inline int dmaengine_pause(struct dma_chan *chan)
{
return dmaengine_device_control(chan, DMA_PAUSE, 0);
}
static inline int dmaengine_resume(struct dma_chan *chan)
{
return dmaengine_device_control(chan, DMA_RESUME, 0);
}
static inline int dmaengine_submit(struct dma_async_tx_descriptor *desc)
{
return desc->tx_submit(desc);
}
static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
{
size_t mask;
if (!align)
return true;
mask = (1 << align) - 1;
if (mask & (off1 | off2 | len))
return false;
return true;
}
static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
size_t off2, size_t len)
{
return dmaengine_check_align(dev->copy_align, off1, off2, len);
}
static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
size_t off2, size_t len)
{
return dmaengine_check_align(dev->xor_align, off1, off2, len);
}
static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
size_t off2, size_t len)
{
return dmaengine_check_align(dev->pq_align, off1, off2, len);
}
static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
size_t off2, size_t len)
{
return dmaengine_check_align(dev->fill_align, off1, off2, len);
}
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-14 12:20:36 -07:00
static inline void
dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
{
dma->max_pq = maxpq;
if (has_pq_continue)
dma->max_pq |= DMA_HAS_PQ_CONTINUE;
}
static inline bool dmaf_continue(enum dma_ctrl_flags flags)
{
return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
}
static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
{
enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
return (flags & mask) == mask;
}
static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
{
return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
}
static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
async_tx: add support for asynchronous GF multiplication [ Based on an original patch by Yuri Tikhonov ] This adds support for doing asynchronous GF multiplication by adding two additional functions to the async_tx API: async_gen_syndrome() does simultaneous XOR and Galois field multiplication of sources. async_syndrome_val() validates the given source buffers against known P and Q values. When a request is made to run async_pq against more than the hardware maximum number of supported sources we need to reuse the previous generated P and Q values as sources into the next operation. Care must be taken to remove Q from P' and P from Q'. For example to perform a 5 source pq op with hardware that only supports 4 sources at a time the following approach is taken: p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08})) p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10})) p' = p + q + q + src4 = p + src4 q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4 Note: 4 is the minimum acceptable maxpq otherwise we punt to synchronous-software path. The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as sources (in the above manner) and fill the remaining slots up to maxpq with the new sources/coefficients. Note1: Some devices have native support for P+Q continuation and can skip this extra work. Devices with this capability can advertise it with dma_set_maxpq. It is up to each driver how to handle the DMA_PREP_CONTINUE flag. Note2: The api supports disabling the generation of P when generating Q, this is ignored by the synchronous path but is implemented by some dma devices to save unnecessary writes. In this case the continuation algorithm is simplified to only reuse Q as a source. Cc: H. Peter Anvin <hpa@zytor.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Yuri Tikhonov <yur@emcraft.com> Signed-off-by: Ilya Yanok <yanok@emcraft.com> Reviewed-by: Andre Noll <maan@systemlinux.org> Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-14 12:20:36 -07:00
{
return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
}
/* dma_maxpq - reduce maxpq in the face of continued operations
* @dma - dma device with PQ capability
* @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
*
* When an engine does not support native continuation we need 3 extra
* source slots to reuse P and Q with the following coefficients:
* 1/ {00} * P : remove P from Q', but use it as a source for P'
* 2/ {01} * Q : use Q to continue Q' calculation
* 3/ {00} * Q : subtract Q from P' to cancel (2)
*
* In the case where P is disabled we only need 1 extra source:
* 1/ {01} * Q : use Q to continue Q' calculation
*/
static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
{
if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
return dma_dev_to_maxpq(dma);
else if (dmaf_p_disabled_continue(flags))
return dma_dev_to_maxpq(dma) - 1;
else if (dmaf_continue(flags))
return dma_dev_to_maxpq(dma) - 3;
BUG();
}
/* --- public DMA engine API --- */
#ifdef CONFIG_DMA_ENGINE
void dmaengine_get(void);
void dmaengine_put(void);
#else
static inline void dmaengine_get(void)
{
}
static inline void dmaengine_put(void)
{
}
#endif
#ifdef CONFIG_NET_DMA
#define net_dmaengine_get() dmaengine_get()
#define net_dmaengine_put() dmaengine_put()
#else
static inline void net_dmaengine_get(void)
{
}
static inline void net_dmaengine_put(void)
{
}
#endif
#ifdef CONFIG_ASYNC_TX_DMA
#define async_dmaengine_get() dmaengine_get()
#define async_dmaengine_put() dmaengine_put()
#ifdef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
#else
#define async_dma_find_channel(type) dma_find_channel(type)
#endif /* CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH */
#else
static inline void async_dmaengine_get(void)
{
}
static inline void async_dmaengine_put(void)
{
}
static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)
{
return NULL;
}
#endif /* CONFIG_ASYNC_TX_DMA */
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
void *dest, void *src, size_t len);
dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
struct page *page, unsigned int offset, void *kdata, size_t len);
dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
unsigned int src_off, size_t len);
void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
struct dma_chan *chan);
static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
{
tx->flags |= DMA_CTRL_ACK;
}
static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
{
tx->flags &= ~DMA_CTRL_ACK;
}
static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
{
return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
}
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
#define first_dma_cap(mask) __first_dma_cap(&(mask))
static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
{
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
return min_t(int, DMA_TX_TYPE_END,
find_first_bit(srcp->bits, DMA_TX_TYPE_END));
}
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
{
return min_t(int, DMA_TX_TYPE_END,
find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
}
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
static inline void
__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
{
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
set_bit(tx_type, dstp->bits);
}
#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
static inline void
__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
{
clear_bit(tx_type, dstp->bits);
}
#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
{
bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
}
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
static inline int
__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
{
return test_bit(tx_type, srcp->bits);
}
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
#define for_each_dma_cap_mask(cap, mask) \
for ((cap) = first_dma_cap(mask); \
(cap) < DMA_TX_TYPE_END; \
(cap) = next_dma_cap((cap), (mask)))
/**
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
* dma_async_issue_pending - flush pending transactions to HW
* @chan: target DMA channel
*
* This allows drivers to push copies to HW in batches,
* reducing MMIO writes where possible.
*/
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
static inline void dma_async_issue_pending(struct dma_chan *chan)
{
chan->device->device_issue_pending(chan);
}
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
/**
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
* dma_async_is_tx_complete - poll for transaction completion
* @chan: DMA channel
* @cookie: transaction identifier to check status of
* @last: returns last completed cookie, can be NULL
* @used: returns last issued cookie, can be NULL
*
* If @last and @used are passed in, upon return they reflect the driver
* internal state and can be used with dma_async_is_complete() to check
* the status of multiple cookies without re-checking hardware state.
*/
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
{
struct dma_tx_state state;
enum dma_status status;
status = chan->device->device_tx_status(chan, cookie, &state);
if (last)
*last = state.last;
if (used)
*used = state.used;
return status;
}
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
#define dma_async_memcpy_complete(chan, cookie, last, used)\
dma_async_is_tx_complete(chan, cookie, last, used)
/**
* dma_async_is_complete - test a cookie against chan state
* @cookie: transaction identifier to test status of
* @last_complete: last know completed transaction
* @last_used: last cookie value handed out
*
* dma_async_is_complete() is used in dma_async_memcpy_complete()
* the test logic is separated for lightweight testing of multiple cookies
*/
static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
dma_cookie_t last_complete, dma_cookie_t last_used)
{
if (last_complete <= last_used) {
if ((cookie <= last_complete) || (cookie > last_used))
return DMA_SUCCESS;
} else {
if ((cookie <= last_complete) && (cookie > last_used))
return DMA_SUCCESS;
}
return DMA_IN_PROGRESS;
}
static inline void
dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
{
if (st) {
st->last = last;
st->used = used;
st->residue = residue;
}
}
dmaengine: refactor dmaengine around dma_async_tx_descriptor The current dmaengine interface defines mutliple routines per operation, i.e. dma_async_memcpy_buf_to_buf, dma_async_memcpy_buf_to_page etc. Adding more operation types (xor, crc, etc) to this model would result in an unmanageable number of method permutations. Are we really going to add a set of hooks for each DMA engine whizbang feature? - Jeff Garzik The descriptor creation process is refactored using the new common dma_async_tx_descriptor structure. Instead of per driver do_<operation>_<dest>_to_<src> methods, drivers integrate dma_async_tx_descriptor into their private software descriptor and then define a 'prep' routine per operation. The prep routine allocates a descriptor and ensures that the tx_set_src, tx_set_dest, tx_submit routines are valid. Descriptor creation and submission becomes: struct dma_device *dev; struct dma_chan *chan; struct dma_async_tx_descriptor *tx; tx = dev->device_prep_dma_<operation>(chan, len, int_flag) tx->tx_set_src(dma_addr_t, tx, index /* for multi-source ops */) tx->tx_set_dest(dma_addr_t, tx, index) tx->tx_submit(tx) In addition to the refactoring, dma_async_tx_descriptor also lays the groundwork for definining cross-channel-operation dependencies, and a callback facility for asynchronous notification of operation completion. Changelog: * drop dma mapping methods, suggested by Chris Leech * fix ioat_dma_dependency_added, also caught by Andrew Morton * fix dma_sync_wait, change from Andrew Morton * uninline large functions, change from Andrew Morton * add tx->callback = NULL to dmaengine calls to interoperate with async_tx calls * hookup ioat_tx_submit * convert channel capabilities to a 'cpumask_t like' bitmap * removed DMA_TX_ARRAY_INIT, no longer needed * checkpatch.pl fixes * make set_src, set_dest, and tx_submit descriptor specific methods * fixup git-ioat merge * move group_list and phys to dma_async_tx_descriptor Cc: Jeff Garzik <jeff@garzik.org> Cc: Chris Leech <christopher.leech@intel.com> Signed-off-by: Shannon Nelson <shannon.nelson@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David S. Miller <davem@davemloft.net>
2007-01-02 11:10:43 -07:00
enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
#ifdef CONFIG_DMA_ENGINE
enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
void dma_issue_pending_all(void);
#else
static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
{
return DMA_SUCCESS;
}
static inline void dma_issue_pending_all(void)
{
do { } while (0);
}
#endif
/* --- DMA device --- */
int dma_async_device_register(struct dma_device *device);
void dma_async_device_unregister(struct dma_device *device);
void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
void dma_release_channel(struct dma_chan *chan);
/* --- Helper iov-locking functions --- */
struct dma_page_list {
char __user *base_address;
int nr_pages;
struct page **pages;
};
struct dma_pinned_list {
int nr_iovecs;
struct dma_page_list page_list[0];
};
struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
struct dma_pinned_list *pinned_list, struct page *page,
unsigned int offset, size_t len);
#endif /* DMAENGINE_H */