2022-03-22 14:03:35 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
/*
|
|
|
|
* Modules tree lookup
|
|
|
|
*
|
|
|
|
* Copyright (C) 2015 Peter Zijlstra
|
|
|
|
* Copyright (C) 2015 Rusty Russell
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/rbtree_latch.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Use a latched RB-tree for __module_address(); this allows us to use
|
|
|
|
* RCU-sched lookups of the address from any context.
|
|
|
|
*
|
|
|
|
* This is conditional on PERF_EVENTS || TRACING because those can really hit
|
|
|
|
* __module_address() hard by doing a lot of stack unwinding; potentially from
|
|
|
|
* NMI context.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
|
|
|
|
{
|
module: replace module_layout with module_memory
module_layout manages different types of memory (text, data, rodata, etc.)
in one allocation, which is problematic for some reasons:
1. It is hard to enable CONFIG_STRICT_MODULE_RWX.
2. It is hard to use huge pages in modules (and not break strict rwx).
3. Many archs uses module_layout for arch-specific data, but it is not
obvious how these data are used (are they RO, RX, or RW?)
Improve the scenario by replacing 2 (or 3) module_layout per module with
up to 7 module_memory per module:
MOD_TEXT,
MOD_DATA,
MOD_RODATA,
MOD_RO_AFTER_INIT,
MOD_INIT_TEXT,
MOD_INIT_DATA,
MOD_INIT_RODATA,
and allocating them separately. This adds slightly more entries to
mod_tree (from up to 3 entries per module, to up to 7 entries per
module). However, this at most adds a small constant overhead to
__module_address(), which is expected to be fast.
Various archs use module_layout for different data. These data are put
into different module_memory based on their location in module_layout.
IOW, data that used to go with text is allocated with MOD_MEM_TYPE_TEXT;
data that used to go with data is allocated with MOD_MEM_TYPE_DATA, etc.
module_memory simplifies quite some of the module code. For example,
ARCH_WANTS_MODULES_DATA_IN_VMALLOC is a lot cleaner, as it just uses a
different allocator for the data. kernel/module/strict_rwx.c is also
much cleaner with module_memory.
Signed-off-by: Song Liu <song@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-02-07 00:28:02 +00:00
|
|
|
struct module_memory *mod_mem = container_of(n, struct module_memory, mtn.node);
|
2022-03-22 14:03:35 +00:00
|
|
|
|
module: replace module_layout with module_memory
module_layout manages different types of memory (text, data, rodata, etc.)
in one allocation, which is problematic for some reasons:
1. It is hard to enable CONFIG_STRICT_MODULE_RWX.
2. It is hard to use huge pages in modules (and not break strict rwx).
3. Many archs uses module_layout for arch-specific data, but it is not
obvious how these data are used (are they RO, RX, or RW?)
Improve the scenario by replacing 2 (or 3) module_layout per module with
up to 7 module_memory per module:
MOD_TEXT,
MOD_DATA,
MOD_RODATA,
MOD_RO_AFTER_INIT,
MOD_INIT_TEXT,
MOD_INIT_DATA,
MOD_INIT_RODATA,
and allocating them separately. This adds slightly more entries to
mod_tree (from up to 3 entries per module, to up to 7 entries per
module). However, this at most adds a small constant overhead to
__module_address(), which is expected to be fast.
Various archs use module_layout for different data. These data are put
into different module_memory based on their location in module_layout.
IOW, data that used to go with text is allocated with MOD_MEM_TYPE_TEXT;
data that used to go with data is allocated with MOD_MEM_TYPE_DATA, etc.
module_memory simplifies quite some of the module code. For example,
ARCH_WANTS_MODULES_DATA_IN_VMALLOC is a lot cleaner, as it just uses a
different allocator for the data. kernel/module/strict_rwx.c is also
much cleaner with module_memory.
Signed-off-by: Song Liu <song@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-02-07 00:28:02 +00:00
|
|
|
return (unsigned long)mod_mem->base;
|
2022-03-22 14:03:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
|
|
|
|
{
|
module: replace module_layout with module_memory
module_layout manages different types of memory (text, data, rodata, etc.)
in one allocation, which is problematic for some reasons:
1. It is hard to enable CONFIG_STRICT_MODULE_RWX.
2. It is hard to use huge pages in modules (and not break strict rwx).
3. Many archs uses module_layout for arch-specific data, but it is not
obvious how these data are used (are they RO, RX, or RW?)
Improve the scenario by replacing 2 (or 3) module_layout per module with
up to 7 module_memory per module:
MOD_TEXT,
MOD_DATA,
MOD_RODATA,
MOD_RO_AFTER_INIT,
MOD_INIT_TEXT,
MOD_INIT_DATA,
MOD_INIT_RODATA,
and allocating them separately. This adds slightly more entries to
mod_tree (from up to 3 entries per module, to up to 7 entries per
module). However, this at most adds a small constant overhead to
__module_address(), which is expected to be fast.
Various archs use module_layout for different data. These data are put
into different module_memory based on their location in module_layout.
IOW, data that used to go with text is allocated with MOD_MEM_TYPE_TEXT;
data that used to go with data is allocated with MOD_MEM_TYPE_DATA, etc.
module_memory simplifies quite some of the module code. For example,
ARCH_WANTS_MODULES_DATA_IN_VMALLOC is a lot cleaner, as it just uses a
different allocator for the data. kernel/module/strict_rwx.c is also
much cleaner with module_memory.
Signed-off-by: Song Liu <song@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-02-07 00:28:02 +00:00
|
|
|
struct module_memory *mod_mem = container_of(n, struct module_memory, mtn.node);
|
2022-03-22 14:03:35 +00:00
|
|
|
|
module: replace module_layout with module_memory
module_layout manages different types of memory (text, data, rodata, etc.)
in one allocation, which is problematic for some reasons:
1. It is hard to enable CONFIG_STRICT_MODULE_RWX.
2. It is hard to use huge pages in modules (and not break strict rwx).
3. Many archs uses module_layout for arch-specific data, but it is not
obvious how these data are used (are they RO, RX, or RW?)
Improve the scenario by replacing 2 (or 3) module_layout per module with
up to 7 module_memory per module:
MOD_TEXT,
MOD_DATA,
MOD_RODATA,
MOD_RO_AFTER_INIT,
MOD_INIT_TEXT,
MOD_INIT_DATA,
MOD_INIT_RODATA,
and allocating them separately. This adds slightly more entries to
mod_tree (from up to 3 entries per module, to up to 7 entries per
module). However, this at most adds a small constant overhead to
__module_address(), which is expected to be fast.
Various archs use module_layout for different data. These data are put
into different module_memory based on their location in module_layout.
IOW, data that used to go with text is allocated with MOD_MEM_TYPE_TEXT;
data that used to go with data is allocated with MOD_MEM_TYPE_DATA, etc.
module_memory simplifies quite some of the module code. For example,
ARCH_WANTS_MODULES_DATA_IN_VMALLOC is a lot cleaner, as it just uses a
different allocator for the data. kernel/module/strict_rwx.c is also
much cleaner with module_memory.
Signed-off-by: Song Liu <song@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-02-07 00:28:02 +00:00
|
|
|
return (unsigned long)mod_mem->size;
|
2022-03-22 14:03:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static __always_inline bool
|
|
|
|
mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
|
|
|
|
{
|
|
|
|
return __mod_tree_val(a) < __mod_tree_val(b);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __always_inline int
|
|
|
|
mod_tree_comp(void *key, struct latch_tree_node *n)
|
|
|
|
{
|
|
|
|
unsigned long val = (unsigned long)key;
|
|
|
|
unsigned long start, end;
|
|
|
|
|
|
|
|
start = __mod_tree_val(n);
|
|
|
|
if (val < start)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
end = start + __mod_tree_size(n);
|
|
|
|
if (val >= end)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct latch_tree_ops mod_tree_ops = {
|
|
|
|
.less = mod_tree_less,
|
|
|
|
.comp = mod_tree_comp,
|
|
|
|
};
|
|
|
|
|
2022-02-23 12:02:12 +00:00
|
|
|
static noinline void __mod_tree_insert(struct mod_tree_node *node, struct mod_tree_root *tree)
|
2022-03-22 14:03:35 +00:00
|
|
|
{
|
2022-02-23 12:02:12 +00:00
|
|
|
latch_tree_insert(&node->node, &tree->root, &mod_tree_ops);
|
2022-03-22 14:03:35 +00:00
|
|
|
}
|
|
|
|
|
2022-02-23 12:02:12 +00:00
|
|
|
static void __mod_tree_remove(struct mod_tree_node *node, struct mod_tree_root *tree)
|
2022-03-22 14:03:35 +00:00
|
|
|
{
|
2022-02-23 12:02:12 +00:00
|
|
|
latch_tree_erase(&node->node, &tree->root, &mod_tree_ops);
|
2022-03-22 14:03:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These modifications: insert, remove_init and remove; are serialized by the
|
|
|
|
* module_mutex.
|
|
|
|
*/
|
|
|
|
void mod_tree_insert(struct module *mod)
|
|
|
|
{
|
module: replace module_layout with module_memory
module_layout manages different types of memory (text, data, rodata, etc.)
in one allocation, which is problematic for some reasons:
1. It is hard to enable CONFIG_STRICT_MODULE_RWX.
2. It is hard to use huge pages in modules (and not break strict rwx).
3. Many archs uses module_layout for arch-specific data, but it is not
obvious how these data are used (are they RO, RX, or RW?)
Improve the scenario by replacing 2 (or 3) module_layout per module with
up to 7 module_memory per module:
MOD_TEXT,
MOD_DATA,
MOD_RODATA,
MOD_RO_AFTER_INIT,
MOD_INIT_TEXT,
MOD_INIT_DATA,
MOD_INIT_RODATA,
and allocating them separately. This adds slightly more entries to
mod_tree (from up to 3 entries per module, to up to 7 entries per
module). However, this at most adds a small constant overhead to
__module_address(), which is expected to be fast.
Various archs use module_layout for different data. These data are put
into different module_memory based on their location in module_layout.
IOW, data that used to go with text is allocated with MOD_MEM_TYPE_TEXT;
data that used to go with data is allocated with MOD_MEM_TYPE_DATA, etc.
module_memory simplifies quite some of the module code. For example,
ARCH_WANTS_MODULES_DATA_IN_VMALLOC is a lot cleaner, as it just uses a
different allocator for the data. kernel/module/strict_rwx.c is also
much cleaner with module_memory.
Signed-off-by: Song Liu <song@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-02-07 00:28:02 +00:00
|
|
|
for_each_mod_mem_type(type) {
|
|
|
|
mod->mem[type].mtn.mod = mod;
|
|
|
|
if (mod->mem[type].size)
|
|
|
|
__mod_tree_insert(&mod->mem[type].mtn, &mod_tree);
|
|
|
|
}
|
2022-03-22 14:03:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void mod_tree_remove_init(struct module *mod)
|
|
|
|
{
|
module: replace module_layout with module_memory
module_layout manages different types of memory (text, data, rodata, etc.)
in one allocation, which is problematic for some reasons:
1. It is hard to enable CONFIG_STRICT_MODULE_RWX.
2. It is hard to use huge pages in modules (and not break strict rwx).
3. Many archs uses module_layout for arch-specific data, but it is not
obvious how these data are used (are they RO, RX, or RW?)
Improve the scenario by replacing 2 (or 3) module_layout per module with
up to 7 module_memory per module:
MOD_TEXT,
MOD_DATA,
MOD_RODATA,
MOD_RO_AFTER_INIT,
MOD_INIT_TEXT,
MOD_INIT_DATA,
MOD_INIT_RODATA,
and allocating them separately. This adds slightly more entries to
mod_tree (from up to 3 entries per module, to up to 7 entries per
module). However, this at most adds a small constant overhead to
__module_address(), which is expected to be fast.
Various archs use module_layout for different data. These data are put
into different module_memory based on their location in module_layout.
IOW, data that used to go with text is allocated with MOD_MEM_TYPE_TEXT;
data that used to go with data is allocated with MOD_MEM_TYPE_DATA, etc.
module_memory simplifies quite some of the module code. For example,
ARCH_WANTS_MODULES_DATA_IN_VMALLOC is a lot cleaner, as it just uses a
different allocator for the data. kernel/module/strict_rwx.c is also
much cleaner with module_memory.
Signed-off-by: Song Liu <song@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-02-07 00:28:02 +00:00
|
|
|
for_class_mod_mem_type(type, init) {
|
|
|
|
if (mod->mem[type].size)
|
|
|
|
__mod_tree_remove(&mod->mem[type].mtn, &mod_tree);
|
|
|
|
}
|
2022-03-22 14:03:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void mod_tree_remove(struct module *mod)
|
|
|
|
{
|
module: replace module_layout with module_memory
module_layout manages different types of memory (text, data, rodata, etc.)
in one allocation, which is problematic for some reasons:
1. It is hard to enable CONFIG_STRICT_MODULE_RWX.
2. It is hard to use huge pages in modules (and not break strict rwx).
3. Many archs uses module_layout for arch-specific data, but it is not
obvious how these data are used (are they RO, RX, or RW?)
Improve the scenario by replacing 2 (or 3) module_layout per module with
up to 7 module_memory per module:
MOD_TEXT,
MOD_DATA,
MOD_RODATA,
MOD_RO_AFTER_INIT,
MOD_INIT_TEXT,
MOD_INIT_DATA,
MOD_INIT_RODATA,
and allocating them separately. This adds slightly more entries to
mod_tree (from up to 3 entries per module, to up to 7 entries per
module). However, this at most adds a small constant overhead to
__module_address(), which is expected to be fast.
Various archs use module_layout for different data. These data are put
into different module_memory based on their location in module_layout.
IOW, data that used to go with text is allocated with MOD_MEM_TYPE_TEXT;
data that used to go with data is allocated with MOD_MEM_TYPE_DATA, etc.
module_memory simplifies quite some of the module code. For example,
ARCH_WANTS_MODULES_DATA_IN_VMALLOC is a lot cleaner, as it just uses a
different allocator for the data. kernel/module/strict_rwx.c is also
much cleaner with module_memory.
Signed-off-by: Song Liu <song@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-02-07 00:28:02 +00:00
|
|
|
for_each_mod_mem_type(type) {
|
|
|
|
if (mod->mem[type].size)
|
|
|
|
__mod_tree_remove(&mod->mem[type].mtn, &mod_tree);
|
|
|
|
}
|
2022-03-22 14:03:35 +00:00
|
|
|
}
|
|
|
|
|
2022-02-23 12:02:12 +00:00
|
|
|
struct module *mod_find(unsigned long addr, struct mod_tree_root *tree)
|
2022-03-22 14:03:35 +00:00
|
|
|
{
|
|
|
|
struct latch_tree_node *ltn;
|
|
|
|
|
2022-02-23 12:02:12 +00:00
|
|
|
ltn = latch_tree_find((void *)addr, &tree->root, &mod_tree_ops);
|
2022-03-22 14:03:35 +00:00
|
|
|
if (!ltn)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return container_of(ltn, struct mod_tree_node, node)->mod;
|
|
|
|
}
|