440 lines
12 KiB
C
Raw Normal View History

/*
* mtip32xx.h - Header file for the P320 SSD Block Driver
* Copyright (C) 2011 Micron Technology, Inc.
*
* Portions of this code were derived from works subjected to the
* following copyright:
* Copyright (C) 2009 Integrated Device Technology, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef __MTIP32XX_H__
#define __MTIP32XX_H__
#include <linux/spinlock.h>
#include <linux/rwsem.h>
#include <linux/ata.h>
#include <linux/interrupt.h>
#include <linux/genhd.h>
#include <linux/version.h>
/* Offset of Subsystem Device ID in pci confoguration space */
#define PCI_SUBSYSTEM_DEVICEID 0x2E
/* offset of Device Control register in PCIe extended capabilites space */
#define PCIE_CONFIG_EXT_DEVICE_CONTROL_OFFSET 0x48
/* # of times to retry timed out IOs */
#define MTIP_MAX_RETRIES 5
/* Various timeout values in ms */
#define MTIP_NCQ_COMMAND_TIMEOUT_MS 5000
#define MTIP_IOCTL_COMMAND_TIMEOUT_MS 5000
#define MTIP_INTERNAL_COMMAND_TIMEOUT_MS 5000
/* check for timeouts every 500ms */
#define MTIP_TIMEOUT_CHECK_PERIOD 500
/* ftl rebuild */
#define MTIP_FTL_REBUILD_OFFSET 142
#define MTIP_FTL_REBUILD_MAGIC 0xED51
#define MTIP_FTL_REBUILD_TIMEOUT_MS 2400000
/* Macro to extract the tag bit number from a tag value. */
#define MTIP_TAG_BIT(tag) (tag & 0x1F)
/*
* Macro to extract the tag index from a tag value. The index
* is used to access the correct s_active/Command Issue register based
* on the tag value.
*/
#define MTIP_TAG_INDEX(tag) (tag >> 5)
/*
* Maximum number of scatter gather entries
* a single command may have.
*/
#define MTIP_MAX_SG 128
/*
* Maximum number of slot groups (Command Issue & s_active registers)
* NOTE: This is the driver maximum; check dd->slot_groups for actual value.
*/
#define MTIP_MAX_SLOT_GROUPS 8
/* Internal command tag. */
#define MTIP_TAG_INTERNAL 0
/* Micron Vendor ID & P320x SSD Device ID */
#define PCI_VENDOR_ID_MICRON 0x1344
#define P320_DEVICE_ID 0x5150
/* Driver name and version strings */
#define MTIP_DRV_NAME "mtip32xx"
#define MTIP_DRV_VERSION "1.2.6os3"
/* Maximum number of minor device numbers per device. */
#define MTIP_MAX_MINORS 16
/* Maximum number of supported command slots. */
#define MTIP_MAX_COMMAND_SLOTS (MTIP_MAX_SLOT_GROUPS * 32)
/*
* Per-tag bitfield size in longs.
* Linux bit manipulation functions
* (i.e. test_and_set_bit, find_next_zero_bit)
* manipulate memory in longs, so we try to make the math work.
* take the slot groups and find the number of longs, rounding up.
* Careful! i386 and x86_64 use different size longs!
*/
#define U32_PER_LONG (sizeof(long) / sizeof(u32))
#define SLOTBITS_IN_LONGS ((MTIP_MAX_SLOT_GROUPS + \
(U32_PER_LONG-1))/U32_PER_LONG)
/* BAR number used to access the HBA registers. */
#define MTIP_ABAR 5
#ifdef DEBUG
#define dbg_printk(format, arg...) \
printk(pr_fmt(format), ##arg);
#else
#define dbg_printk(format, arg...)
#endif
#define __force_bit2int (unsigned int __force)
/* below are bit numbers in 'flags' defined in mtip_port */
#define MTIP_PF_IC_ACTIVE_BIT 0
#define MTIP_PF_EH_ACTIVE_BIT 1
#define MTIP_PF_SVC_THD_ACTIVE_BIT 2
#define MTIP_PF_ISSUE_CMDS_BIT 4
#define MTIP_PF_REBUILD_BIT 5
#define MTIP_PF_SVC_THD_SHOULD_STOP_BIT 8
/* below are bit numbers in 'dd_flag' defined in driver_data */
#define MTIP_DDF_REMOVE_PENDING_BIT 1
#define MTIP_DDF_RESUME_BIT 2
#define MTIP_DDF_CLEANUP_BIT 3
#define MTIP_DDF_INIT_DONE_BIT 4
#define MTIP_DDF_WRITE_PROTECT_BIT 5
#define MTIP_DDF_OVER_TEMP_BIT 6
#define MTIP_DDF_REBUILD_FAILED_BIT 7
__packed struct smart_attr{
u8 attr_id;
u16 flags;
u8 cur;
u8 worst;
u32 data;
u8 res[3];
};
/* Register Frame Information Structure (FIS), host to device. */
struct host_to_dev_fis {
/*
* FIS type.
* - 27h Register FIS, host to device.
* - 34h Register FIS, device to host.
* - 39h DMA Activate FIS, device to host.
* - 41h DMA Setup FIS, bi-directional.
* - 46h Data FIS, bi-directional.
* - 58h BIST Activate FIS, bi-directional.
* - 5Fh PIO Setup FIS, device to host.
* - A1h Set Device Bits FIS, device to host.
*/
unsigned char type;
unsigned char opts;
unsigned char command;
unsigned char features;
union {
unsigned char lba_low;
unsigned char sector;
};
union {
unsigned char lba_mid;
unsigned char cyl_low;
};
union {
unsigned char lba_hi;
unsigned char cyl_hi;
};
union {
unsigned char device;
unsigned char head;
};
union {
unsigned char lba_low_ex;
unsigned char sector_ex;
};
union {
unsigned char lba_mid_ex;
unsigned char cyl_low_ex;
};
union {
unsigned char lba_hi_ex;
unsigned char cyl_hi_ex;
};
unsigned char features_ex;
unsigned char sect_count;
unsigned char sect_cnt_ex;
unsigned char res2;
unsigned char control;
unsigned int res3;
};
/* Command header structure. */
struct mtip_cmd_hdr {
/*
* Command options.
* - Bits 31:16 Number of PRD entries.
* - Bits 15:8 Unused in this implementation.
* - Bit 7 Prefetch bit, informs the drive to prefetch PRD entries.
* - Bit 6 Write bit, should be set when writing data to the device.
* - Bit 5 Unused in this implementation.
* - Bits 4:0 Length of the command FIS in DWords (DWord = 4 bytes).
*/
unsigned int opts;
/* This field is unsed when using NCQ. */
union {
unsigned int byte_count;
unsigned int status;
};
/*
* Lower 32 bits of the command table address associated with this
* header. The command table addresses must be 128 byte aligned.
*/
unsigned int ctba;
/*
* If 64 bit addressing is used this field is the upper 32 bits
* of the command table address associated with this command.
*/
unsigned int ctbau;
/* Reserved and unused. */
unsigned int res[4];
};
/* Command scatter gather structure (PRD). */
struct mtip_cmd_sg {
/*
* Low 32 bits of the data buffer address. For P320 this
* address must be 8 byte aligned signified by bits 2:0 being
* set to 0.
*/
unsigned int dba;
/*
* When 64 bit addressing is used this field is the upper
* 32 bits of the data buffer address.
*/
unsigned int dba_upper;
/* Unused. */
unsigned int reserved;
/*
* Bit 31: interrupt when this data block has been transferred.
* Bits 30..22: reserved
* Bits 21..0: byte count (minus 1). For P320 the byte count must be
* 8 byte aligned signified by bits 2:0 being set to 1.
*/
unsigned int info;
};
struct mtip_port;
/* Structure used to describe a command. */
struct mtip_cmd {
struct mtip_cmd_hdr *command_header; /* ptr to command header entry */
dma_addr_t command_header_dma; /* corresponding physical address */
void *command; /* ptr to command table entry */
dma_addr_t command_dma; /* corresponding physical address */
void *comp_data; /* data passed to completion function comp_func() */
/*
* Completion function called by the ISR upon completion of
* a command.
*/
void (*comp_func)(struct mtip_port *port,
int tag,
void *data,
int status);
/* Additional callback function that may be called by comp_func() */
void (*async_callback)(void *data, int status);
void *async_data; /* Addl. data passed to async_callback() */
int scatter_ents; /* Number of scatter list entries used */
struct scatterlist sg[MTIP_MAX_SG]; /* Scatter list entries */
int retries; /* The number of retries left for this command. */
int direction; /* Data transfer direction */
unsigned long comp_time; /* command completion time, in jiffies */
atomic_t active; /* declares if this command sent to the drive. */
};
/* Structure used to describe a port. */
struct mtip_port {
/* Pointer back to the driver data for this port. */
struct driver_data *dd;
/*
* Used to determine if the data pointed to by the
* identify field is valid.
*/
unsigned long identify_valid;
/* Base address of the memory mapped IO for the port. */
void __iomem *mmio;
/* Array of pointers to the memory mapped s_active registers. */
void __iomem *s_active[MTIP_MAX_SLOT_GROUPS];
/* Array of pointers to the memory mapped completed registers. */
void __iomem *completed[MTIP_MAX_SLOT_GROUPS];
/* Array of pointers to the memory mapped Command Issue registers. */
void __iomem *cmd_issue[MTIP_MAX_SLOT_GROUPS];
/*
* Pointer to the beginning of the command header memory as used
* by the driver.
*/
void *command_list;
/*
* Pointer to the beginning of the command header memory as used
* by the DMA.
*/
dma_addr_t command_list_dma;
/*
* Pointer to the beginning of the RX FIS memory as used
* by the driver.
*/
void *rxfis;
/*
* Pointer to the beginning of the RX FIS memory as used
* by the DMA.
*/
dma_addr_t rxfis_dma;
/*
* Pointer to the beginning of the command table memory as used
* by the driver.
*/
void *command_table;
/*
* Pointer to the beginning of the command table memory as used
* by the DMA.
*/
dma_addr_t command_tbl_dma;
/*
* Pointer to the beginning of the identify data memory as used
* by the driver.
*/
u16 *identify;
/*
* Pointer to the beginning of the identify data memory as used
* by the DMA.
*/
dma_addr_t identify_dma;
/*
* Pointer to the beginning of a sector buffer that is used
* by the driver when issuing internal commands.
*/
u16 *sector_buffer;
/*
* Pointer to the beginning of a sector buffer that is used
* by the DMA when the driver issues internal commands.
*/
dma_addr_t sector_buffer_dma;
/*
* Bit significant, used to determine if a command slot has
* been allocated. i.e. the slot is in use. Bits are cleared
* when the command slot and all associated data structures
* are no longer needed.
*/
u16 *log_buf;
dma_addr_t log_buf_dma;
u8 *smart_buf;
dma_addr_t smart_buf_dma;
unsigned long allocated[SLOTBITS_IN_LONGS];
/*
* used to queue commands when an internal command is in progress
* or error handling is active
*/
unsigned long cmds_to_issue[SLOTBITS_IN_LONGS];
/*
* Array of command slots. Structure includes pointers to the
* command header and command table, and completion function and data
* pointers.
*/
struct mtip_cmd commands[MTIP_MAX_COMMAND_SLOTS];
/* Used by mtip_service_thread to wait for an event */
wait_queue_head_t svc_wait;
/*
* indicates the state of the port. Also, helps the service thread
* to determine its action on wake up.
*/
unsigned long flags;
/*
* Timer used to complete commands that have been active for too long.
*/
struct timer_list cmd_timer;
/*
* Semaphore used to block threads if there are no
* command slots available.
*/
struct semaphore cmd_slot;
/* Spinlock for working around command-issue bug. */
spinlock_t cmd_issue_lock;
};
/*
* Driver private data structure.
*
* One structure is allocated per probed device.
*/
struct driver_data {
void __iomem *mmio; /* Base address of the HBA registers. */
int major; /* Major device number. */
int instance; /* Instance number. First device probed is 0, ... */
struct gendisk *disk; /* Pointer to our gendisk structure. */
struct pci_dev *pdev; /* Pointer to the PCI device structure. */
struct request_queue *queue; /* Our request queue. */
struct mtip_port *port; /* Pointer to the port data structure. */
/* Tasklet used to process the bottom half of the ISR. */
struct tasklet_struct tasklet;
unsigned product_type; /* magic value declaring the product type */
unsigned slot_groups; /* number of slot groups the product supports */
unsigned long index; /* Index to determine the disk name */
unsigned long dd_flag; /* NOTE: use atomic bit operations on this */
struct task_struct *mtip_svc_handler; /* task_struct of svc thd */
};
#endif