linux-stable/init/Kconfig

2356 lines
75 KiB
Plaintext
Raw Normal View History

# SPDX-License-Identifier: GPL-2.0-only
config DEFCONFIG_LIST
string
[PATCH] uml: use DEFCONFIG_LIST to avoid reading host's config This should make sure that, for UML, host's configuration files are not considered, which avoids various pains to the user. Our dependency are such that the obtained Kconfig will be valid and will lead to successful compilation - however they cannot prevent an user from disabling any boot device, and if an option is not set in the read .config (say /boot/config-XXX), with make menuconfig ARCH=um, it is not set. This always disables UBD and all console I/O channels, which leads to non-working UML kernels, so this bothers users - especially now, since it will happen on almost every machine (/boot/config-`uname -r` exists almost on every machine). It can be workarounded with make defconfig ARCH=um, but it is non-obvious and can be avoided, so please _do_ merge this patch. Given the existence of options, it could be interesting to implement (additionally) "option required" - with it, Kconfig will refuse reading a .config file (from wherever it comes) if the given option is not set. With this, one could mark with it the option characteristic of the given architecture (it was an old proposal of Roman Zippel, when I pointed out our problem): config UML option required default y However this should be further discussed: *) for x86, it must support constructs like: ==arch/i386/Kconfig== config 64BIT option required default n where Kconfig must require that CONFIG_64BIT is disabled or not present in the read .config. *) do we want to do such checks only for the starting defconfig or also for .config? Which leads to: *) I may want to port a x86_64 .config to x86 and viceversa, or even among more different archs. Should that be allowed, and in which measure (the user may force skipping the check for a .config or it is only given a warning by default)? Cc: Roman Zippel <zippel@linux-m68k.org> Cc: <kbuild-devel@lists.sourceforge.net> Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-20 06:28:23 +00:00
depends on !UML
option defconfig_list
default "/lib/modules/$(shell,uname -r)/.config"
default "/etc/kernel-config"
default "/boot/config-$(shell,uname -r)"
kbuild: use KBUILD_DEFCONFIG as the fallback for DEFCONFIG_LIST Most of the Kconfig commands (except defconfig and all*config) read the .config file as a base set of CONFIG options. When it does not exist, the files in DEFCONFIG_LIST are searched in this order and loaded if found. I do not see much sense in the last two lines in DEFCONFIG_LIST. [1] ARCH_DEFCONFIG The entry for DEFCONFIG_LIST is guarded by 'depends on !UML'. So, the ARCH_DEFCONFIG definition in arch/x86/um/Kconfig is meaningless. arch/{sh,sparc,x86}/Kconfig define ARCH_DEFCONFIG depending on 32 or 64 bit variant symbols. This is a little bit strange; ARCH_DEFCONFIG should be a fixed string because the base config file is loaded before the symbol evaluation stage. Using KBUILD_DEFCONFIG makes more sense because it is fixed before Kconfig is invoked. Fortunately, arch/{sh,sparc,x86}/Makefile define it in the same way, and it works as expected. Hence, replace ARCH_DEFCONFIG with "arch/$(SRCARCH)/configs/$(KBUILD_DEFCONFIG)". [2] arch/$(ARCH)/defconfig This file path is no longer valid. The defconfig files are always located in the arch configs/ directories. $ find arch -name defconfig | sort arch/alpha/configs/defconfig arch/arm64/configs/defconfig arch/csky/configs/defconfig arch/nds32/configs/defconfig arch/riscv/configs/defconfig arch/s390/configs/defconfig arch/unicore32/configs/defconfig The path arch/*/configs/defconfig is already covered by "arch/$(SRCARCH)/configs/$(KBUILD_DEFCONFIG)". So, this file path is not necessary. I moved the default KBUILD_DEFCONFIG to the top Makefile. Otherwise, the 7 architectures listed above would end up with endless loop of syncconfig. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2020-02-28 03:46:40 +00:00
default "arch/$(SRCARCH)/configs/$(KBUILD_DEFCONFIG)"
config CC_VERSION_TEXT
string
default "$(CC_VERSION_TEXT)"
help
This is used in unclear ways:
- Re-run Kconfig when the compiler is updated
The 'default' property references the environment variable,
CC_VERSION_TEXT so it is recorded in include/config/auto.conf.cmd.
When the compiler is updated, Kconfig will be invoked.
- Ensure full rebuild when the compiler is updated
include/linux/compiler-version.h contains this option in the comment
line so fixdep adds include/config/cc/version/text.h into the
auto-generated dependency. When the compiler is updated, syncconfig
will touch it and then every file will be rebuilt.
config CC_IS_GCC
kbuild: check the minimum compiler version in Kconfig Paul Gortmaker reported a regression in the GCC version check. [1] If you use GCC 4.8, the build breaks before showing the error message "error Sorry, your version of GCC is too old - please use 4.9 or newer." I do not want to apply his fix-up since it implies we would not be able to remove any cc-option test. Anyway, I admit checking the GCC version in <linux/compiler-gcc.h> is too late. Almost at the same time, Linus also suggested to move the compiler version error to Kconfig time. [2] I unified the two similar scripts, gcc-version.sh and clang-version.sh into cc-version.sh. The old scripts invoked the compiler multiple times (3 times for gcc-version.sh, 4 times for clang-version.sh). I refactored the code so the new one invokes the compiler just once, and also tried my best to use shell-builtin commands where possible. The new script runs faster. $ time ./scripts/clang-version.sh clang 120000 real 0m0.029s user 0m0.012s sys 0m0.021s $ time ./scripts/cc-version.sh clang Clang 120000 real 0m0.009s user 0m0.006s sys 0m0.004s cc-version.sh also shows an error message if the compiler is too old: $ make defconfig CC=clang-9 *** Default configuration is based on 'x86_64_defconfig' *** *** Compiler is too old. *** Your Clang version: 9.0.1 *** Minimum Clang version: 10.0.1 *** scripts/Kconfig.include:46: Sorry, this compiler is not supported. make[1]: *** [scripts/kconfig/Makefile:81: defconfig] Error 1 make: *** [Makefile:602: defconfig] Error 2 The new script takes care of ICC because we have <linux/compiler-intel.h> although I am not sure if building the kernel with ICC is well-supported. [1]: https://lore.kernel.org/r/20210110190807.134996-1-paul.gortmaker@windriver.com [2]: https://lore.kernel.org/r/CAHk-=wh-+TMHPTFo1qs-MYyK7tZh-OQovA=pP3=e06aCVp6_kA@mail.gmail.com Fixes: 87de84c9140e ("kbuild: remove cc-option test of -Werror=date-time") Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Nathan Chancellor <natechancellor@gmail.com> Tested-by: Nathan Chancellor <natechancellor@gmail.com> Reviewed-by: Miguel Ojeda <ojeda@kernel.org> Tested-by: Miguel Ojeda <ojeda@kernel.org> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2021-01-15 23:35:42 +00:00
def_bool $(success,test "$(cc-name)" = GCC)
config GCC_VERSION
int
kbuild: check the minimum compiler version in Kconfig Paul Gortmaker reported a regression in the GCC version check. [1] If you use GCC 4.8, the build breaks before showing the error message "error Sorry, your version of GCC is too old - please use 4.9 or newer." I do not want to apply his fix-up since it implies we would not be able to remove any cc-option test. Anyway, I admit checking the GCC version in <linux/compiler-gcc.h> is too late. Almost at the same time, Linus also suggested to move the compiler version error to Kconfig time. [2] I unified the two similar scripts, gcc-version.sh and clang-version.sh into cc-version.sh. The old scripts invoked the compiler multiple times (3 times for gcc-version.sh, 4 times for clang-version.sh). I refactored the code so the new one invokes the compiler just once, and also tried my best to use shell-builtin commands where possible. The new script runs faster. $ time ./scripts/clang-version.sh clang 120000 real 0m0.029s user 0m0.012s sys 0m0.021s $ time ./scripts/cc-version.sh clang Clang 120000 real 0m0.009s user 0m0.006s sys 0m0.004s cc-version.sh also shows an error message if the compiler is too old: $ make defconfig CC=clang-9 *** Default configuration is based on 'x86_64_defconfig' *** *** Compiler is too old. *** Your Clang version: 9.0.1 *** Minimum Clang version: 10.0.1 *** scripts/Kconfig.include:46: Sorry, this compiler is not supported. make[1]: *** [scripts/kconfig/Makefile:81: defconfig] Error 1 make: *** [Makefile:602: defconfig] Error 2 The new script takes care of ICC because we have <linux/compiler-intel.h> although I am not sure if building the kernel with ICC is well-supported. [1]: https://lore.kernel.org/r/20210110190807.134996-1-paul.gortmaker@windriver.com [2]: https://lore.kernel.org/r/CAHk-=wh-+TMHPTFo1qs-MYyK7tZh-OQovA=pP3=e06aCVp6_kA@mail.gmail.com Fixes: 87de84c9140e ("kbuild: remove cc-option test of -Werror=date-time") Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Nathan Chancellor <natechancellor@gmail.com> Tested-by: Nathan Chancellor <natechancellor@gmail.com> Reviewed-by: Miguel Ojeda <ojeda@kernel.org> Tested-by: Miguel Ojeda <ojeda@kernel.org> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2021-01-15 23:35:42 +00:00
default $(cc-version) if CC_IS_GCC
default 0
config CC_IS_CLANG
kbuild: check the minimum compiler version in Kconfig Paul Gortmaker reported a regression in the GCC version check. [1] If you use GCC 4.8, the build breaks before showing the error message "error Sorry, your version of GCC is too old - please use 4.9 or newer." I do not want to apply his fix-up since it implies we would not be able to remove any cc-option test. Anyway, I admit checking the GCC version in <linux/compiler-gcc.h> is too late. Almost at the same time, Linus also suggested to move the compiler version error to Kconfig time. [2] I unified the two similar scripts, gcc-version.sh and clang-version.sh into cc-version.sh. The old scripts invoked the compiler multiple times (3 times for gcc-version.sh, 4 times for clang-version.sh). I refactored the code so the new one invokes the compiler just once, and also tried my best to use shell-builtin commands where possible. The new script runs faster. $ time ./scripts/clang-version.sh clang 120000 real 0m0.029s user 0m0.012s sys 0m0.021s $ time ./scripts/cc-version.sh clang Clang 120000 real 0m0.009s user 0m0.006s sys 0m0.004s cc-version.sh also shows an error message if the compiler is too old: $ make defconfig CC=clang-9 *** Default configuration is based on 'x86_64_defconfig' *** *** Compiler is too old. *** Your Clang version: 9.0.1 *** Minimum Clang version: 10.0.1 *** scripts/Kconfig.include:46: Sorry, this compiler is not supported. make[1]: *** [scripts/kconfig/Makefile:81: defconfig] Error 1 make: *** [Makefile:602: defconfig] Error 2 The new script takes care of ICC because we have <linux/compiler-intel.h> although I am not sure if building the kernel with ICC is well-supported. [1]: https://lore.kernel.org/r/20210110190807.134996-1-paul.gortmaker@windriver.com [2]: https://lore.kernel.org/r/CAHk-=wh-+TMHPTFo1qs-MYyK7tZh-OQovA=pP3=e06aCVp6_kA@mail.gmail.com Fixes: 87de84c9140e ("kbuild: remove cc-option test of -Werror=date-time") Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Nathan Chancellor <natechancellor@gmail.com> Tested-by: Nathan Chancellor <natechancellor@gmail.com> Reviewed-by: Miguel Ojeda <ojeda@kernel.org> Tested-by: Miguel Ojeda <ojeda@kernel.org> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2021-01-15 23:35:42 +00:00
def_bool $(success,test "$(cc-name)" = Clang)
config CLANG_VERSION
int
kbuild: check the minimum compiler version in Kconfig Paul Gortmaker reported a regression in the GCC version check. [1] If you use GCC 4.8, the build breaks before showing the error message "error Sorry, your version of GCC is too old - please use 4.9 or newer." I do not want to apply his fix-up since it implies we would not be able to remove any cc-option test. Anyway, I admit checking the GCC version in <linux/compiler-gcc.h> is too late. Almost at the same time, Linus also suggested to move the compiler version error to Kconfig time. [2] I unified the two similar scripts, gcc-version.sh and clang-version.sh into cc-version.sh. The old scripts invoked the compiler multiple times (3 times for gcc-version.sh, 4 times for clang-version.sh). I refactored the code so the new one invokes the compiler just once, and also tried my best to use shell-builtin commands where possible. The new script runs faster. $ time ./scripts/clang-version.sh clang 120000 real 0m0.029s user 0m0.012s sys 0m0.021s $ time ./scripts/cc-version.sh clang Clang 120000 real 0m0.009s user 0m0.006s sys 0m0.004s cc-version.sh also shows an error message if the compiler is too old: $ make defconfig CC=clang-9 *** Default configuration is based on 'x86_64_defconfig' *** *** Compiler is too old. *** Your Clang version: 9.0.1 *** Minimum Clang version: 10.0.1 *** scripts/Kconfig.include:46: Sorry, this compiler is not supported. make[1]: *** [scripts/kconfig/Makefile:81: defconfig] Error 1 make: *** [Makefile:602: defconfig] Error 2 The new script takes care of ICC because we have <linux/compiler-intel.h> although I am not sure if building the kernel with ICC is well-supported. [1]: https://lore.kernel.org/r/20210110190807.134996-1-paul.gortmaker@windriver.com [2]: https://lore.kernel.org/r/CAHk-=wh-+TMHPTFo1qs-MYyK7tZh-OQovA=pP3=e06aCVp6_kA@mail.gmail.com Fixes: 87de84c9140e ("kbuild: remove cc-option test of -Werror=date-time") Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Nathan Chancellor <natechancellor@gmail.com> Tested-by: Nathan Chancellor <natechancellor@gmail.com> Reviewed-by: Miguel Ojeda <ojeda@kernel.org> Tested-by: Miguel Ojeda <ojeda@kernel.org> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2021-01-15 23:35:42 +00:00
default $(cc-version) if CC_IS_CLANG
default 0
kbuild: check the minimum assembler version in Kconfig Documentation/process/changes.rst defines the minimum assembler version (binutils version), but we have never checked it in the build time. Kbuild never invokes 'as' directly because all assembly files in the kernel tree are *.S, hence must be preprocessed. I do not expect raw assembly source files (*.s) would be added to the kernel tree. Therefore, we always use $(CC) as the assembler driver, and commit aa824e0c962b ("kbuild: remove AS variable") removed 'AS'. However, we are still interested in the version of the assembler acting behind. As usual, the --version option prints the version string. $ as --version | head -n 1 GNU assembler (GNU Binutils for Ubuntu) 2.35.1 But, we do not have $(AS). So, we can add the -Wa prefix so that $(CC) passes --version down to the backing assembler. $ gcc -Wa,--version | head -n 1 gcc: fatal error: no input files compilation terminated. OK, we need to input something to satisfy gcc. $ gcc -Wa,--version -c -x assembler /dev/null -o /dev/null | head -n 1 GNU assembler (GNU Binutils for Ubuntu) 2.35.1 The combination of Clang and GNU assembler works in the same way: $ clang -no-integrated-as -Wa,--version -c -x assembler /dev/null -o /dev/null | head -n 1 GNU assembler (GNU Binutils for Ubuntu) 2.35.1 Clang with the integrated assembler fails like this: $ clang -integrated-as -Wa,--version -c -x assembler /dev/null -o /dev/null | head -n 1 clang: error: unsupported argument '--version' to option 'Wa,' For the last case, checking the error message is fragile. If the proposal for -Wa,--version support [1] is accepted, this may not be even an error in the future. One easy way is to check if -integrated-as is present in the passed arguments. We did not pass -integrated-as to CLANG_FLAGS before, but we can make it explicit. Nathan pointed out -integrated-as is the default for all of the architectures/targets that the kernel cares about, but it goes along with "explicit is better than implicit" policy. [2] With all this in my mind, I implemented scripts/as-version.sh to check the assembler version in Kconfig time. $ scripts/as-version.sh gcc GNU 23501 $ scripts/as-version.sh clang -no-integrated-as GNU 23501 $ scripts/as-version.sh clang -integrated-as LLVM 0 [1]: https://github.com/ClangBuiltLinux/linux/issues/1320 [2]: https://lore.kernel.org/linux-kbuild/20210307044253.v3h47ucq6ng25iay@archlinux-ax161/ Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nathan Chancellor <nathan@kernel.org>
2021-03-15 16:12:56 +00:00
config AS_IS_GNU
def_bool $(success,test "$(as-name)" = GNU)
config AS_IS_LLVM
def_bool $(success,test "$(as-name)" = LLVM)
config AS_VERSION
int
# Use clang version if this is the integrated assembler
default CLANG_VERSION if AS_IS_LLVM
default $(as-version)
kbuild: check the minimum linker version in Kconfig Unify the two scripts/ld-version.sh and scripts/lld-version.sh, and check the minimum linker version like scripts/cc-version.sh did. I tested this script for some corner cases reported in the past: - GNU ld version 2.25-15.fc23 as reported by commit 8083013fc320 ("ld-version: Fix it on Fedora") - GNU ld (GNU Binutils) 2.20.1.20100303 as reported by commit 0d61ed17dd30 ("ld-version: Drop the 4th and 5th version components") This script show an error message if the linker is too old: $ make LD=ld.lld-9 SYNC include/config/auto.conf *** *** Linker is too old. *** Your LLD version: 9.0.1 *** Minimum LLD version: 10.0.1 *** scripts/Kconfig.include:50: Sorry, this linker is not supported. make[2]: *** [scripts/kconfig/Makefile:71: syncconfig] Error 1 make[1]: *** [Makefile:600: syncconfig] Error 2 make: *** [Makefile:708: include/config/auto.conf] Error 2 I also moved the check for gold to this script, so gold is still rejected: $ make LD=gold SYNC include/config/auto.conf gold linker is not supported as it is not capable of linking the kernel proper. scripts/Kconfig.include:50: Sorry, this linker is not supported. make[2]: *** [scripts/kconfig/Makefile:71: syncconfig] Error 1 make[1]: *** [Makefile:600: syncconfig] Error 2 make: *** [Makefile:708: include/config/auto.conf] Error 2 Thanks to David Laight for suggesting shell script improvements. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Acked-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Nathan Chancellor <nathan@kernel.org> Tested-by: Nathan Chancellor <nathan@kernel.org>
2021-02-16 03:10:04 +00:00
config LD_IS_BFD
def_bool $(success,test "$(ld-name)" = BFD)
config LD_VERSION
int
default $(ld-version) if LD_IS_BFD
default 0
config LD_IS_LLD
def_bool $(success,test "$(ld-name)" = LLD)
config LLD_VERSION
int
kbuild: check the minimum linker version in Kconfig Unify the two scripts/ld-version.sh and scripts/lld-version.sh, and check the minimum linker version like scripts/cc-version.sh did. I tested this script for some corner cases reported in the past: - GNU ld version 2.25-15.fc23 as reported by commit 8083013fc320 ("ld-version: Fix it on Fedora") - GNU ld (GNU Binutils) 2.20.1.20100303 as reported by commit 0d61ed17dd30 ("ld-version: Drop the 4th and 5th version components") This script show an error message if the linker is too old: $ make LD=ld.lld-9 SYNC include/config/auto.conf *** *** Linker is too old. *** Your LLD version: 9.0.1 *** Minimum LLD version: 10.0.1 *** scripts/Kconfig.include:50: Sorry, this linker is not supported. make[2]: *** [scripts/kconfig/Makefile:71: syncconfig] Error 1 make[1]: *** [Makefile:600: syncconfig] Error 2 make: *** [Makefile:708: include/config/auto.conf] Error 2 I also moved the check for gold to this script, so gold is still rejected: $ make LD=gold SYNC include/config/auto.conf gold linker is not supported as it is not capable of linking the kernel proper. scripts/Kconfig.include:50: Sorry, this linker is not supported. make[2]: *** [scripts/kconfig/Makefile:71: syncconfig] Error 1 make[1]: *** [Makefile:600: syncconfig] Error 2 make: *** [Makefile:708: include/config/auto.conf] Error 2 Thanks to David Laight for suggesting shell script improvements. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Acked-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Nathan Chancellor <nathan@kernel.org> Tested-by: Nathan Chancellor <nathan@kernel.org>
2021-02-16 03:10:04 +00:00
default $(ld-version) if LD_IS_LLD
default 0
config CC_CAN_LINK
bool
default $(success,$(srctree)/scripts/cc-can-link.sh $(CC) $(CLANG_FLAGS) $(m64-flag)) if 64BIT
default $(success,$(srctree)/scripts/cc-can-link.sh $(CC) $(CLANG_FLAGS) $(m32-flag))
config CC_CAN_LINK_STATIC
bool
default $(success,$(srctree)/scripts/cc-can-link.sh $(CC) $(CLANG_FLAGS) $(m64-flag) -static) if 64BIT
default $(success,$(srctree)/scripts/cc-can-link.sh $(CC) $(CLANG_FLAGS) $(m32-flag) -static)
config CC_HAS_ASM_GOTO
def_bool $(success,$(srctree)/scripts/gcc-goto.sh $(CC))
config CC_HAS_ASM_GOTO_OUTPUT
depends on CC_HAS_ASM_GOTO
def_bool $(success,echo 'int foo(int x) { asm goto ("": "=r"(x) ::: bar); return x; bar: return 0; }' | $(CC) -x c - -c -o /dev/null)
config TOOLS_SUPPORT_RELR
def_bool $(success,env "CC=$(CC)" "LD=$(LD)" "NM=$(NM)" "OBJCOPY=$(OBJCOPY)" $(srctree)/scripts/tools-support-relr.sh)
config CC_HAS_ASM_INLINE
def_bool $(success,echo 'void foo(void) { asm inline (""); }' | $(CC) -x c - -c -o /dev/null)
config CONSTRUCTORS
bool
config IRQ_WORK
bool
config BUILDTIME_TABLE_SORT
bool
config THREAD_INFO_IN_TASK
bool
help
Select this to move thread_info off the stack into task_struct. To
make this work, an arch will need to remove all thread_info fields
except flags and fix any runtime bugs.
One subtle change that will be needed is to use try_get_task_stack()
and put_task_stack() in save_thread_stack_tsk() and get_wchan().
menu "General setup"
config BROKEN
bool
config BROKEN_ON_SMP
bool
depends on BROKEN || !SMP
default y
config INIT_ENV_ARG_LIMIT
int
default 32 if !UML
default 128 if UML
help
Maximum of each of the number of arguments and environment
variables passed to init from the kernel command line.
build some drivers only when compile-testing Some drivers can be built on more platforms than they run on. This is a burden for users and distributors who package a kernel. They have to manually deselect some (for them useless) drivers when updating their configs via oldconfig. And yet, sometimes it is even impossible to disable the drivers without patching the kernel. Introduce a new config option COMPILE_TEST and make all those drivers to depend on the platform they run on, or on the COMPILE_TEST option. Now, when users/distributors choose COMPILE_TEST=n they will not have the drivers in their allmodconfig setups, but developers still can compile-test them with COMPILE_TEST=y. Now the drivers where we use this new option: * PTP_1588_CLOCK_PCH: The PCH EG20T is only compatible with Intel Atom processors so it should depend on x86. * FB_GEODE: Geode is 32-bit only so only enable it for X86_32. * USB_CHIPIDEA_IMX: The OF_DEVICE dependency will be met on powerpc systems -- which do not actually support the hardware via that method. * INTEL_MID_PTI: It is specific to the Penwell type of Intel Atom device. [v2] * remove EXPERT dependency [gregkh - remove chipidea portion, as it's incorrect, and also doesn't apply to my driver-core tree] Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jeff Mahoney <jeffm@suse.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: linux-usb@vger.kernel.org Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de> Cc: linux-geode@lists.infradead.org Cc: linux-fbdev@vger.kernel.org Cc: Richard Cochran <richardcochran@gmail.com> Cc: netdev@vger.kernel.org Cc: Ben Hutchings <ben@decadent.org.uk> Cc: "Keller, Jacob E" <jacob.e.keller@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-05-22 08:56:24 +00:00
config COMPILE_TEST
bool "Compile also drivers which will not load"
depends on HAS_IOMEM
build some drivers only when compile-testing Some drivers can be built on more platforms than they run on. This is a burden for users and distributors who package a kernel. They have to manually deselect some (for them useless) drivers when updating their configs via oldconfig. And yet, sometimes it is even impossible to disable the drivers without patching the kernel. Introduce a new config option COMPILE_TEST and make all those drivers to depend on the platform they run on, or on the COMPILE_TEST option. Now, when users/distributors choose COMPILE_TEST=n they will not have the drivers in their allmodconfig setups, but developers still can compile-test them with COMPILE_TEST=y. Now the drivers where we use this new option: * PTP_1588_CLOCK_PCH: The PCH EG20T is only compatible with Intel Atom processors so it should depend on x86. * FB_GEODE: Geode is 32-bit only so only enable it for X86_32. * USB_CHIPIDEA_IMX: The OF_DEVICE dependency will be met on powerpc systems -- which do not actually support the hardware via that method. * INTEL_MID_PTI: It is specific to the Penwell type of Intel Atom device. [v2] * remove EXPERT dependency [gregkh - remove chipidea portion, as it's incorrect, and also doesn't apply to my driver-core tree] Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jeff Mahoney <jeffm@suse.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: linux-usb@vger.kernel.org Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de> Cc: linux-geode@lists.infradead.org Cc: linux-fbdev@vger.kernel.org Cc: Richard Cochran <richardcochran@gmail.com> Cc: netdev@vger.kernel.org Cc: Ben Hutchings <ben@decadent.org.uk> Cc: "Keller, Jacob E" <jacob.e.keller@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-05-22 08:56:24 +00:00
help
Some drivers can be compiled on a different platform than they are
intended to be run on. Despite they cannot be loaded there (or even
when they load they cannot be used due to missing HW support),
developers still, opposing to distributors, might want to build such
drivers to compile-test them.
If you are a developer and want to build everything available, say Y
here. If you are a user/distributor, say N here to exclude useless
drivers to be distributed.
kbuild: compile-test exported headers to ensure they are self-contained Multiple people have suggested compile-testing UAPI headers to ensure they can be really included from user-space. "make headers_check" is obviously not enough to catch bugs, and we often leak unresolved references to user-space. Use the new header-test-y syntax to implement it. Please note exported headers are compile-tested with a completely different set of compiler flags. The header search path is set to $(objtree)/usr/include since exported headers should not include unexported ones. We use -std=gnu89 for the kernel space since the kernel code highly depends on GNU extensions. On the other hand, UAPI headers should be written in more standardized C, so they are compiled with -std=c90. This will emit errors if C++ style comments, the keyword 'inline', etc. are used. Please use C style comments (/* ... */), '__inline__', etc. in UAPI headers. There is additional compiler requirement to enable this test because many of UAPI headers include <stdlib.h>, <sys/ioctl.h>, <sys/time.h>, etc. directly or indirectly. You cannot use kernel.org pre-built toolchains [1] since they lack <stdlib.h>. I reused CONFIG_CC_CAN_LINK to check the system header availability. The intention is slightly different, but a compiler that can link userspace programs provide system headers. For now, a lot of headers need to be excluded because they cannot be compiled standalone, but this is a good start point. [1] https://mirrors.edge.kernel.org/pub/tools/crosstool/index.html Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Reviewed-by: Sam Ravnborg <sam@ravnborg.org>
2019-07-01 00:58:40 +00:00
config UAPI_HEADER_TEST
bool "Compile test UAPI headers"
depends on HEADERS_INSTALL && CC_CAN_LINK
kbuild: compile-test exported headers to ensure they are self-contained Multiple people have suggested compile-testing UAPI headers to ensure they can be really included from user-space. "make headers_check" is obviously not enough to catch bugs, and we often leak unresolved references to user-space. Use the new header-test-y syntax to implement it. Please note exported headers are compile-tested with a completely different set of compiler flags. The header search path is set to $(objtree)/usr/include since exported headers should not include unexported ones. We use -std=gnu89 for the kernel space since the kernel code highly depends on GNU extensions. On the other hand, UAPI headers should be written in more standardized C, so they are compiled with -std=c90. This will emit errors if C++ style comments, the keyword 'inline', etc. are used. Please use C style comments (/* ... */), '__inline__', etc. in UAPI headers. There is additional compiler requirement to enable this test because many of UAPI headers include <stdlib.h>, <sys/ioctl.h>, <sys/time.h>, etc. directly or indirectly. You cannot use kernel.org pre-built toolchains [1] since they lack <stdlib.h>. I reused CONFIG_CC_CAN_LINK to check the system header availability. The intention is slightly different, but a compiler that can link userspace programs provide system headers. For now, a lot of headers need to be excluded because they cannot be compiled standalone, but this is a good start point. [1] https://mirrors.edge.kernel.org/pub/tools/crosstool/index.html Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Reviewed-by: Sam Ravnborg <sam@ravnborg.org>
2019-07-01 00:58:40 +00:00
help
Compile test headers exported to user-space to ensure they are
self-contained, i.e. compilable as standalone units.
If you are a developer or tester and want to ensure the exported
headers are self-contained, say Y here. Otherwise, choose N.
config LOCALVERSION
string "Local version - append to kernel release"
help
Append an extra string to the end of your kernel version.
This will show up when you type uname, for example.
The string you set here will be appended after the contents of
any files with a filename matching localversion* in your
object and source tree, in that order. Your total string can
be a maximum of 64 characters.
config LOCALVERSION_AUTO
bool "Automatically append version information to the version string"
default y
depends on !COMPILE_TEST
help
This will try to automatically determine if the current tree is a
release tree by looking for git tags that belong to the current
top of tree revision.
A string of the format -gxxxxxxxx will be added to the localversion
if a git-based tree is found. The string generated by this will be
appended after any matching localversion* files, and after the value
set in CONFIG_LOCALVERSION.
(The actual string used here is the first eight characters produced
by running the command:
$ git rev-parse --verify HEAD
which is done within the script "scripts/setlocalversion".)
config BUILD_SALT
string "Build ID Salt"
default ""
help
The build ID is used to link binaries and their debug info. Setting
this option will use the value in the calculation of the build id.
This is mostly useful for distributions which want to ensure the
build is unique between builds. It's safe to leave the default.
config HAVE_KERNEL_GZIP
bool
config HAVE_KERNEL_BZIP2
bool
config HAVE_KERNEL_LZMA
bool
config HAVE_KERNEL_XZ
bool
lib: add support for LZO-compressed kernels This patch series adds generic support for creating and extracting LZO-compressed kernel images, as well as support for using such images on the x86 and ARM architectures, and support for creating and using LZO-compressed initrd and initramfs images. Russell King said: : Testing on a Cortex A9 model: : - lzo decompressor is 65% of the time gzip takes to decompress a kernel : - lzo kernel is 9% larger than a gzip kernel : : which I'm happy to say confirms your figures when comparing the two. : : However, when comparing your new gzip code to the old gzip code: : - new is 99% of the size of the old code : - new takes 42% of the time to decompress than the old code : : What this means is that for a proper comparison, the results get even better: : - lzo is 7.5% larger than the old gzip'd kernel image : - lzo takes 28% of the time that the old gzip code took : : So the expense seems definitely worth the effort. The only reason I : can think of ever using gzip would be if you needed the additional : compression (eg, because you have limited flash to store the image.) : : I would argue that the default for ARM should therefore be LZO. This patch: The lzo compressor is worse than gzip at compression, but faster at extraction. Here are some figures for an ARM board I'm working on: Uncompressed size: 3.24Mo gzip 1.61Mo 0.72s lzo 1.75Mo 0.48s So for a compression ratio that is still relatively close to gzip, it's much faster to extract, at least in that case. This part contains: - Makefile routine to support lzo compression - Fixes to the existing lzo compressor so that it can be used in compressed kernels - wrapper around the existing lzo1x_decompress, as it only extracts one block at a time, while we need to extract a whole file here - config dialog for kernel compression [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: cleanup] Signed-off-by: Albin Tonnerre <albin.tonnerre@free-electrons.com> Tested-by: Wu Zhangjin <wuzhangjin@gmail.com> Acked-by: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Tested-by: Russell King <rmk@arm.linux.org.uk> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-01-08 22:42:42 +00:00
config HAVE_KERNEL_LZO
bool
config HAVE_KERNEL_LZ4
bool
config HAVE_KERNEL_ZSTD
bool
config HAVE_KERNEL_UNCOMPRESSED
bool
choice
prompt "Kernel compression mode"
default KERNEL_GZIP
depends on HAVE_KERNEL_GZIP || HAVE_KERNEL_BZIP2 || HAVE_KERNEL_LZMA || HAVE_KERNEL_XZ || HAVE_KERNEL_LZO || HAVE_KERNEL_LZ4 || HAVE_KERNEL_ZSTD || HAVE_KERNEL_UNCOMPRESSED
help
The linux kernel is a kind of self-extracting executable.
Several compression algorithms are available, which differ
in efficiency, compression and decompression speed.
Compression speed is only relevant when building a kernel.
Decompression speed is relevant at each boot.
If you have any problems with bzip2 or lzma compressed
kernels, mail me (Alain Knaff) <alain@knaff.lu>. (An older
version of this functionality (bzip2 only), for 2.4, was
supplied by Christian Ludwig)
High compression options are mostly useful for users, who
are low on disk space (embedded systems), but for whom ram
size matters less.
If in doubt, select 'gzip'
config KERNEL_GZIP
bool "Gzip"
depends on HAVE_KERNEL_GZIP
help
lib: add support for LZO-compressed kernels This patch series adds generic support for creating and extracting LZO-compressed kernel images, as well as support for using such images on the x86 and ARM architectures, and support for creating and using LZO-compressed initrd and initramfs images. Russell King said: : Testing on a Cortex A9 model: : - lzo decompressor is 65% of the time gzip takes to decompress a kernel : - lzo kernel is 9% larger than a gzip kernel : : which I'm happy to say confirms your figures when comparing the two. : : However, when comparing your new gzip code to the old gzip code: : - new is 99% of the size of the old code : - new takes 42% of the time to decompress than the old code : : What this means is that for a proper comparison, the results get even better: : - lzo is 7.5% larger than the old gzip'd kernel image : - lzo takes 28% of the time that the old gzip code took : : So the expense seems definitely worth the effort. The only reason I : can think of ever using gzip would be if you needed the additional : compression (eg, because you have limited flash to store the image.) : : I would argue that the default for ARM should therefore be LZO. This patch: The lzo compressor is worse than gzip at compression, but faster at extraction. Here are some figures for an ARM board I'm working on: Uncompressed size: 3.24Mo gzip 1.61Mo 0.72s lzo 1.75Mo 0.48s So for a compression ratio that is still relatively close to gzip, it's much faster to extract, at least in that case. This part contains: - Makefile routine to support lzo compression - Fixes to the existing lzo compressor so that it can be used in compressed kernels - wrapper around the existing lzo1x_decompress, as it only extracts one block at a time, while we need to extract a whole file here - config dialog for kernel compression [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: cleanup] Signed-off-by: Albin Tonnerre <albin.tonnerre@free-electrons.com> Tested-by: Wu Zhangjin <wuzhangjin@gmail.com> Acked-by: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Tested-by: Russell King <rmk@arm.linux.org.uk> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-01-08 22:42:42 +00:00
The old and tried gzip compression. It provides a good balance
between compression ratio and decompression speed.
config KERNEL_BZIP2
bool "Bzip2"
depends on HAVE_KERNEL_BZIP2
help
Its compression ratio and speed is intermediate.
Decompression speed is slowest among the choices. The kernel
size is about 10% smaller with bzip2, in comparison to gzip.
Bzip2 uses a large amount of memory. For modern kernels you
will need at least 8MB RAM or more for booting.
config KERNEL_LZMA
bool "LZMA"
depends on HAVE_KERNEL_LZMA
help
This compression algorithm's ratio is best. Decompression speed
is between gzip and bzip2. Compression is slowest.
The kernel size is about 33% smaller with LZMA in comparison to gzip.
config KERNEL_XZ
bool "XZ"
depends on HAVE_KERNEL_XZ
help
XZ uses the LZMA2 algorithm and instruction set specific
BCJ filters which can improve compression ratio of executable
code. The size of the kernel is about 30% smaller with XZ in
comparison to gzip. On architectures for which there is a BCJ
filter (i386, x86_64, ARM, IA-64, PowerPC, and SPARC), XZ
will create a few percent smaller kernel than plain LZMA.
The speed is about the same as with LZMA: The decompression
speed of XZ is better than that of bzip2 but worse than gzip
and LZO. Compression is slow.
lib: add support for LZO-compressed kernels This patch series adds generic support for creating and extracting LZO-compressed kernel images, as well as support for using such images on the x86 and ARM architectures, and support for creating and using LZO-compressed initrd and initramfs images. Russell King said: : Testing on a Cortex A9 model: : - lzo decompressor is 65% of the time gzip takes to decompress a kernel : - lzo kernel is 9% larger than a gzip kernel : : which I'm happy to say confirms your figures when comparing the two. : : However, when comparing your new gzip code to the old gzip code: : - new is 99% of the size of the old code : - new takes 42% of the time to decompress than the old code : : What this means is that for a proper comparison, the results get even better: : - lzo is 7.5% larger than the old gzip'd kernel image : - lzo takes 28% of the time that the old gzip code took : : So the expense seems definitely worth the effort. The only reason I : can think of ever using gzip would be if you needed the additional : compression (eg, because you have limited flash to store the image.) : : I would argue that the default for ARM should therefore be LZO. This patch: The lzo compressor is worse than gzip at compression, but faster at extraction. Here are some figures for an ARM board I'm working on: Uncompressed size: 3.24Mo gzip 1.61Mo 0.72s lzo 1.75Mo 0.48s So for a compression ratio that is still relatively close to gzip, it's much faster to extract, at least in that case. This part contains: - Makefile routine to support lzo compression - Fixes to the existing lzo compressor so that it can be used in compressed kernels - wrapper around the existing lzo1x_decompress, as it only extracts one block at a time, while we need to extract a whole file here - config dialog for kernel compression [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: cleanup] Signed-off-by: Albin Tonnerre <albin.tonnerre@free-electrons.com> Tested-by: Wu Zhangjin <wuzhangjin@gmail.com> Acked-by: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Tested-by: Russell King <rmk@arm.linux.org.uk> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-01-08 22:42:42 +00:00
config KERNEL_LZO
bool "LZO"
depends on HAVE_KERNEL_LZO
help
Its compression ratio is the poorest among the choices. The kernel
size is about 10% bigger than gzip; however its speed
lib: add support for LZO-compressed kernels This patch series adds generic support for creating and extracting LZO-compressed kernel images, as well as support for using such images on the x86 and ARM architectures, and support for creating and using LZO-compressed initrd and initramfs images. Russell King said: : Testing on a Cortex A9 model: : - lzo decompressor is 65% of the time gzip takes to decompress a kernel : - lzo kernel is 9% larger than a gzip kernel : : which I'm happy to say confirms your figures when comparing the two. : : However, when comparing your new gzip code to the old gzip code: : - new is 99% of the size of the old code : - new takes 42% of the time to decompress than the old code : : What this means is that for a proper comparison, the results get even better: : - lzo is 7.5% larger than the old gzip'd kernel image : - lzo takes 28% of the time that the old gzip code took : : So the expense seems definitely worth the effort. The only reason I : can think of ever using gzip would be if you needed the additional : compression (eg, because you have limited flash to store the image.) : : I would argue that the default for ARM should therefore be LZO. This patch: The lzo compressor is worse than gzip at compression, but faster at extraction. Here are some figures for an ARM board I'm working on: Uncompressed size: 3.24Mo gzip 1.61Mo 0.72s lzo 1.75Mo 0.48s So for a compression ratio that is still relatively close to gzip, it's much faster to extract, at least in that case. This part contains: - Makefile routine to support lzo compression - Fixes to the existing lzo compressor so that it can be used in compressed kernels - wrapper around the existing lzo1x_decompress, as it only extracts one block at a time, while we need to extract a whole file here - config dialog for kernel compression [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: cleanup] Signed-off-by: Albin Tonnerre <albin.tonnerre@free-electrons.com> Tested-by: Wu Zhangjin <wuzhangjin@gmail.com> Acked-by: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Tested-by: Russell King <rmk@arm.linux.org.uk> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-01-08 22:42:42 +00:00
(both compression and decompression) is the fastest.
config KERNEL_LZ4
bool "LZ4"
depends on HAVE_KERNEL_LZ4
help
LZ4 is an LZ77-type compressor with a fixed, byte-oriented encoding.
A preliminary version of LZ4 de/compression tool is available at
<https://code.google.com/p/lz4/>.
Its compression ratio is worse than LZO. The size of the kernel
is about 8% bigger than LZO. But the decompression speed is
faster than LZO.
config KERNEL_ZSTD
bool "ZSTD"
depends on HAVE_KERNEL_ZSTD
help
ZSTD is a compression algorithm targeting intermediate compression
with fast decompression speed. It will compress better than GZIP and
decompress around the same speed as LZO, but slower than LZ4. You
will need at least 192 KB RAM or more for booting. The zstd command
line tool is required for compression.
config KERNEL_UNCOMPRESSED
bool "None"
depends on HAVE_KERNEL_UNCOMPRESSED
help
Produce uncompressed kernel image. This option is usually not what
you want. It is useful for debugging the kernel in slow simulation
environments, where decompressing and moving the kernel is awfully
slow. This option allows early boot code to skip the decompressor
and jump right at uncompressed kernel image.
endchoice
init: allow distribution configuration of default init Some init systems (eg. systemd) have init at their own paths, for example, /usr/lib/systemd/systemd. A compatibility symlink to one of the hardcoded init paths is provided by another package, usually named something like systemd-sysvcompat or similar. Currently distro maintainers who are hands-off on the bootloader are more or less required to include those compatibility links as part of their base distribution, because it's hard to migrate away from them since there's a risk some users will not get the message to set init= on the kernel command line appropriately. Moreover, for distributions where the init system is something the distribution itself is opinionated about (eg. Arch, which has systemd in the required `base` package), we could usually reasonably configure this ahead of time when building the distribution kernel. However, we currently simply don't have any way to configure the kernel to do this. Here's an example discussion where removing sysvcompat was discussed by distro maintainers[0]. This patch adds a new Kconfig tunable, CONFIG_DEFAULT_INIT, which if set is tried before the hardcoded fallback list. So the order of precedence is now thus: 1. init= on command line (on failure: panic) 2. CONFIG_DEFAULT_INIT (on failure: try #3) 3. Hardcoded fallback list (on failure: panic) This new config parameter will allow distribution maintainers to move away from these compatibility links safely, without having to worry that their users might not have the right init=. There are also two other benefits of this over having the distribution maintain a symlink: 1. One of the value propositions over simply having distributions maintain a /sbin/init symlink via a package is that it also frees distributions which have a preferred default, but not mandatory, init system from having their package manager fight with their users for control of /{s,}bin/init. Instead, the distribution simply makes their preference known in CONFIG_DEFAULT_INIT, and if the user installs another init system and uninstalls the default one they can still make use of /{s,}bin/init and friends for their own uses. This makes more cases Just Work(tm) without the user having to perform extra configuration via init=. 2. Since before this we don't know which path the distribution actually _intends_ to serve init from, we don't pr_err if it is simply missing, and usually will just silently put the user in a /bin/sh shell. Now that the distribution can make a declaration of intent, we can be more vocal when this init system fails to launch for any reason, even if it's simply because no file exists at that location, speeding up the palaver of init/mount dependency/etc debugging a bit. [0]: https://lists.archlinux.org/pipermail/arch-dev-public/2019-January/029435.html Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Link: http://lkml.kernel.org/r/20200522160234.GA1487022@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04 23:50:53 +00:00
config DEFAULT_INIT
string "Default init path"
default ""
help
This option determines the default init for the system if no init=
option is passed on the kernel command line. If the requested path is
not present, we will still then move on to attempting further
locations (e.g. /sbin/init, etc). If this is empty, we will just use
the fallback list when init= is not passed.
config DEFAULT_HOSTNAME
string "Default hostname"
default "(none)"
help
This option determines the default system hostname before userspace
calls sethostname(2). The kernel traditionally uses "(none)" here,
but you may wish to use a different default here to make a minimal
system more usable with less configuration.
#
# For some reason microblaze and nios2 hard code SWAP=n. Hopefully we can
# add proper SWAP support to them, in which case this can be remove.
#
config ARCH_NO_SWAP
bool
config SWAP
bool "Support for paging of anonymous memory (swap)"
depends on MMU && BLOCK && !ARCH_NO_SWAP
default y
help
This option allows you to choose whether you want to have support
for so called swap devices or swap files in your kernel that are
used to provide more virtual memory than the actual RAM present
in your computer. If unsure say Y.
config SYSVIPC
bool "System V IPC"
help
Inter Process Communication is a suite of library functions and
system calls which let processes (running programs) synchronize and
exchange information. It is generally considered to be a good thing,
and some programs won't run unless you say Y here. In particular, if
you want to run the DOS emulator dosemu under Linux (read the
DOSEMU-HOWTO, available from <http://www.tldp.org/docs.html#howto>),
you'll need to say Y here.
You can find documentation about IPC with "info ipc" and also in
section 6.4 of the Linux Programmer's Guide, available from
<http://www.tldp.org/guides.html>.
config SYSVIPC_SYSCTL
bool
depends on SYSVIPC
depends on SYSCTL
default y
config POSIX_MQUEUE
bool "POSIX Message Queues"
depends on NET
help
POSIX variant of message queues is a part of IPC. In POSIX message
queues every message has a priority which decides about succession
of receiving it by a process. If you want to compile and run
programs written e.g. for Solaris with use of its POSIX message
queues (functions mq_*) say Y here.
POSIX message queues are visible as a filesystem called 'mqueue'
and can be mounted somewhere if you want to do filesystem
operations on message queues.
If unsure, say Y.
config POSIX_MQUEUE_SYSCTL
bool
depends on POSIX_MQUEUE
depends on SYSCTL
default y
pipe: Add general notification queue support Make it possible to have a general notification queue built on top of a standard pipe. Notifications are 'spliced' into the pipe and then read out. splice(), vmsplice() and sendfile() are forbidden on pipes used for notifications as post_one_notification() cannot take pipe->mutex. This means that notifications could be posted in between individual pipe buffers, making iov_iter_revert() difficult to effect. The way the notification queue is used is: (1) An application opens a pipe with a special flag and indicates the number of messages it wishes to be able to queue at once (this can only be set once): pipe2(fds, O_NOTIFICATION_PIPE); ioctl(fds[0], IOC_WATCH_QUEUE_SET_SIZE, queue_depth); (2) The application then uses poll() and read() as normal to extract data from the pipe. read() will return multiple notifications if the buffer is big enough, but it will not split a notification across buffers - rather it will return a short read or EMSGSIZE. Notification messages include a length in the header so that the caller can split them up. Each message has a header that describes it: struct watch_notification { __u32 type:24; __u32 subtype:8; __u32 info; }; The type indicates the source (eg. mount tree changes, superblock events, keyring changes, block layer events) and the subtype indicates the event type (eg. mount, unmount; EIO, EDQUOT; link, unlink). The info field indicates a number of things, including the entry length, an ID assigned to a watchpoint contributing to this buffer and type-specific flags. Supplementary data, such as the key ID that generated an event, can be attached in additional slots. The maximum message size is 127 bytes. Messages may not be padded or aligned, so there is no guarantee, for example, that the notification type will be on a 4-byte bounary. Signed-off-by: David Howells <dhowells@redhat.com>
2020-01-14 17:07:11 +00:00
config WATCH_QUEUE
bool "General notification queue"
default n
help
This is a general notification queue for the kernel to pass events to
userspace by splicing them into pipes. It can be used in conjunction
with watches for key/keyring change notifications and device
notifications.
See Documentation/watch_queue.rst
config CROSS_MEMORY_ATTACH
bool "Enable process_vm_readv/writev syscalls"
depends on MMU
default y
help
Enabling this option adds the system calls process_vm_readv and
process_vm_writev which allow a process with the correct privileges
to directly read from or write to another process' address space.
See the man page for more details.
config USELIB
bool "uselib syscall"
def_bool ALPHA || M68K || SPARC || X86_32 || IA32_EMULATION
help
This option enables the uselib syscall, a system call used in the
dynamic linker from libc5 and earlier. glibc does not use this
system call. If you intend to run programs built on libc5 or
earlier, you may need to enable this syscall. Current systems
running glibc can safely disable this.
config AUDIT
bool "Auditing support"
depends on NET
help
Enable auditing infrastructure that can be used with another
kernel subsystem, such as SELinux (which requires this for
logging of avc messages output). System call auditing is included
on architectures which support it.
config HAVE_ARCH_AUDITSYSCALL
bool
config AUDITSYSCALL
def_bool y
depends on AUDIT && HAVE_ARCH_AUDITSYSCALL
select FSNOTIFY
source "kernel/irq/Kconfig"
source "kernel/time/Kconfig"
source "kernel/Kconfig.preempt"
menu "CPU/Task time and stats accounting"
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 05:56:04 +00:00
config VIRT_CPU_ACCOUNTING
bool
choice
prompt "Cputime accounting"
default TICK_CPU_ACCOUNTING if !PPC64
default VIRT_CPU_ACCOUNTING_NATIVE if PPC64
# Kind of a stub config for the pure tick based cputime accounting
config TICK_CPU_ACCOUNTING
bool "Simple tick based cputime accounting"
nohz: Select VIRT_CPU_ACCOUNTING_GEN from full dynticks config Turn the full dynticks passive dependency on VIRT_CPU_ACCOUNTING_GEN to an active one. The full dynticks Kconfig is currently hidden behind the full dynticks cputime accounting, which is an awkward and counter-intuitive layout: the user first has to select the dynticks cputime accounting in order to make the full dynticks feature to be visible. We definetly want it the other way around. The usual way to perform this kind of active dependency is use "select" on the depended target. Now we can't use the Kconfig "select" instruction when the target is a "choice". So this patch inspires on how the RCU subsystem Kconfig interact with its dependencies on SMP and PREEMPT: we make sure that cputime accounting can't propose another option than VIRT_CPU_ACCOUNTING_GEN when NO_HZ_FULL is selected by using the right "depends on" instruction for each cputime accounting choices. v2: Keep full dynticks cputime accounting available even without full dynticks, as per Paul McKenney's suggestion. Reported-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2013-04-26 13:16:31 +00:00
depends on !S390 && !NO_HZ_FULL
help
This is the basic tick based cputime accounting that maintains
statistics about user, system and idle time spent on per jiffies
granularity.
If unsure, say Y.
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 05:56:04 +00:00
config VIRT_CPU_ACCOUNTING_NATIVE
bool "Deterministic task and CPU time accounting"
nohz: Select VIRT_CPU_ACCOUNTING_GEN from full dynticks config Turn the full dynticks passive dependency on VIRT_CPU_ACCOUNTING_GEN to an active one. The full dynticks Kconfig is currently hidden behind the full dynticks cputime accounting, which is an awkward and counter-intuitive layout: the user first has to select the dynticks cputime accounting in order to make the full dynticks feature to be visible. We definetly want it the other way around. The usual way to perform this kind of active dependency is use "select" on the depended target. Now we can't use the Kconfig "select" instruction when the target is a "choice". So this patch inspires on how the RCU subsystem Kconfig interact with its dependencies on SMP and PREEMPT: we make sure that cputime accounting can't propose another option than VIRT_CPU_ACCOUNTING_GEN when NO_HZ_FULL is selected by using the right "depends on" instruction for each cputime accounting choices. v2: Keep full dynticks cputime accounting available even without full dynticks, as per Paul McKenney's suggestion. Reported-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2013-04-26 13:16:31 +00:00
depends on HAVE_VIRT_CPU_ACCOUNTING && !NO_HZ_FULL
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 05:56:04 +00:00
select VIRT_CPU_ACCOUNTING
help
Select this option to enable more accurate task and CPU time
accounting. This is done by reading a CPU counter on each
kernel entry and exit and on transitions within the kernel
between system, softirq and hardirq state, so there is a
small performance impact. In the case of s390 or IBM POWER > 5,
this also enables accounting of stolen time on logically-partitioned
systems.
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 05:56:04 +00:00
config VIRT_CPU_ACCOUNTING_GEN
bool "Full dynticks CPU time accounting"
depends on HAVE_CONTEXT_TRACKING
depends on HAVE_VIRT_CPU_ACCOUNTING_GEN
depends on GENERIC_CLOCKEVENTS
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 05:56:04 +00:00
select VIRT_CPU_ACCOUNTING
select CONTEXT_TRACKING
help
Select this option to enable task and CPU time accounting on full
dynticks systems. This accounting is implemented by watching every
kernel-user boundaries using the context tracking subsystem.
The accounting is thus performed at the expense of some significant
overhead.
For now this is only useful if you are working on the full
dynticks subsystem development.
If unsure, say N.
endchoice
config IRQ_TIME_ACCOUNTING
bool "Fine granularity task level IRQ time accounting"
depends on HAVE_IRQ_TIME_ACCOUNTING && !VIRT_CPU_ACCOUNTING_NATIVE
help
Select this option to enable fine granularity task irq time
accounting. This is done by reading a timestamp on each
transitions between softirq and hardirq state, so there can be a
small performance impact.
If in doubt, say N here.
config HAVE_SCHED_AVG_IRQ
def_bool y
depends on IRQ_TIME_ACCOUNTING || PARAVIRT_TIME_ACCOUNTING
depends on SMP
config SCHED_THERMAL_PRESSURE
bool
default y if ARM && ARM_CPU_TOPOLOGY
default y if ARM64
depends on SMP
depends on CPU_FREQ_THERMAL
help
Select this option to enable thermal pressure accounting in the
scheduler. Thermal pressure is the value conveyed to the scheduler
that reflects the reduction in CPU compute capacity resulted from
thermal throttling. Thermal throttling occurs when the performance of
a CPU is capped due to high operating temperatures.
If selected, the scheduler will be able to balance tasks accordingly,
i.e. put less load on throttled CPUs than on non/less throttled ones.
This requires the architecture to implement
arch_set_thermal_pressure() and arch_scale_thermal_pressure().
config BSD_PROCESS_ACCT
bool "BSD Process Accounting"
kernel: conditionally support non-root users, groups and capabilities There are a lot of embedded systems that run most or all of their functionality in init, running as root:root. For these systems, supporting multiple users is not necessary. This patch adds a new symbol, CONFIG_MULTIUSER, that makes support for non-root users, non-root groups, and capabilities optional. It is enabled under CONFIG_EXPERT menu. When this symbol is not defined, UID and GID are zero in any possible case and processes always have all capabilities. The following syscalls are compiled out: setuid, setregid, setgid, setreuid, setresuid, getresuid, setresgid, getresgid, setgroups, getgroups, setfsuid, setfsgid, capget, capset. Also, groups.c is compiled out completely. In kernel/capability.c, capable function was moved in order to avoid adding two ifdef blocks. This change saves about 25 KB on a defconfig build. The most minimal kernels have total text sizes in the high hundreds of kB rather than low MB. (The 25k goes down a bit with allnoconfig, but not that much. The kernel was booted in Qemu. All the common functionalities work. Adding users/groups is not possible, failing with -ENOSYS. Bloat-o-meter output: add/remove: 7/87 grow/shrink: 19/397 up/down: 1675/-26325 (-24650) [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Iulia Manda <iulia.manda21@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 23:16:41 +00:00
depends on MULTIUSER
help
If you say Y here, a user level program will be able to instruct the
kernel (via a special system call) to write process accounting
information to a file: whenever a process exits, information about
that process will be appended to the file by the kernel. The
information includes things such as creation time, owning user,
command name, memory usage, controlling terminal etc. (the complete
list is in the struct acct in <file:include/linux/acct.h>). It is
up to the user level program to do useful things with this
information. This is generally a good idea, so say Y.
config BSD_PROCESS_ACCT_V3
bool "BSD Process Accounting version 3 file format"
depends on BSD_PROCESS_ACCT
default n
help
If you say Y here, the process accounting information is written
in a new file format that also logs the process IDs of each
process and its parent. Note that this file format is incompatible
with previous v0/v1/v2 file formats, so you will need updated tools
for processing it. A preliminary version of these tools is available
at <http://www.gnu.org/software/acct/>.
config TASKSTATS
bool "Export task/process statistics through netlink"
depends on NET
kernel: conditionally support non-root users, groups and capabilities There are a lot of embedded systems that run most or all of their functionality in init, running as root:root. For these systems, supporting multiple users is not necessary. This patch adds a new symbol, CONFIG_MULTIUSER, that makes support for non-root users, non-root groups, and capabilities optional. It is enabled under CONFIG_EXPERT menu. When this symbol is not defined, UID and GID are zero in any possible case and processes always have all capabilities. The following syscalls are compiled out: setuid, setregid, setgid, setreuid, setresuid, getresuid, setresgid, getresgid, setgroups, getgroups, setfsuid, setfsgid, capget, capset. Also, groups.c is compiled out completely. In kernel/capability.c, capable function was moved in order to avoid adding two ifdef blocks. This change saves about 25 KB on a defconfig build. The most minimal kernels have total text sizes in the high hundreds of kB rather than low MB. (The 25k goes down a bit with allnoconfig, but not that much. The kernel was booted in Qemu. All the common functionalities work. Adding users/groups is not possible, failing with -ENOSYS. Bloat-o-meter output: add/remove: 7/87 grow/shrink: 19/397 up/down: 1675/-26325 (-24650) [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Iulia Manda <iulia.manda21@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 23:16:41 +00:00
depends on MULTIUSER
default n
help
Export selected statistics for tasks/processes through the
generic netlink interface. Unlike BSD process accounting, the
statistics are available during the lifetime of tasks/processes as
responses to commands. Like BSD accounting, they are sent to user
space on task exit.
Say N if unsure.
config TASK_DELAY_ACCT
bool "Enable per-task delay accounting"
depends on TASKSTATS
select SCHED_INFO
help
Collect information on time spent by a task waiting for system
resources like cpu, synchronous block I/O completion and swapping
in pages. Such statistics can help in setting a task's priorities
relative to other tasks for cpu, io, rss limits etc.
Say N if unsure.
config TASK_XACCT
bool "Enable extended accounting over taskstats"
depends on TASKSTATS
help
Collect extended task accounting data and send the data
to userland for processing over the taskstats interface.
Say N if unsure.
config TASK_IO_ACCOUNTING
bool "Enable per-task storage I/O accounting"
depends on TASK_XACCT
help
Collect information on the number of bytes of storage I/O which this
task has caused.
Say N if unsure.
psi: pressure stall information for CPU, memory, and IO When systems are overcommitted and resources become contended, it's hard to tell exactly the impact this has on workload productivity, or how close the system is to lockups and OOM kills. In particular, when machines work multiple jobs concurrently, the impact of overcommit in terms of latency and throughput on the individual job can be enormous. In order to maximize hardware utilization without sacrificing individual job health or risk complete machine lockups, this patch implements a way to quantify resource pressure in the system. A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that expose the percentage of time the system is stalled on CPU, memory, or IO, respectively. Stall states are aggregate versions of the per-task delay accounting delays: cpu: some tasks are runnable but not executing on a CPU memory: tasks are reclaiming, or waiting for swapin or thrashing cache io: tasks are waiting for io completions These percentages of walltime can be thought of as pressure percentages, and they give a general sense of system health and productivity loss incurred by resource overcommit. They can also indicate when the system is approaching lockup scenarios and OOMs. To do this, psi keeps track of the task states associated with each CPU and samples the time they spend in stall states. Every 2 seconds, the samples are averaged across CPUs - weighted by the CPUs' non-idle time to eliminate artifacts from unused CPUs - and translated into percentages of walltime. A running average of those percentages is maintained over 10s, 1m, and 5m periods (similar to the loadaverage). [hannes@cmpxchg.org: doc fixlet, per Randy] Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org [hannes@cmpxchg.org: code optimization] Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org [hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter] Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org [hannes@cmpxchg.org: fix build] Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
config PSI
bool "Pressure stall information tracking"
help
Collect metrics that indicate how overcommitted the CPU, memory,
and IO capacity are in the system.
If you say Y here, the kernel will create /proc/pressure/ with the
pressure statistics files cpu, memory, and io. These will indicate
the share of walltime in which some or all tasks in the system are
delayed due to contention of the respective resource.
In kernels with cgroup support, cgroups (cgroup2 only) will
have cpu.pressure, memory.pressure, and io.pressure files,
which aggregate pressure stalls for the grouped tasks only.
For more details see Documentation/accounting/psi.rst.
psi: pressure stall information for CPU, memory, and IO When systems are overcommitted and resources become contended, it's hard to tell exactly the impact this has on workload productivity, or how close the system is to lockups and OOM kills. In particular, when machines work multiple jobs concurrently, the impact of overcommit in terms of latency and throughput on the individual job can be enormous. In order to maximize hardware utilization without sacrificing individual job health or risk complete machine lockups, this patch implements a way to quantify resource pressure in the system. A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that expose the percentage of time the system is stalled on CPU, memory, or IO, respectively. Stall states are aggregate versions of the per-task delay accounting delays: cpu: some tasks are runnable but not executing on a CPU memory: tasks are reclaiming, or waiting for swapin or thrashing cache io: tasks are waiting for io completions These percentages of walltime can be thought of as pressure percentages, and they give a general sense of system health and productivity loss incurred by resource overcommit. They can also indicate when the system is approaching lockup scenarios and OOMs. To do this, psi keeps track of the task states associated with each CPU and samples the time they spend in stall states. Every 2 seconds, the samples are averaged across CPUs - weighted by the CPUs' non-idle time to eliminate artifacts from unused CPUs - and translated into percentages of walltime. A running average of those percentages is maintained over 10s, 1m, and 5m periods (similar to the loadaverage). [hannes@cmpxchg.org: doc fixlet, per Randy] Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org [hannes@cmpxchg.org: code optimization] Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org [hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter] Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org [hannes@cmpxchg.org: fix build] Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
Say N if unsure.
psi: make disabling/enabling easier for vendor kernels Mel Gorman reports a hackbench regression with psi that would prohibit shipping the suse kernel with it default-enabled, but he'd still like users to be able to opt in at little to no cost to others. With the current combination of CONFIG_PSI and the psi_disabled bool set from the commandline, this is a challenge. Do the following things to make it easier: 1. Add a config option CONFIG_PSI_DEFAULT_DISABLED that allows distros to enable CONFIG_PSI in their kernel but leave the feature disabled unless a user requests it at boot-time. To avoid double negatives, rename psi_disabled= to psi=. 2. Make psi_disabled a static branch to eliminate any branch costs when the feature is disabled. In terms of numbers before and after this patch, Mel says: : The following is a comparision using CONFIG_PSI=n as a baseline against : your patch and a vanilla kernel : : 4.20.0-rc4 4.20.0-rc4 4.20.0-rc4 : kconfigdisable-v1r1 vanilla psidisable-v1r1 : Amean 1 1.3100 ( 0.00%) 1.3923 ( -6.28%) 1.3427 ( -2.49%) : Amean 3 3.8860 ( 0.00%) 4.1230 * -6.10%* 3.8860 ( -0.00%) : Amean 5 6.8847 ( 0.00%) 8.0390 * -16.77%* 6.7727 ( 1.63%) : Amean 7 9.9310 ( 0.00%) 10.8367 * -9.12%* 9.9910 ( -0.60%) : Amean 12 16.6577 ( 0.00%) 18.2363 * -9.48%* 17.1083 ( -2.71%) : Amean 18 26.5133 ( 0.00%) 27.8833 * -5.17%* 25.7663 ( 2.82%) : Amean 24 34.3003 ( 0.00%) 34.6830 ( -1.12%) 32.0450 ( 6.58%) : Amean 30 40.0063 ( 0.00%) 40.5800 ( -1.43%) 41.5087 ( -3.76%) : Amean 32 40.1407 ( 0.00%) 41.2273 ( -2.71%) 39.9417 ( 0.50%) : : It's showing that the vanilla kernel takes a hit (as the bisection : indicated it would) and that disabling PSI by default is reasonably : close in terms of performance for this particular workload on this : particular machine so; Link: http://lkml.kernel.org/r/20181127165329.GA29728@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Tested-by: Mel Gorman <mgorman@techsingularity.net> Reported-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30 22:09:58 +00:00
config PSI_DEFAULT_DISABLED
bool "Require boot parameter to enable pressure stall information tracking"
default n
depends on PSI
help
If set, pressure stall information tracking will be disabled
per default but can be enabled through passing psi=1 on the
kernel commandline during boot.
psi: make disabling/enabling easier for vendor kernels Mel Gorman reports a hackbench regression with psi that would prohibit shipping the suse kernel with it default-enabled, but he'd still like users to be able to opt in at little to no cost to others. With the current combination of CONFIG_PSI and the psi_disabled bool set from the commandline, this is a challenge. Do the following things to make it easier: 1. Add a config option CONFIG_PSI_DEFAULT_DISABLED that allows distros to enable CONFIG_PSI in their kernel but leave the feature disabled unless a user requests it at boot-time. To avoid double negatives, rename psi_disabled= to psi=. 2. Make psi_disabled a static branch to eliminate any branch costs when the feature is disabled. In terms of numbers before and after this patch, Mel says: : The following is a comparision using CONFIG_PSI=n as a baseline against : your patch and a vanilla kernel : : 4.20.0-rc4 4.20.0-rc4 4.20.0-rc4 : kconfigdisable-v1r1 vanilla psidisable-v1r1 : Amean 1 1.3100 ( 0.00%) 1.3923 ( -6.28%) 1.3427 ( -2.49%) : Amean 3 3.8860 ( 0.00%) 4.1230 * -6.10%* 3.8860 ( -0.00%) : Amean 5 6.8847 ( 0.00%) 8.0390 * -16.77%* 6.7727 ( 1.63%) : Amean 7 9.9310 ( 0.00%) 10.8367 * -9.12%* 9.9910 ( -0.60%) : Amean 12 16.6577 ( 0.00%) 18.2363 * -9.48%* 17.1083 ( -2.71%) : Amean 18 26.5133 ( 0.00%) 27.8833 * -5.17%* 25.7663 ( 2.82%) : Amean 24 34.3003 ( 0.00%) 34.6830 ( -1.12%) 32.0450 ( 6.58%) : Amean 30 40.0063 ( 0.00%) 40.5800 ( -1.43%) 41.5087 ( -3.76%) : Amean 32 40.1407 ( 0.00%) 41.2273 ( -2.71%) 39.9417 ( 0.50%) : : It's showing that the vanilla kernel takes a hit (as the bisection : indicated it would) and that disabling PSI by default is reasonably : close in terms of performance for this particular workload on this : particular machine so; Link: http://lkml.kernel.org/r/20181127165329.GA29728@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Tested-by: Mel Gorman <mgorman@techsingularity.net> Reported-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30 22:09:58 +00:00
This feature adds some code to the task wakeup and sleep
paths of the scheduler. The overhead is too low to affect
common scheduling-intense workloads in practice (such as
webservers, memcache), but it does show up in artificial
scheduler stress tests, such as hackbench.
If you are paranoid and not sure what the kernel will be
used for, say Y.
Say N if unsure.
endmenu # "CPU/Task time and stats accounting"
config CPU_ISOLATION
bool "CPU isolation"
depends on SMP || COMPILE_TEST
default y
help
Make sure that CPUs running critical tasks are not disturbed by
any source of "noise" such as unbound workqueues, timers, kthreads...
Unbound jobs get offloaded to housekeeping CPUs. This is driven by
the "isolcpus=" boot parameter.
Say Y if unsure.
source "kernel/rcu/Kconfig"
config BUILD_BIN2C
bool
default n
config IKCONFIG
tristate "Kernel .config support"
help
This option enables the complete Linux kernel ".config" file
contents to be saved in the kernel. It provides documentation
of which kernel options are used in a running kernel or in an
on-disk kernel. This information can be extracted from the kernel
image file with the script scripts/extract-ikconfig and used as
input to rebuild the current kernel or to build another kernel.
It can also be extracted from a running kernel by reading
/proc/config.gz if enabled (below).
config IKCONFIG_PROC
bool "Enable access to .config through /proc/config.gz"
depends on IKCONFIG && PROC_FS
help
This option enables access to the kernel configuration file
through /proc/config.gz.
config IKHEADERS
tristate "Enable kernel headers through /sys/kernel/kheaders.tar.xz"
depends on SYSFS
help
This option enables access to the in-kernel headers that are generated during
the build process. These can be used to build eBPF tracing programs,
or similar programs. If you build the headers as a module, a module called
kheaders.ko is built which can be loaded on-demand to get access to headers.
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
config LOG_BUF_SHIFT
int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
range 12 25 if !H8300
range 12 19 if H8300
default 17
depends on PRINTK
help
printk: allow increasing the ring buffer depending on the number of CPUs The default size of the ring buffer is too small for machines with a large amount of CPUs under heavy load. What ends up happening when debugging is the ring buffer overlaps and chews up old messages making debugging impossible unless the size is passed as a kernel parameter. An idle system upon boot up will on average spew out only about one or two extra lines but where this really matters is on heavy load and that will vary widely depending on the system and environment. There are mechanisms to help increase the kernel ring buffer for tracing through debugfs, and those interfaces even allow growing the kernel ring buffer per CPU. We also have a static value which can be passed upon boot. Relying on debugfs however is not ideal for production, and relying on the value passed upon bootup is can only used *after* an issue has creeped up. Instead of being reactive this adds a proactive measure which lets you scale the amount of contributions you'd expect to the kernel ring buffer under load by each CPU in the worst case scenario. We use num_possible_cpus() to avoid complexities which could be introduced by dynamically changing the ring buffer size at run time, num_possible_cpus() lets us use the upper limit on possible number of CPUs therefore avoiding having to deal with hotplugging CPUs on and off. This introduces the kernel configuration option LOG_CPU_MAX_BUF_SHIFT which is used to specify the maximum amount of contributions to the kernel ring buffer in the worst case before the kernel ring buffer flips over, the size is specified as a power of 2. The total amount of contributions made by each CPU must be greater than half of the default kernel ring buffer size (1 << LOG_BUF_SHIFT bytes) in order to trigger an increase upon bootup. The kernel ring buffer is increased to the next power of two that would fit the required minimum kernel ring buffer size plus the additional CPU contribution. For example if LOG_BUF_SHIFT is 18 (256 KB) you'd require at least 128 KB contributions by other CPUs in order to trigger an increase of the kernel ring buffer. With a LOG_CPU_BUF_SHIFT of 12 (4 KB) you'd require at least anything over > 64 possible CPUs to trigger an increase. If you had 128 possible CPUs the amount of minimum required kernel ring buffer bumps to: ((1 << 18) + ((128 - 1) * (1 << 12))) / 1024 = 764 KB Since we require the ring buffer to be a power of two the new required size would be 1024 KB. This CPU contributions are ignored when the "log_buf_len" kernel parameter is used as it forces the exact size of the ring buffer to an expected power of two value. [pmladek@suse.cz: fix build] Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.cz> Tested-by: Davidlohr Bueso <davidlohr@hp.com> Tested-by: Petr Mladek <pmladek@suse.cz> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Stephen Warren <swarren@wwwdotorg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Petr Mladek <pmladek@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Arun KS <arunks.linux@gmail.com> Cc: Kees Cook <keescook@chromium.org> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 23:08:56 +00:00
Select the minimal kernel log buffer size as a power of 2.
The final size is affected by LOG_CPU_MAX_BUF_SHIFT config
parameter, see below. Any higher size also might be forced
by "log_buf_len" boot parameter.
Examples:
printk: allow increasing the ring buffer depending on the number of CPUs The default size of the ring buffer is too small for machines with a large amount of CPUs under heavy load. What ends up happening when debugging is the ring buffer overlaps and chews up old messages making debugging impossible unless the size is passed as a kernel parameter. An idle system upon boot up will on average spew out only about one or two extra lines but where this really matters is on heavy load and that will vary widely depending on the system and environment. There are mechanisms to help increase the kernel ring buffer for tracing through debugfs, and those interfaces even allow growing the kernel ring buffer per CPU. We also have a static value which can be passed upon boot. Relying on debugfs however is not ideal for production, and relying on the value passed upon bootup is can only used *after* an issue has creeped up. Instead of being reactive this adds a proactive measure which lets you scale the amount of contributions you'd expect to the kernel ring buffer under load by each CPU in the worst case scenario. We use num_possible_cpus() to avoid complexities which could be introduced by dynamically changing the ring buffer size at run time, num_possible_cpus() lets us use the upper limit on possible number of CPUs therefore avoiding having to deal with hotplugging CPUs on and off. This introduces the kernel configuration option LOG_CPU_MAX_BUF_SHIFT which is used to specify the maximum amount of contributions to the kernel ring buffer in the worst case before the kernel ring buffer flips over, the size is specified as a power of 2. The total amount of contributions made by each CPU must be greater than half of the default kernel ring buffer size (1 << LOG_BUF_SHIFT bytes) in order to trigger an increase upon bootup. The kernel ring buffer is increased to the next power of two that would fit the required minimum kernel ring buffer size plus the additional CPU contribution. For example if LOG_BUF_SHIFT is 18 (256 KB) you'd require at least 128 KB contributions by other CPUs in order to trigger an increase of the kernel ring buffer. With a LOG_CPU_BUF_SHIFT of 12 (4 KB) you'd require at least anything over > 64 possible CPUs to trigger an increase. If you had 128 possible CPUs the amount of minimum required kernel ring buffer bumps to: ((1 << 18) + ((128 - 1) * (1 << 12))) / 1024 = 764 KB Since we require the ring buffer to be a power of two the new required size would be 1024 KB. This CPU contributions are ignored when the "log_buf_len" kernel parameter is used as it forces the exact size of the ring buffer to an expected power of two value. [pmladek@suse.cz: fix build] Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.cz> Tested-by: Davidlohr Bueso <davidlohr@hp.com> Tested-by: Petr Mladek <pmladek@suse.cz> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Stephen Warren <swarren@wwwdotorg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Petr Mladek <pmladek@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Arun KS <arunks.linux@gmail.com> Cc: Kees Cook <keescook@chromium.org> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 23:08:56 +00:00
17 => 128 KB
16 => 64 KB
printk: allow increasing the ring buffer depending on the number of CPUs The default size of the ring buffer is too small for machines with a large amount of CPUs under heavy load. What ends up happening when debugging is the ring buffer overlaps and chews up old messages making debugging impossible unless the size is passed as a kernel parameter. An idle system upon boot up will on average spew out only about one or two extra lines but where this really matters is on heavy load and that will vary widely depending on the system and environment. There are mechanisms to help increase the kernel ring buffer for tracing through debugfs, and those interfaces even allow growing the kernel ring buffer per CPU. We also have a static value which can be passed upon boot. Relying on debugfs however is not ideal for production, and relying on the value passed upon bootup is can only used *after* an issue has creeped up. Instead of being reactive this adds a proactive measure which lets you scale the amount of contributions you'd expect to the kernel ring buffer under load by each CPU in the worst case scenario. We use num_possible_cpus() to avoid complexities which could be introduced by dynamically changing the ring buffer size at run time, num_possible_cpus() lets us use the upper limit on possible number of CPUs therefore avoiding having to deal with hotplugging CPUs on and off. This introduces the kernel configuration option LOG_CPU_MAX_BUF_SHIFT which is used to specify the maximum amount of contributions to the kernel ring buffer in the worst case before the kernel ring buffer flips over, the size is specified as a power of 2. The total amount of contributions made by each CPU must be greater than half of the default kernel ring buffer size (1 << LOG_BUF_SHIFT bytes) in order to trigger an increase upon bootup. The kernel ring buffer is increased to the next power of two that would fit the required minimum kernel ring buffer size plus the additional CPU contribution. For example if LOG_BUF_SHIFT is 18 (256 KB) you'd require at least 128 KB contributions by other CPUs in order to trigger an increase of the kernel ring buffer. With a LOG_CPU_BUF_SHIFT of 12 (4 KB) you'd require at least anything over > 64 possible CPUs to trigger an increase. If you had 128 possible CPUs the amount of minimum required kernel ring buffer bumps to: ((1 << 18) + ((128 - 1) * (1 << 12))) / 1024 = 764 KB Since we require the ring buffer to be a power of two the new required size would be 1024 KB. This CPU contributions are ignored when the "log_buf_len" kernel parameter is used as it forces the exact size of the ring buffer to an expected power of two value. [pmladek@suse.cz: fix build] Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.cz> Tested-by: Davidlohr Bueso <davidlohr@hp.com> Tested-by: Petr Mladek <pmladek@suse.cz> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Stephen Warren <swarren@wwwdotorg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Petr Mladek <pmladek@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Arun KS <arunks.linux@gmail.com> Cc: Kees Cook <keescook@chromium.org> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 23:08:56 +00:00
15 => 32 KB
14 => 16 KB
13 => 8 KB
12 => 4 KB
printk: allow increasing the ring buffer depending on the number of CPUs The default size of the ring buffer is too small for machines with a large amount of CPUs under heavy load. What ends up happening when debugging is the ring buffer overlaps and chews up old messages making debugging impossible unless the size is passed as a kernel parameter. An idle system upon boot up will on average spew out only about one or two extra lines but where this really matters is on heavy load and that will vary widely depending on the system and environment. There are mechanisms to help increase the kernel ring buffer for tracing through debugfs, and those interfaces even allow growing the kernel ring buffer per CPU. We also have a static value which can be passed upon boot. Relying on debugfs however is not ideal for production, and relying on the value passed upon bootup is can only used *after* an issue has creeped up. Instead of being reactive this adds a proactive measure which lets you scale the amount of contributions you'd expect to the kernel ring buffer under load by each CPU in the worst case scenario. We use num_possible_cpus() to avoid complexities which could be introduced by dynamically changing the ring buffer size at run time, num_possible_cpus() lets us use the upper limit on possible number of CPUs therefore avoiding having to deal with hotplugging CPUs on and off. This introduces the kernel configuration option LOG_CPU_MAX_BUF_SHIFT which is used to specify the maximum amount of contributions to the kernel ring buffer in the worst case before the kernel ring buffer flips over, the size is specified as a power of 2. The total amount of contributions made by each CPU must be greater than half of the default kernel ring buffer size (1 << LOG_BUF_SHIFT bytes) in order to trigger an increase upon bootup. The kernel ring buffer is increased to the next power of two that would fit the required minimum kernel ring buffer size plus the additional CPU contribution. For example if LOG_BUF_SHIFT is 18 (256 KB) you'd require at least 128 KB contributions by other CPUs in order to trigger an increase of the kernel ring buffer. With a LOG_CPU_BUF_SHIFT of 12 (4 KB) you'd require at least anything over > 64 possible CPUs to trigger an increase. If you had 128 possible CPUs the amount of minimum required kernel ring buffer bumps to: ((1 << 18) + ((128 - 1) * (1 << 12))) / 1024 = 764 KB Since we require the ring buffer to be a power of two the new required size would be 1024 KB. This CPU contributions are ignored when the "log_buf_len" kernel parameter is used as it forces the exact size of the ring buffer to an expected power of two value. [pmladek@suse.cz: fix build] Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.cz> Tested-by: Davidlohr Bueso <davidlohr@hp.com> Tested-by: Petr Mladek <pmladek@suse.cz> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Stephen Warren <swarren@wwwdotorg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Petr Mladek <pmladek@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Arun KS <arunks.linux@gmail.com> Cc: Kees Cook <keescook@chromium.org> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 23:08:56 +00:00
config LOG_CPU_MAX_BUF_SHIFT
int "CPU kernel log buffer size contribution (13 => 8 KB, 17 => 128KB)"
depends on SMP
printk: allow increasing the ring buffer depending on the number of CPUs The default size of the ring buffer is too small for machines with a large amount of CPUs under heavy load. What ends up happening when debugging is the ring buffer overlaps and chews up old messages making debugging impossible unless the size is passed as a kernel parameter. An idle system upon boot up will on average spew out only about one or two extra lines but where this really matters is on heavy load and that will vary widely depending on the system and environment. There are mechanisms to help increase the kernel ring buffer for tracing through debugfs, and those interfaces even allow growing the kernel ring buffer per CPU. We also have a static value which can be passed upon boot. Relying on debugfs however is not ideal for production, and relying on the value passed upon bootup is can only used *after* an issue has creeped up. Instead of being reactive this adds a proactive measure which lets you scale the amount of contributions you'd expect to the kernel ring buffer under load by each CPU in the worst case scenario. We use num_possible_cpus() to avoid complexities which could be introduced by dynamically changing the ring buffer size at run time, num_possible_cpus() lets us use the upper limit on possible number of CPUs therefore avoiding having to deal with hotplugging CPUs on and off. This introduces the kernel configuration option LOG_CPU_MAX_BUF_SHIFT which is used to specify the maximum amount of contributions to the kernel ring buffer in the worst case before the kernel ring buffer flips over, the size is specified as a power of 2. The total amount of contributions made by each CPU must be greater than half of the default kernel ring buffer size (1 << LOG_BUF_SHIFT bytes) in order to trigger an increase upon bootup. The kernel ring buffer is increased to the next power of two that would fit the required minimum kernel ring buffer size plus the additional CPU contribution. For example if LOG_BUF_SHIFT is 18 (256 KB) you'd require at least 128 KB contributions by other CPUs in order to trigger an increase of the kernel ring buffer. With a LOG_CPU_BUF_SHIFT of 12 (4 KB) you'd require at least anything over > 64 possible CPUs to trigger an increase. If you had 128 possible CPUs the amount of minimum required kernel ring buffer bumps to: ((1 << 18) + ((128 - 1) * (1 << 12))) / 1024 = 764 KB Since we require the ring buffer to be a power of two the new required size would be 1024 KB. This CPU contributions are ignored when the "log_buf_len" kernel parameter is used as it forces the exact size of the ring buffer to an expected power of two value. [pmladek@suse.cz: fix build] Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.cz> Tested-by: Davidlohr Bueso <davidlohr@hp.com> Tested-by: Petr Mladek <pmladek@suse.cz> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Stephen Warren <swarren@wwwdotorg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Petr Mladek <pmladek@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Arun KS <arunks.linux@gmail.com> Cc: Kees Cook <keescook@chromium.org> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 23:08:56 +00:00
range 0 21
default 12 if !BASE_SMALL
default 0 if BASE_SMALL
depends on PRINTK
printk: allow increasing the ring buffer depending on the number of CPUs The default size of the ring buffer is too small for machines with a large amount of CPUs under heavy load. What ends up happening when debugging is the ring buffer overlaps and chews up old messages making debugging impossible unless the size is passed as a kernel parameter. An idle system upon boot up will on average spew out only about one or two extra lines but where this really matters is on heavy load and that will vary widely depending on the system and environment. There are mechanisms to help increase the kernel ring buffer for tracing through debugfs, and those interfaces even allow growing the kernel ring buffer per CPU. We also have a static value which can be passed upon boot. Relying on debugfs however is not ideal for production, and relying on the value passed upon bootup is can only used *after* an issue has creeped up. Instead of being reactive this adds a proactive measure which lets you scale the amount of contributions you'd expect to the kernel ring buffer under load by each CPU in the worst case scenario. We use num_possible_cpus() to avoid complexities which could be introduced by dynamically changing the ring buffer size at run time, num_possible_cpus() lets us use the upper limit on possible number of CPUs therefore avoiding having to deal with hotplugging CPUs on and off. This introduces the kernel configuration option LOG_CPU_MAX_BUF_SHIFT which is used to specify the maximum amount of contributions to the kernel ring buffer in the worst case before the kernel ring buffer flips over, the size is specified as a power of 2. The total amount of contributions made by each CPU must be greater than half of the default kernel ring buffer size (1 << LOG_BUF_SHIFT bytes) in order to trigger an increase upon bootup. The kernel ring buffer is increased to the next power of two that would fit the required minimum kernel ring buffer size plus the additional CPU contribution. For example if LOG_BUF_SHIFT is 18 (256 KB) you'd require at least 128 KB contributions by other CPUs in order to trigger an increase of the kernel ring buffer. With a LOG_CPU_BUF_SHIFT of 12 (4 KB) you'd require at least anything over > 64 possible CPUs to trigger an increase. If you had 128 possible CPUs the amount of minimum required kernel ring buffer bumps to: ((1 << 18) + ((128 - 1) * (1 << 12))) / 1024 = 764 KB Since we require the ring buffer to be a power of two the new required size would be 1024 KB. This CPU contributions are ignored when the "log_buf_len" kernel parameter is used as it forces the exact size of the ring buffer to an expected power of two value. [pmladek@suse.cz: fix build] Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.cz> Tested-by: Davidlohr Bueso <davidlohr@hp.com> Tested-by: Petr Mladek <pmladek@suse.cz> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Stephen Warren <swarren@wwwdotorg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Petr Mladek <pmladek@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Arun KS <arunks.linux@gmail.com> Cc: Kees Cook <keescook@chromium.org> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 23:08:56 +00:00
help
This option allows to increase the default ring buffer size
according to the number of CPUs. The value defines the contribution
of each CPU as a power of 2. The used space is typically only few
lines however it might be much more when problems are reported,
e.g. backtraces.
The increased size means that a new buffer has to be allocated and
the original static one is unused. It makes sense only on systems
with more CPUs. Therefore this value is used only when the sum of
contributions is greater than the half of the default kernel ring
buffer as defined by LOG_BUF_SHIFT. The default values are set
so that more than 16 CPUs are needed to trigger the allocation.
printk: allow increasing the ring buffer depending on the number of CPUs The default size of the ring buffer is too small for machines with a large amount of CPUs under heavy load. What ends up happening when debugging is the ring buffer overlaps and chews up old messages making debugging impossible unless the size is passed as a kernel parameter. An idle system upon boot up will on average spew out only about one or two extra lines but where this really matters is on heavy load and that will vary widely depending on the system and environment. There are mechanisms to help increase the kernel ring buffer for tracing through debugfs, and those interfaces even allow growing the kernel ring buffer per CPU. We also have a static value which can be passed upon boot. Relying on debugfs however is not ideal for production, and relying on the value passed upon bootup is can only used *after* an issue has creeped up. Instead of being reactive this adds a proactive measure which lets you scale the amount of contributions you'd expect to the kernel ring buffer under load by each CPU in the worst case scenario. We use num_possible_cpus() to avoid complexities which could be introduced by dynamically changing the ring buffer size at run time, num_possible_cpus() lets us use the upper limit on possible number of CPUs therefore avoiding having to deal with hotplugging CPUs on and off. This introduces the kernel configuration option LOG_CPU_MAX_BUF_SHIFT which is used to specify the maximum amount of contributions to the kernel ring buffer in the worst case before the kernel ring buffer flips over, the size is specified as a power of 2. The total amount of contributions made by each CPU must be greater than half of the default kernel ring buffer size (1 << LOG_BUF_SHIFT bytes) in order to trigger an increase upon bootup. The kernel ring buffer is increased to the next power of two that would fit the required minimum kernel ring buffer size plus the additional CPU contribution. For example if LOG_BUF_SHIFT is 18 (256 KB) you'd require at least 128 KB contributions by other CPUs in order to trigger an increase of the kernel ring buffer. With a LOG_CPU_BUF_SHIFT of 12 (4 KB) you'd require at least anything over > 64 possible CPUs to trigger an increase. If you had 128 possible CPUs the amount of minimum required kernel ring buffer bumps to: ((1 << 18) + ((128 - 1) * (1 << 12))) / 1024 = 764 KB Since we require the ring buffer to be a power of two the new required size would be 1024 KB. This CPU contributions are ignored when the "log_buf_len" kernel parameter is used as it forces the exact size of the ring buffer to an expected power of two value. [pmladek@suse.cz: fix build] Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.cz> Tested-by: Davidlohr Bueso <davidlohr@hp.com> Tested-by: Petr Mladek <pmladek@suse.cz> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Stephen Warren <swarren@wwwdotorg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Petr Mladek <pmladek@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Arun KS <arunks.linux@gmail.com> Cc: Kees Cook <keescook@chromium.org> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 23:08:56 +00:00
Also this option is ignored when "log_buf_len" kernel parameter is
used as it forces an exact (power of two) size of the ring buffer.
The number of possible CPUs is used for this computation ignoring
hotplugging making the computation optimal for the worst case
scenario while allowing a simple algorithm to be used from bootup.
printk: allow increasing the ring buffer depending on the number of CPUs The default size of the ring buffer is too small for machines with a large amount of CPUs under heavy load. What ends up happening when debugging is the ring buffer overlaps and chews up old messages making debugging impossible unless the size is passed as a kernel parameter. An idle system upon boot up will on average spew out only about one or two extra lines but where this really matters is on heavy load and that will vary widely depending on the system and environment. There are mechanisms to help increase the kernel ring buffer for tracing through debugfs, and those interfaces even allow growing the kernel ring buffer per CPU. We also have a static value which can be passed upon boot. Relying on debugfs however is not ideal for production, and relying on the value passed upon bootup is can only used *after* an issue has creeped up. Instead of being reactive this adds a proactive measure which lets you scale the amount of contributions you'd expect to the kernel ring buffer under load by each CPU in the worst case scenario. We use num_possible_cpus() to avoid complexities which could be introduced by dynamically changing the ring buffer size at run time, num_possible_cpus() lets us use the upper limit on possible number of CPUs therefore avoiding having to deal with hotplugging CPUs on and off. This introduces the kernel configuration option LOG_CPU_MAX_BUF_SHIFT which is used to specify the maximum amount of contributions to the kernel ring buffer in the worst case before the kernel ring buffer flips over, the size is specified as a power of 2. The total amount of contributions made by each CPU must be greater than half of the default kernel ring buffer size (1 << LOG_BUF_SHIFT bytes) in order to trigger an increase upon bootup. The kernel ring buffer is increased to the next power of two that would fit the required minimum kernel ring buffer size plus the additional CPU contribution. For example if LOG_BUF_SHIFT is 18 (256 KB) you'd require at least 128 KB contributions by other CPUs in order to trigger an increase of the kernel ring buffer. With a LOG_CPU_BUF_SHIFT of 12 (4 KB) you'd require at least anything over > 64 possible CPUs to trigger an increase. If you had 128 possible CPUs the amount of minimum required kernel ring buffer bumps to: ((1 << 18) + ((128 - 1) * (1 << 12))) / 1024 = 764 KB Since we require the ring buffer to be a power of two the new required size would be 1024 KB. This CPU contributions are ignored when the "log_buf_len" kernel parameter is used as it forces the exact size of the ring buffer to an expected power of two value. [pmladek@suse.cz: fix build] Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.cz> Tested-by: Davidlohr Bueso <davidlohr@hp.com> Tested-by: Petr Mladek <pmladek@suse.cz> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Stephen Warren <swarren@wwwdotorg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Petr Mladek <pmladek@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Arun KS <arunks.linux@gmail.com> Cc: Kees Cook <keescook@chromium.org> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 23:08:56 +00:00
Examples shift values and their meaning:
17 => 128 KB for each CPU
16 => 64 KB for each CPU
15 => 32 KB for each CPU
14 => 16 KB for each CPU
13 => 8 KB for each CPU
12 => 4 KB for each CPU
config PRINTK_SAFE_LOG_BUF_SHIFT
int "Temporary per-CPU printk log buffer size (12 => 4KB, 13 => 8KB)"
range 10 21
default 13
depends on PRINTK
help
Select the size of an alternate printk per-CPU buffer where messages
printed from usafe contexts are temporary stored. One example would
be NMI messages, another one - printk recursion. The messages are
copied to the main log buffer in a safe context to avoid a deadlock.
The value defines the size as a power of 2.
Those messages are rare and limited. The largest one is when
a backtrace is printed. It usually fits into 4KB. Select
8KB if you want to be on the safe side.
Examples:
17 => 128 KB for each CPU
16 => 64 KB for each CPU
15 => 32 KB for each CPU
14 => 16 KB for each CPU
13 => 8 KB for each CPU
12 => 4 KB for each CPU
#
# Architectures with an unreliable sched_clock() should select this:
#
config HAVE_UNSTABLE_SCHED_CLOCK
bool
config GENERIC_SCHED_CLOCK
bool
sched/uclamp: Add CPU's clamp buckets refcounting Utilization clamping allows to clamp the CPU's utilization within a [util_min, util_max] range, depending on the set of RUNNABLE tasks on that CPU. Each task references two "clamp buckets" defining its minimum and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp bucket is active if there is at least one RUNNABLE tasks enqueued on that CPU and refcounting that bucket. When a task is {en,de}queued {on,from} a rq, the set of active clamp buckets on that CPU can change. If the set of active clamp buckets changes for a CPU a new "aggregated" clamp value is computed for that CPU. This is because each clamp bucket enforces a different utilization clamp value. Clamp values are always MAX aggregated for both util_min and util_max. This ensures that no task can affect the performance of other co-scheduled tasks which are more boosted (i.e. with higher util_min clamp) or less capped (i.e. with higher util_max clamp). A task has: task_struct::uclamp[clamp_id]::bucket_id to track the "bucket index" of the CPU's clamp bucket it refcounts while enqueued, for each clamp index (clamp_id). A runqueue has: rq::uclamp[clamp_id]::bucket[bucket_id].tasks to track how many RUNNABLE tasks on that CPU refcount each clamp bucket (bucket_id) of a clamp index (clamp_id). It also has a: rq::uclamp[clamp_id]::bucket[bucket_id].value to track the clamp value of each clamp bucket (bucket_id) of a clamp index (clamp_id). The rq::uclamp::bucket[clamp_id][] array is scanned every time it's needed to find a new MAX aggregated clamp value for a clamp_id. This operation is required only when it's dequeued the last task of a clamp bucket tracking the current MAX aggregated clamp value. In this case, the CPU is either entering IDLE or going to schedule a less boosted or more clamped task. The expected number of different clamp values configured at build time is small enough to fit the full unordered array into a single cache line, for configurations of up to 7 buckets. Add to struct rq the basic data structures required to refcount the number of RUNNABLE tasks for each clamp bucket. Add also the max aggregation required to update the rq's clamp value at each enqueue/dequeue event. Use a simple linear mapping of clamp values into clamp buckets. Pre-compute and cache bucket_id to avoid integer divisions at enqueue/dequeue time. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-2-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-21 08:42:02 +00:00
menu "Scheduler features"
config UCLAMP_TASK
bool "Enable utilization clamping for RT/FAIR tasks"
depends on CPU_FREQ_GOV_SCHEDUTIL
help
This feature enables the scheduler to track the clamped utilization
of each CPU based on RUNNABLE tasks scheduled on that CPU.
With this option, the user can specify the min and max CPU
utilization allowed for RUNNABLE tasks. The max utilization defines
the maximum frequency a task should use while the min utilization
defines the minimum frequency it should use.
Both min and max utilization clamp values are hints to the scheduler,
aiming at improving its frequency selection policy, but they do not
enforce or grant any specific bandwidth for tasks.
If in doubt, say N.
config UCLAMP_BUCKETS_COUNT
int "Number of supported utilization clamp buckets"
range 5 20
default 5
depends on UCLAMP_TASK
help
Defines the number of clamp buckets to use. The range of each bucket
will be SCHED_CAPACITY_SCALE/UCLAMP_BUCKETS_COUNT. The higher the
number of clamp buckets the finer their granularity and the higher
the precision of clamping aggregation and tracking at run-time.
For example, with the minimum configuration value we will have 5
clamp buckets tracking 20% utilization each. A 25% boosted tasks will
be refcounted in the [20..39]% bucket and will set the bucket clamp
effective value to 25%.
If a second 30% boosted task should be co-scheduled on the same CPU,
that task will be refcounted in the same bucket of the first task and
it will boost the bucket clamp effective value to 30%.
The clamp effective value of a bucket is reset to its nominal value
(20% in the example above) when there are no more tasks refcounted in
that bucket.
An additional boost/capping margin can be added to some tasks. In the
example above the 25% task will be boosted to 30% until it exits the
CPU. If that should be considered not acceptable on certain systems,
it's always possible to reduce the margin by increasing the number of
clamp buckets to trade off used memory for run-time tracking
precision.
If in doubt, use the default value.
endmenu
#
# For architectures that want to enable the support for NUMA-affine scheduler
# balancing logic:
#
config ARCH_SUPPORTS_NUMA_BALANCING
bool
mm: send one IPI per CPU to TLB flush all entries after unmapping pages An IPI is sent to flush remote TLBs when a page is unmapped that was potentially accesssed by other CPUs. There are many circumstances where this happens but the obvious one is kswapd reclaiming pages belonging to a running process as kswapd and the task are likely running on separate CPUs. On small machines, this is not a significant problem but as machine gets larger with more cores and more memory, the cost of these IPIs can be high. This patch uses a simple structure that tracks CPUs that potentially have TLB entries for pages being unmapped. When the unmapping is complete, the full TLB is flushed on the assumption that a refill cost is lower than flushing individual entries. Architectures wishing to do this must give the following guarantee. If a clean page is unmapped and not immediately flushed, the architecture must guarantee that a write to that linear address from a CPU with a cached TLB entry will trap a page fault. This is essentially what the kernel already depends on but the window is much larger with this patch applied and is worth highlighting. The architecture should consider whether the cost of the full TLB flush is higher than sending an IPI to flush each individual entry. An additional architecture helper called flush_tlb_local is required. It's a trivial wrapper with some accounting in the x86 case. The impact of this patch depends on the workload as measuring any benefit requires both mapped pages co-located on the LRU and memory pressure. The case with the biggest impact is multiple processes reading mapped pages taken from the vm-scalability test suite. The test case uses NR_CPU readers of mapped files that consume 10*RAM. Linear mapped reader on a 4-node machine with 64G RAM and 48 CPUs 4.2.0-rc1 4.2.0-rc1 vanilla flushfull-v7 Ops lru-file-mmap-read-elapsed 159.62 ( 0.00%) 120.68 ( 24.40%) Ops lru-file-mmap-read-time_range 30.59 ( 0.00%) 2.80 ( 90.85%) Ops lru-file-mmap-read-time_stddv 6.70 ( 0.00%) 0.64 ( 90.38%) 4.2.0-rc1 4.2.0-rc1 vanilla flushfull-v7 User 581.00 611.43 System 5804.93 4111.76 Elapsed 161.03 122.12 This is showing that the readers completed 24.40% faster with 29% less system CPU time. From vmstats, it is known that the vanilla kernel was interrupted roughly 900K times per second during the steady phase of the test and the patched kernel was interrupts 180K times per second. The impact is lower on a single socket machine. 4.2.0-rc1 4.2.0-rc1 vanilla flushfull-v7 Ops lru-file-mmap-read-elapsed 25.33 ( 0.00%) 20.38 ( 19.54%) Ops lru-file-mmap-read-time_range 0.91 ( 0.00%) 1.44 (-58.24%) Ops lru-file-mmap-read-time_stddv 0.28 ( 0.00%) 0.47 (-65.34%) 4.2.0-rc1 4.2.0-rc1 vanilla flushfull-v7 User 58.09 57.64 System 111.82 76.56 Elapsed 27.29 22.55 It's still a noticeable improvement with vmstat showing interrupts went from roughly 500K per second to 45K per second. The patch will have no impact on workloads with no memory pressure or have relatively few mapped pages. It will have an unpredictable impact on the workload running on the CPU being flushed as it'll depend on how many TLB entries need to be refilled and how long that takes. Worst case, the TLB will be completely cleared of active entries when the target PFNs were not resident at all. [sasha.levin@oracle.com: trace tlb flush after disabling preemption in try_to_unmap_flush] Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 22:47:32 +00:00
#
# For architectures that prefer to flush all TLBs after a number of pages
# are unmapped instead of sending one IPI per page to flush. The architecture
# must provide guarantees on what happens if a clean TLB cache entry is
# written after the unmap. Details are in mm/rmap.c near the check for
# should_defer_flush. The architecture should also consider if the full flush
# and the refill costs are offset by the savings of sending fewer IPIs.
config ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
bool
config CC_HAS_INT128
def_bool !$(cc-option,$(m64-flag) -D__SIZEOF_INT128__=0) && 64BIT
#
# For architectures that know their GCC __int128 support is sound
#
config ARCH_SUPPORTS_INT128
bool
# For architectures that (ab)use NUMA to represent different memory regions
# all cpu-local but of different latencies, such as SuperH.
#
config ARCH_WANT_NUMA_VARIABLE_LOCALITY
bool
config NUMA_BALANCING
bool "Memory placement aware NUMA scheduler"
depends on ARCH_SUPPORTS_NUMA_BALANCING
depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY
depends on SMP && NUMA && MIGRATION
help
This option adds support for automatic NUMA aware memory/task placement.
The mechanism is quite primitive and is based on migrating memory when
it has references to the node the task is running on.
This system will be inactive on UMA systems.
config NUMA_BALANCING_DEFAULT_ENABLED
bool "Automatically enable NUMA aware memory/task placement"
default y
depends on NUMA_BALANCING
help
If set, automatic NUMA balancing will be enabled if running on a NUMA
machine.
menuconfig CGROUPS
bool "Control Group support"
cgroup: convert to kernfs cgroup filesystem code was derived from the original sysfs implementation which was heavily intertwined with vfs objects and locking with the goal of re-using the existing vfs infrastructure. That experiment turned out rather disastrous and sysfs switched, a long time ago, to distributed filesystem model where a separate representation is maintained which is queried by vfs. Unfortunately, cgroup stuck with the failed experiment all these years and accumulated even more problems over time. Locking and object lifetime management being entangled with vfs is probably the most egregious. vfs is never designed to be misused like this and cgroup ends up jumping through various convoluted dancing to make things work. Even then, operations across multiple cgroups can't be done safely as it'll deadlock with rename locking. Recently, kernfs is separated out from sysfs so that it can be used by users other than sysfs. This patch converts cgroup to use kernfs, which will bring the following benefits. * Separation from vfs internals. Locking and object lifetime management is contained in cgroup proper making things a lot simpler. This removes significant amount of locking convolutions, hairy object lifetime rules and the restriction on multi-cgroup operations. * Can drop a lot of code to implement filesystem interface as most are provided by kernfs. * Proper "severing" semantics, which allows controllers to not worry about lingering file accesses after offline. While the preceding patches did as much as possible to make the transition less painful, large part of the conversion has to be one discrete step making this patch rather large. The rest of the commit message lists notable changes in different areas. Overall ------- * vfs constructs replaced with kernfs ones. cgroup->dentry w/ ->kn, cgroupfs_root->sb w/ ->kf_root. * All dentry accessors are removed. Helpers to map from kernfs constructs are added. * All vfs plumbing around dentry, inode and bdi removed. * cgroup_mount() now directly looks for matching root and then proceeds to create a new one if not found. Synchronization and object lifetime ----------------------------------- * vfs inode locking removed. Among other things, this removes the need for the convolution in cgroup_cfts_commit(). Future patches will further simplify it. * vfs refcnting replaced with cgroup internal ones. cgroup->refcnt, cgroupfs_root->refcnt added. cgroup_put_root() now directly puts root->refcnt and when it reaches zero proceeds to destroy it thus merging cgroup_put_root() and the former cgroup_kill_sb(). Simliarly, cgroup_put() now directly schedules cgroup_free_rcu() when refcnt reaches zero. * Unlike before, kernfs objects don't hold onto cgroup objects. When cgroup destroys a kernfs node, all existing operations are drained and the association is broken immediately. The same for cgroupfs_roots and mounts. * All operations which come through kernfs guarantee that the associated cgroup is and stays valid for the duration of operation; however, there are two paths which need to find out the associated cgroup from dentry without going through kernfs - css_tryget_from_dir() and cgroupstats_build(). For these two, kernfs_node->priv is RCU managed so that they can dereference it under RCU read lock. File and directory handling --------------------------- * File and directory operations converted to kernfs_ops and kernfs_syscall_ops. * xattrs is implicitly supported by kernfs. No need to worry about it from cgroup. This means that "xattr" mount option is no longer necessary. A future patch will add a deprecated warning message when sane_behavior. * When cftype->max_write_len > PAGE_SIZE, it's necessary to make a private copy of one of the kernfs_ops to set its atomic_write_len. cftype->kf_ops is added and cgroup_init/exit_cftypes() are updated to handle it. * cftype->lockdep_key added so that kernfs lockdep annotation can be per cftype. * Inidividual file entries and open states are now managed by kernfs. No need to worry about them from cgroup. cfent, cgroup_open_file and their friends are removed. * kernfs_nodes are created deactivated and kernfs_activate() invocations added to places where creation of new nodes are committed. * cgroup_rmdir() uses kernfs_[un]break_active_protection() for self-removal. v2: - Li pointed out in an earlier patch that specifying "name=" during mount without subsystem specification should succeed if there's an existing hierarchy with a matching name although it should fail with -EINVAL if a new hierarchy should be created. Prior to the conversion, this used by handled by deferring failure from NULL return from cgroup_root_from_opts(), which was necessary because root was being created before checking for existing ones. Note that cgroup_root_from_opts() returned an ERR_PTR() value for error conditions which require immediate mount failure. As we now have separate search and creation steps, deferring failure from cgroup_root_from_opts() is no longer necessary. cgroup_root_from_opts() is updated to always return ERR_PTR() value on failure. - The logic to match existing roots is updated so that a mount attempt with a matching name but different subsys_mask are rejected. This was handled by a separate matching loop under the comment "Check for name clashes with existing mounts" but got lost during conversion. Merge the check into the main search loop. - Add __rcu __force casting in RCU_INIT_POINTER() in cgroup_destroy_locked() to avoid the sparse address space warning reported by kbuild test bot. Maybe we want an explicit interface to use kn->priv as RCU protected pointer? v3: Make CONFIG_CGROUPS select CONFIG_KERNFS. v4: Rebased on top of 0ab02ca8f887 ("cgroup: protect modifications to cgroup_idr with cgroup_mutex"). Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com> Cc: kbuild test robot fengguang.wu@intel.com>
2014-02-11 16:52:49 +00:00
select KERNFS
help
This option adds support for grouping sets of processes together, for
use with process control subsystems such as Cpusets, CFS, memory
controls or device isolation.
See
- Documentation/scheduler/sched-design-CFS.rst (CFS)
- Documentation/admin-guide/cgroup-v1/ (features for grouping, isolation
and resource control)
Say N if unsure.
if CGROUPS
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 23:42:31 +00:00
config PAGE_COUNTER
bool
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 23:42:31 +00:00
config MEMCG
bool "Memory controller"
mm: memcontrol: lockless page counters Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 23:42:31 +00:00
select PAGE_COUNTER
cgroup, memcg: move cgroup_event implementation to memcg cgroup_event is way over-designed and tries to build a generic flexible event mechanism into cgroup - fully customizable event specification for each user of the interface. This is utterly unnecessary and overboard especially in the light of the planned unified hierarchy as there's gonna be single agent. Simply generating events at fixed points, or if that's too restrictive, configureable cadence or single set of configureable points should be enough. Thankfully, memcg is the only user and gets to keep it. Replacing it with something simpler on sane_behavior is strongly recommended. This patch moves cgroup_event and "cgroup.event_control" implementation to mm/memcontrol.c. Clearing of events on cgroup destruction is moved from cgroup_destroy_locked() to mem_cgroup_css_offline(), which shouldn't make any noticeable difference. cgroup_css() and __file_cft() are exported to enable the move; however, this will soon be reverted once the event code is updated to be memcg specific. Note that "cgroup.event_control" will now exist only on the hierarchy with memcg attached to it. While this change is visible to userland, it is unlikely to be noticeable as the file has never been meaningful outside memcg. Aside from the above change, this is pure code relocation. v2: Per Li Zefan's comments, init/Kconfig updated accordingly and poll.h inclusion moved from cgroup.c to memcontrol.c. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com>
2013-11-22 23:20:42 +00:00
select EVENTFD
help
Provides control over the memory footprint of tasks in a cgroup.
config MEMCG_SWAP
mm: memcontrol: make swap tracking an integral part of memory control Without swap page tracking, users that are otherwise memory controlled can easily escape their containment and allocate significant amounts of memory that they're not being charged for. That's because swap does readahead, but without the cgroup records of who owned the page at swapout, readahead pages don't get charged until somebody actually faults them into their page table and we can identify an owner task. This can be maliciously exploited with MADV_WILLNEED, which triggers arbitrary readahead allocations without charging the pages. Make swap swap page tracking an integral part of memcg and remove the Kconfig options. In the first place, it was only made configurable to allow users to save some memory. But the overhead of tracking cgroup ownership per swap page is minimal - 2 byte per page, or 512k per 1G of swap, or 0.04%. Saving that at the expense of broken containment semantics is not something we should present as a coequal option. The swapaccount=0 boot option will continue to exist, and it will eliminate the page_counter overhead and hide the swap control files, but it won't disable swap slot ownership tracking. This patch makes sure we always have the cgroup records at swapin time; the next patch will fix the actual bug by charging readahead swap pages at swapin time rather than at fault time. v2: fix double swap charge bug in cgroup1/cgroup2 code gating [hannes@cmpxchg.org: fix crash with cgroup_disable=memory] Link: http://lkml.kernel.org/r/20200521215855.GB815153@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Naresh Kamboju <naresh.kamboju@linaro.org> Link: http://lkml.kernel.org/r/20200508183105.225460-16-hannes@cmpxchg.org Debugged-by: Hugh Dickins <hughd@google.com> Debugged-by: Michal Hocko <mhocko@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 23:02:14 +00:00
bool
depends on MEMCG && SWAP
default y
mm: introduce CONFIG_MEMCG_KMEM as combination of CONFIG_MEMCG && !CONFIG_SLOB Introduce new config option, which is used to replace repeating CONFIG_MEMCG && !CONFIG_SLOB pattern. Next patches add a little more memcg+kmem related code, so let's keep the defines more clearly. Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 22:47:25 +00:00
config MEMCG_KMEM
bool
depends on MEMCG && !SLOB
default y
config BLK_CGROUP
bool "IO controller"
depends on BLOCK
default n
help
Generic block IO controller cgroup interface. This is the common
cgroup interface which should be used by various IO controlling
policies.
Currently, CFQ IO scheduler uses it to recognize task groups and
control disk bandwidth allocation (proportional time slice allocation)
to such task groups. It is also used by bio throttling logic in
block layer to implement upper limit in IO rates on a device.
This option only enables generic Block IO controller infrastructure.
One needs to also enable actual IO controlling logic/policy. For
enabling proportional weight division of disk bandwidth in CFQ, set
CONFIG_BFQ_GROUP_IOSCHED=y; for enabling throttling policy, set
CONFIG_BLK_DEV_THROTTLING=y.
See Documentation/admin-guide/cgroup-v1/blkio-controller.rst for more information.
config CGROUP_WRITEBACK
bool
depends on MEMCG && BLK_CGROUP
default y
menuconfig CGROUP_SCHED
bool "CPU controller"
default n
help
This feature lets CPU scheduler recognize task groups and control CPU
bandwidth allocation to such task groups. It uses cgroups to group
tasks.
if CGROUP_SCHED
config FAIR_GROUP_SCHED
bool "Group scheduling for SCHED_OTHER"
depends on CGROUP_SCHED
default CGROUP_SCHED
config CFS_BANDWIDTH
bool "CPU bandwidth provisioning for FAIR_GROUP_SCHED"
depends on FAIR_GROUP_SCHED
default n
help
This option allows users to define CPU bandwidth rates (limits) for
tasks running within the fair group scheduler. Groups with no limit
set are considered to be unconstrained and will run with no
restriction.
See Documentation/scheduler/sched-bwc.rst for more information.
config RT_GROUP_SCHED
bool "Group scheduling for SCHED_RR/FIFO"
depends on CGROUP_SCHED
default n
help
This feature lets you explicitly allocate real CPU bandwidth
to task groups. If enabled, it will also make it impossible to
schedule realtime tasks for non-root users until you allocate
realtime bandwidth for them.
See Documentation/scheduler/sched-rt-group.rst for more information.
endif #CGROUP_SCHED
sched/uclamp: Extend CPU's cgroup controller The cgroup CPU bandwidth controller allows to assign a specified (maximum) bandwidth to the tasks of a group. However this bandwidth is defined and enforced only on a temporal base, without considering the actual frequency a CPU is running on. Thus, the amount of computation completed by a task within an allocated bandwidth can be very different depending on the actual frequency the CPU is running that task. The amount of computation can be affected also by the specific CPU a task is running on, especially when running on asymmetric capacity systems like Arm's big.LITTLE. With the availability of schedutil, the scheduler is now able to drive frequency selections based on actual task utilization. Moreover, the utilization clamping support provides a mechanism to bias the frequency selection operated by schedutil depending on constraints assigned to the tasks currently RUNNABLE on a CPU. Giving the mechanisms described above, it is now possible to extend the cpu controller to specify the minimum (or maximum) utilization which should be considered for tasks RUNNABLE on a cpu. This makes it possible to better defined the actual computational power assigned to task groups, thus improving the cgroup CPU bandwidth controller which is currently based just on time constraints. Extend the CPU controller with a couple of new attributes uclamp.{min,max} which allow to enforce utilization boosting and capping for all the tasks in a group. Specifically: - uclamp.min: defines the minimum utilization which should be considered i.e. the RUNNABLE tasks of this group will run at least at a minimum frequency which corresponds to the uclamp.min utilization - uclamp.max: defines the maximum utilization which should be considered i.e. the RUNNABLE tasks of this group will run up to a maximum frequency which corresponds to the uclamp.max utilization These attributes: a) are available only for non-root nodes, both on default and legacy hierarchies, while system wide clamps are defined by a generic interface which does not depends on cgroups. This system wide interface enforces constraints on tasks in the root node. b) enforce effective constraints at each level of the hierarchy which are a restriction of the group requests considering its parent's effective constraints. Root group effective constraints are defined by the system wide interface. This mechanism allows each (non-root) level of the hierarchy to: - request whatever clamp values it would like to get - effectively get only up to the maximum amount allowed by its parent c) have higher priority than task-specific clamps, defined via sched_setattr(), thus allowing to control and restrict task requests. Add two new attributes to the cpu controller to collect "requested" clamp values. Allow that at each non-root level of the hierarchy. Keep it simple by not caring now about "effective" values computation and propagation along the hierarchy. Update sysctl_sched_uclamp_handler() to use the newly introduced uclamp_mutex so that we serialize system default updates with cgroup relate updates. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Michal Koutny <mkoutny@suse.com> Acked-by: Tejun Heo <tj@kernel.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190822132811.31294-2-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-08-22 13:28:06 +00:00
config UCLAMP_TASK_GROUP
bool "Utilization clamping per group of tasks"
depends on CGROUP_SCHED
depends on UCLAMP_TASK
default n
help
This feature enables the scheduler to track the clamped utilization
of each CPU based on RUNNABLE tasks currently scheduled on that CPU.
When this option is enabled, the user can specify a min and max
CPU bandwidth which is allowed for each single task in a group.
The max bandwidth allows to clamp the maximum frequency a task
can use, while the min bandwidth allows to define a minimum
frequency a task will always use.
When task group based utilization clamping is enabled, an eventually
specified task-specific clamp value is constrained by the cgroup
specified clamp value. Both minimum and maximum task clamping cannot
be bigger than the corresponding clamping defined at task group level.
If in doubt, say N.
config CGROUP_PIDS
bool "PIDs controller"
help
Provides enforcement of process number limits in the scope of a
cgroup. Any attempt to fork more processes than is allowed in the
cgroup will fail. PIDs are fundamentally a global resource because it
is fairly trivial to reach PID exhaustion before you reach even a
conservative kmemcg limit. As a result, it is possible to grind a
system to halt without being limited by other cgroup policies. The
PIDs controller is designed to stop this from happening.
It should be noted that organisational operations (such as attaching
to a cgroup hierarchy) will *not* be blocked by the PIDs controller,
since the PIDs limit only affects a process's ability to fork, not to
attach to a cgroup.
config CGROUP_RDMA
bool "RDMA controller"
help
Provides enforcement of RDMA resources defined by IB stack.
It is fairly easy for consumers to exhaust RDMA resources, which
can result into resource unavailability to other consumers.
RDMA controller is designed to stop this from happening.
Attaching processes with active RDMA resources to the cgroup
hierarchy is allowed even if can cross the hierarchy's limit.
config CGROUP_FREEZER
bool "Freezer controller"
help
Provides a way to freeze and unfreeze all tasks in a
cgroup.
This option affects the ORIGINAL cgroup interface. The cgroup2 memory
controller includes important in-kernel memory consumers per default.
If you're using cgroup2, say N.
config CGROUP_HUGETLB
bool "HugeTLB controller"
depends on HUGETLB_PAGE
select PAGE_COUNTER
default n
help
Provides a cgroup controller for HugeTLB pages.
When you enable this, you can put a per cgroup limit on HugeTLB usage.
The limit is enforced during page fault. Since HugeTLB doesn't
support page reclaim, enforcing the limit at page fault time implies
that, the application will get SIGBUS signal if it tries to access
HugeTLB pages beyond its limit. This requires the application to know
beforehand how much HugeTLB pages it would require for its use. The
control group is tracked in the third page lru pointer. This means
that we cannot use the controller with huge page less than 3 pages.
config CPUSETS
bool "Cpuset controller"
depends on SMP
help
This option will let you create and manage CPUSETs which
allow dynamically partitioning a system into sets of CPUs and
Memory Nodes and assigning tasks to run only within those sets.
This is primarily useful on large SMP or NUMA systems.
Say N if unsure.
config PROC_PID_CPUSET
bool "Include legacy /proc/<pid>/cpuset file"
depends on CPUSETS
default y
config CGROUP_DEVICE
bool "Device controller"
help
Provides a cgroup controller implementing whitelists for
devices which a process in the cgroup can mknod or open.
config CGROUP_CPUACCT
bool "Simple CPU accounting controller"
help
Provides a simple controller for monitoring the
total CPU consumed by the tasks in a cgroup.
config CGROUP_PERF
bool "Perf controller"
depends on PERF_EVENTS
help
This option extends the perf per-cpu mode to restrict monitoring
to threads which belong to the cgroup specified and run on the
designated cpu. Or this can be used to have cgroup ID in samples
so that it can monitor performance events among cgroups.
Say N if unsure.
config CGROUP_BPF
bool "Support for eBPF programs attached to cgroups"
depends on BPF_SYSCALL
select SOCK_CGROUP_DATA
help
Allow attaching eBPF programs to a cgroup using the bpf(2)
syscall command BPF_PROG_ATTACH.
In which context these programs are accessed depends on the type
of attachment. For instance, programs that are attached using
BPF_CGROUP_INET_INGRESS will be executed on the ingress path of
inet sockets.
config CGROUP_DEBUG
bool "Debug controller"
default n
depends on DEBUG_KERNEL
help
This option enables a simple controller that exports
debugging information about the cgroups framework. This
controller is for control cgroup debugging only. Its
interfaces are not stable.
Say N.
config SOCK_CGROUP_DATA
bool
default n
endif # CGROUPS
menuconfig NAMESPACES
bool "Namespaces support" if EXPERT
kernel: conditionally support non-root users, groups and capabilities There are a lot of embedded systems that run most or all of their functionality in init, running as root:root. For these systems, supporting multiple users is not necessary. This patch adds a new symbol, CONFIG_MULTIUSER, that makes support for non-root users, non-root groups, and capabilities optional. It is enabled under CONFIG_EXPERT menu. When this symbol is not defined, UID and GID are zero in any possible case and processes always have all capabilities. The following syscalls are compiled out: setuid, setregid, setgid, setreuid, setresuid, getresuid, setresgid, getresgid, setgroups, getgroups, setfsuid, setfsgid, capget, capset. Also, groups.c is compiled out completely. In kernel/capability.c, capable function was moved in order to avoid adding two ifdef blocks. This change saves about 25 KB on a defconfig build. The most minimal kernels have total text sizes in the high hundreds of kB rather than low MB. (The 25k goes down a bit with allnoconfig, but not that much. The kernel was booted in Qemu. All the common functionalities work. Adding users/groups is not possible, failing with -ENOSYS. Bloat-o-meter output: add/remove: 7/87 grow/shrink: 19/397 up/down: 1675/-26325 (-24650) [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Iulia Manda <iulia.manda21@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 23:16:41 +00:00
depends on MULTIUSER
default !EXPERT
help
Provides the way to make tasks work with different objects using
the same id. For example same IPC id may refer to different objects
or same user id or pid may refer to different tasks when used in
different namespaces.
if NAMESPACES
config UTS_NS
bool "UTS namespace"
default y
help
In this namespace tasks see different info provided with the
uname() system call
ns: Introduce Time Namespace Time Namespace isolates clock values. The kernel provides access to several clocks CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, etc. CLOCK_REALTIME System-wide clock that measures real (i.e., wall-clock) time. CLOCK_MONOTONIC Clock that cannot be set and represents monotonic time since some unspecified starting point. CLOCK_BOOTTIME Identical to CLOCK_MONOTONIC, except it also includes any time that the system is suspended. For many users, the time namespace means the ability to changes date and time in a container (CLOCK_REALTIME). Providing per namespace notions of CLOCK_REALTIME would be complex with a massive overhead, but has a dubious value. But in the context of checkpoint/restore functionality, monotonic and boottime clocks become interesting. Both clocks are monotonic with unspecified starting points. These clocks are widely used to measure time slices and set timers. After restoring or migrating processes, it has to be guaranteed that they never go backward. In an ideal case, the behavior of these clocks should be the same as for a case when a whole system is suspended. All this means that it is required to set CLOCK_MONOTONIC and CLOCK_BOOTTIME clocks, which can be achieved by adding per-namespace offsets for clocks. A time namespace is similar to a pid namespace in the way how it is created: unshare(CLONE_NEWTIME) system call creates a new time namespace, but doesn't set it to the current process. Then all children of the process will be born in the new time namespace, or a process can use the setns() system call to join a namespace. This scheme allows setting clock offsets for a namespace, before any processes appear in it. All available clone flags have been used, so CLONE_NEWTIME uses the highest bit of CSIGNAL. It means that it can be used only with the unshare() and the clone3() system calls. [ tglx: Adjusted paragraph about clone3() to reality and massaged the changelog a bit. ] Co-developed-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://criu.org/Time_namespace Link: https://lists.openvz.org/pipermail/criu/2018-June/041504.html Link: https://lore.kernel.org/r/20191112012724.250792-4-dima@arista.com
2019-11-12 01:26:52 +00:00
config TIME_NS
bool "TIME namespace"
lib/vdso: Prepare for time namespace support To support time namespaces in the vdso with a minimal impact on regular non time namespace affected tasks, the namespace handling needs to be hidden in a slow path. The most obvious place is vdso_seq_begin(). If a task belongs to a time namespace then the VVAR page which contains the system wide vdso data is replaced with a namespace specific page which has the same layout as the VVAR page. That page has vdso_data->seq set to 1 to enforce the slow path and vdso_data->clock_mode set to VCLOCK_TIMENS to enforce the time namespace handling path. The extra check in the case that vdso_data->seq is odd, e.g. a concurrent update of the vdso data is in progress, is not really affecting regular tasks which are not part of a time namespace as the task is spin waiting for the update to finish and vdso_data->seq to become even again. If a time namespace task hits that code path, it invokes the corresponding time getter function which retrieves the real VVAR page, reads host time and then adds the offset for the requested clock which is stored in the special VVAR page. If VDSO time namespace support is disabled the whole magic is compiled out. Initial testing shows that the disabled case is almost identical to the host case which does not take the slow timens path. With the special timens page installed the performance hit is constant time and in the range of 5-7%. For the vdso functions which are not using the sequence count an unconditional check for vdso_data->clock_mode is added which switches to the real vdso when the clock_mode is VCLOCK_TIMENS. [avagin: Make do_hres_timens() work with raw clocks too: choose vdso_data pointer by CS_RAW offset.] Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20191112012724.250792-21-dima@arista.com
2019-11-12 01:27:09 +00:00
depends on GENERIC_VDSO_TIME_NS
ns: Introduce Time Namespace Time Namespace isolates clock values. The kernel provides access to several clocks CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, etc. CLOCK_REALTIME System-wide clock that measures real (i.e., wall-clock) time. CLOCK_MONOTONIC Clock that cannot be set and represents monotonic time since some unspecified starting point. CLOCK_BOOTTIME Identical to CLOCK_MONOTONIC, except it also includes any time that the system is suspended. For many users, the time namespace means the ability to changes date and time in a container (CLOCK_REALTIME). Providing per namespace notions of CLOCK_REALTIME would be complex with a massive overhead, but has a dubious value. But in the context of checkpoint/restore functionality, monotonic and boottime clocks become interesting. Both clocks are monotonic with unspecified starting points. These clocks are widely used to measure time slices and set timers. After restoring or migrating processes, it has to be guaranteed that they never go backward. In an ideal case, the behavior of these clocks should be the same as for a case when a whole system is suspended. All this means that it is required to set CLOCK_MONOTONIC and CLOCK_BOOTTIME clocks, which can be achieved by adding per-namespace offsets for clocks. A time namespace is similar to a pid namespace in the way how it is created: unshare(CLONE_NEWTIME) system call creates a new time namespace, but doesn't set it to the current process. Then all children of the process will be born in the new time namespace, or a process can use the setns() system call to join a namespace. This scheme allows setting clock offsets for a namespace, before any processes appear in it. All available clone flags have been used, so CLONE_NEWTIME uses the highest bit of CSIGNAL. It means that it can be used only with the unshare() and the clone3() system calls. [ tglx: Adjusted paragraph about clone3() to reality and massaged the changelog a bit. ] Co-developed-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://criu.org/Time_namespace Link: https://lists.openvz.org/pipermail/criu/2018-June/041504.html Link: https://lore.kernel.org/r/20191112012724.250792-4-dima@arista.com
2019-11-12 01:26:52 +00:00
default y
help
In this namespace boottime and monotonic clocks can be set.
The time will keep going with the same pace.
namespaces: move the IPC namespace under IPC_NS option Currently the IPC namespace management code is spread over the ipc/*.c files. I moved this code into ipc/namespace.c file which is compiled out when needed. The linux/ipc_namespace.h file is used to store the prototypes of the functions in namespace.c and the stubs for NAMESPACES=n case. This is done so, because the stub for copy_ipc_namespace requires the knowledge of the CLONE_NEWIPC flag, which is in sched.h. But the linux/ipc.h file itself in included into many many .c files via the sys.h->sem.h sequence so adding the sched.h into it will make all these .c depend on sched.h which is not that good. On the other hand the knowledge about the namespaces stuff is required in 4 .c files only. Besides, this patch compiles out some auxiliary functions from ipc/sem.c, msg.c and shm.c files. It turned out that moving these functions into namespaces.c is not that easy because they use many other calls and macros from the original file. Moving them would make this patch complicated. On the other hand all these functions can be consolidated, so I will send a separate patch doing this a bit later. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@sw.ru> Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:18:22 +00:00
config IPC_NS
bool "IPC namespace"
depends on (SYSVIPC || POSIX_MQUEUE)
default y
namespaces: move the IPC namespace under IPC_NS option Currently the IPC namespace management code is spread over the ipc/*.c files. I moved this code into ipc/namespace.c file which is compiled out when needed. The linux/ipc_namespace.h file is used to store the prototypes of the functions in namespace.c and the stubs for NAMESPACES=n case. This is done so, because the stub for copy_ipc_namespace requires the knowledge of the CLONE_NEWIPC flag, which is in sched.h. But the linux/ipc.h file itself in included into many many .c files via the sys.h->sem.h sequence so adding the sched.h into it will make all these .c depend on sched.h which is not that good. On the other hand the knowledge about the namespaces stuff is required in 4 .c files only. Besides, this patch compiles out some auxiliary functions from ipc/sem.c, msg.c and shm.c files. It turned out that moving these functions into namespaces.c is not that easy because they use many other calls and macros from the original file. Moving them would make this patch complicated. On the other hand all these functions can be consolidated, so I will send a separate patch doing this a bit later. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@sw.ru> Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:18:22 +00:00
help
In this namespace tasks work with IPC ids which correspond to
different IPC objects in different namespaces.
namespaces: move the IPC namespace under IPC_NS option Currently the IPC namespace management code is spread over the ipc/*.c files. I moved this code into ipc/namespace.c file which is compiled out when needed. The linux/ipc_namespace.h file is used to store the prototypes of the functions in namespace.c and the stubs for NAMESPACES=n case. This is done so, because the stub for copy_ipc_namespace requires the knowledge of the CLONE_NEWIPC flag, which is in sched.h. But the linux/ipc.h file itself in included into many many .c files via the sys.h->sem.h sequence so adding the sched.h into it will make all these .c depend on sched.h which is not that good. On the other hand the knowledge about the namespaces stuff is required in 4 .c files only. Besides, this patch compiles out some auxiliary functions from ipc/sem.c, msg.c and shm.c files. It turned out that moving these functions into namespaces.c is not that easy because they use many other calls and macros from the original file. Moving them would make this patch complicated. On the other hand all these functions can be consolidated, so I will send a separate patch doing this a bit later. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@sw.ru> Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:18:22 +00:00
config USER_NS
bool "User namespace"
default n
help
This allows containers, i.e. vservers, to use user namespaces
to provide different user info for different servers.
When user namespaces are enabled in the kernel it is
recommended that the MEMCG option also be enabled and that
user-space use the memory control groups to limit the amount
of memory a memory unprivileged users can use.
If unsure, say N.
config PID_NS
bool "PID Namespaces"
default y
help
Support process id namespaces. This allows having multiple
processes with the same pid as long as they are in different
pid namespaces. This is a building block of containers.
config NET_NS
bool "Network namespace"
depends on NET
default y
help
Allow user space to create what appear to be multiple instances
of the network stack.
endif # NAMESPACES
config CHECKPOINT_RESTORE
bool "Checkpoint/restore support"
select PROC_CHILDREN
kcmp: Support selection of SYS_kcmp without CHECKPOINT_RESTORE Userspace has discovered the functionality offered by SYS_kcmp and has started to depend upon it. In particular, Mesa uses SYS_kcmp for os_same_file_description() in order to identify when two fd (e.g. device or dmabuf) point to the same struct file. Since they depend on it for core functionality, lift SYS_kcmp out of the non-default CONFIG_CHECKPOINT_RESTORE into the selectable syscall category. Rasmus Villemoes also pointed out that systemd uses SYS_kcmp to deduplicate the per-service file descriptor store. Note that some distributions such as Ubuntu are already enabling CHECKPOINT_RESTORE in their configs and so, by extension, SYS_kcmp. References: https://gitlab.freedesktop.org/drm/intel/-/issues/3046 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Will Drewry <wad@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Lucas Stach <l.stach@pengutronix.de> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: stable@vger.kernel.org Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> # DRM depends on kcmp Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> # systemd uses kcmp Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Thomas Zimmermann <tzimmermann@suse.de> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20210205220012.1983-1-chris@chris-wilson.co.uk
2021-02-05 22:00:12 +00:00
select KCMP
default n
help
Enables additional kernel features in a sake of checkpoint/restore.
In particular it adds auxiliary prctl codes to setup process text,
data and heap segment sizes, and a few additional /proc filesystem
entries.
If unsure, say N here.
sched: Add 'autogroup' scheduling feature: automated per session task groups A recurring complaint from CFS users is that parallel kbuild has a negative impact on desktop interactivity. This patch implements an idea from Linus, to automatically create task groups. Currently, only per session autogroups are implemented, but the patch leaves the way open for enhancement. Implementation: each task's signal struct contains an inherited pointer to a refcounted autogroup struct containing a task group pointer, the default for all tasks pointing to the init_task_group. When a task calls setsid(), a new task group is created, the process is moved into the new task group, and a reference to the preveious task group is dropped. Child processes inherit this task group thereafter, and increase it's refcount. When the last thread of a process exits, the process's reference is dropped, such that when the last process referencing an autogroup exits, the autogroup is destroyed. At runqueue selection time, IFF a task has no cgroup assignment, its current autogroup is used. Autogroup bandwidth is controllable via setting it's nice level through the proc filesystem: cat /proc/<pid>/autogroup Displays the task's group and the group's nice level. echo <nice level> > /proc/<pid>/autogroup Sets the task group's shares to the weight of nice <level> task. Setting nice level is rate limited for !admin users due to the abuse risk of task group locking. The feature is enabled from boot by default if CONFIG_SCHED_AUTOGROUP=y is selected, but can be disabled via the boot option noautogroup, and can also be turned on/off on the fly via: echo [01] > /proc/sys/kernel/sched_autogroup_enabled ... which will automatically move tasks to/from the root task group. Signed-off-by: Mike Galbraith <efault@gmx.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Markus Trippelsdorf <markus@trippelsdorf.de> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Paul Turner <pjt@google.com> Cc: Oleg Nesterov <oleg@redhat.com> [ Removed the task_group_path() debug code, and fixed !EVENTFD build failure. ] Signed-off-by: Ingo Molnar <mingo@elte.hu> LKML-Reference: <1290281700.28711.9.camel@maggy.simson.net> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-11-30 13:18:03 +00:00
config SCHED_AUTOGROUP
bool "Automatic process group scheduling"
select CGROUPS
select CGROUP_SCHED
select FAIR_GROUP_SCHED
help
This option optimizes the scheduler for common desktop workloads by
automatically creating and populating task groups. This separation
of workloads isolates aggressive CPU burners (like build jobs) from
desktop applications. Task group autogeneration is currently based
upon task session.
config SYSFS_DEPRECATED
bool "Enable deprecated sysfs features to support old userspace tools"
depends on SYSFS
default n
help
This option adds code that switches the layout of the "block" class
devices, to not show up in /sys/class/block/, but only in
/sys/block/.
This switch is only active when the sysfs.deprecated=1 boot option is
passed or the SYSFS_DEPRECATED_V2 option is set.
This option allows new kernels to run on old distributions and tools,
which might get confused by /sys/class/block/. Since 2007/2008 all
major distributions and tools handle this just fine.
Recent distributions and userspace tools after 2009/2010 depend on
the existence of /sys/class/block/, and will not work with this
option enabled.
Only if you are using a new kernel on an old distribution, you might
need to say Y here.
config SYSFS_DEPRECATED_V2
bool "Enable deprecated sysfs features by default"
default n
depends on SYSFS
depends on SYSFS_DEPRECATED
help
Enable deprecated sysfs by default.
See the CONFIG_SYSFS_DEPRECATED option for more details about this
option.
Only if you are using a new kernel on an old distribution, you might
need to say Y here. Even then, odds are you would not need it
enabled, you can always pass the boot option if absolutely necessary.
config RELAY
bool "Kernel->user space relay support (formerly relayfs)"
relay: Use irq_work instead of plain timer for deferred wakeup Relay avoids calling wake_up_interruptible() for doing the wakeup of readers/consumers, waiting for the generation of new data, from the context of a process which produced the data. This is apparently done to prevent the possibility of a deadlock in case Scheduler itself is is generating data for the relay, after acquiring rq->lock. The following patch used a timer (to be scheduled at next jiffy), for delegating the wakeup to another context. commit 7c9cb38302e78d24e37f7d8a2ea7eed4ae5f2fa7 Author: Tom Zanussi <zanussi@comcast.net> Date: Wed May 9 02:34:01 2007 -0700 relay: use plain timer instead of delayed work relay doesn't need to use schedule_delayed_work() for waking readers when a simple timer will do. Scheduling a plain timer, at next jiffies boundary, to do the wakeup causes a significant wakeup latency for the Userspace client, which makes relay less suitable for the high-frequency low-payload use cases where the data gets generated at a very high rate, like multiple sub buffers getting filled within a milli second. Moreover the timer is re-scheduled on every newly produced sub buffer so the timer keeps getting pushed out if sub buffers are filled in a very quick succession (less than a jiffy gap between filling of 2 sub buffers). As a result relay runs out of sub buffers to store the new data. By using irq_work it is ensured that wakeup of userspace client, blocked in the poll call, is done at earliest (through self IPI or next timer tick) enabling it to always consume the data in time. Also this makes relay consistent with printk & ring buffers (trace), as they too use irq_work for deferred wake up of readers. [arnd@arndb.de: select CONFIG_IRQ_WORK] Link: http://lkml.kernel.org/r/20160912154035.3222156-1-arnd@arndb.de [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/1472906487-1559-1-git-send-email-akash.goel@intel.com Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Akash Goel <akash.goel@intel.com> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-11 20:54:33 +00:00
select IRQ_WORK
help
This option enables support for relay interface support in
certain file systems (such as debugfs).
It is designed to provide an efficient mechanism for tools and
facilities to relay large amounts of data from kernel space to
user space.
If unsure, say N.
config BLK_DEV_INITRD
bool "Initial RAM filesystem and RAM disk (initramfs/initrd) support"
help
The initial RAM filesystem is a ramfs which is loaded by the
boot loader (loadlin or lilo) and that is mounted as root
before the normal boot procedure. It is typically used to
load modules needed to mount the "real" root file system,
etc. See <file:Documentation/admin-guide/initrd.rst> for details.
If RAM disk support (BLK_DEV_RAM) is also included, this
also enables initial RAM disk (initrd) support and adds
15 Kbytes (more on some other architectures) to the kernel size.
If unsure say Y.
if BLK_DEV_INITRD
source "usr/Kconfig"
endif
config BOOT_CONFIG
bool "Boot config support"
select BLK_DEV_INITRD
help
Extra boot config allows system admin to pass a config file as
complemental extension of kernel cmdline when booting.
The boot config file must be attached at the end of initramfs
with checksum, size and magic word.
See <file:Documentation/admin-guide/bootconfig.rst> for details.
If unsure, say Y.
choice
prompt "Compiler optimization level"
default CC_OPTIMIZE_FOR_PERFORMANCE
config CC_OPTIMIZE_FOR_PERFORMANCE
bool "Optimize for performance (-O2)"
help
This is the default optimization level for the kernel, building
with the "-O2" compiler flag for best performance and most
helpful compile-time warnings.
config CC_OPTIMIZE_FOR_PERFORMANCE_O3
bool "Optimize more for performance (-O3)"
depends on ARC
help
Choosing this option will pass "-O3" to your compiler to optimize
the kernel yet more for performance.
config CC_OPTIMIZE_FOR_SIZE
bool "Optimize for size (-Os)"
help
Choosing this option will pass "-Os" to your compiler resulting
in a smaller kernel.
endchoice
config HAVE_LD_DEAD_CODE_DATA_ELIMINATION
bool
help
This requires that the arch annotates or otherwise protects
its external entry points from being discarded. Linker scripts
must also merge .text.*, .data.*, and .bss.* correctly into
output sections. Care must be taken not to pull in unrelated
sections (e.g., '.text.init'). Typically '.' in section names
is used to distinguish them from label names / C identifiers.
config LD_DEAD_CODE_DATA_ELIMINATION
bool "Dead code and data elimination (EXPERIMENTAL)"
depends on HAVE_LD_DEAD_CODE_DATA_ELIMINATION
depends on EXPERT
depends on $(cc-option,-ffunction-sections -fdata-sections)
depends on $(ld-option,--gc-sections)
help
Enable this if you want to do dead code and data elimination with
the linker by compiling with -ffunction-sections -fdata-sections,
and linking with --gc-sections.
This can reduce on disk and in-memory size of the kernel
code and static data, particularly for small configs and
on small systems. This has the possibility of introducing
silently broken kernel if the required annotations are not
present. This option is not well tested yet, so use at your
own risk.
config LD_ORPHAN_WARN
def_bool y
depends on ARCH_WANT_LD_ORPHAN_WARN
depends on !LD_IS_LLD || LLD_VERSION >= 110000
depends on $(ld-option,--orphan-handling=warn)
config SYSCTL
bool
config HAVE_UID16
bool
config SYSCTL_EXCEPTION_TRACE
bool
help
Enable support for /proc/sys/debug/exception-trace.
config SYSCTL_ARCH_UNALIGN_NO_WARN
bool
help
Enable support for /proc/sys/kernel/ignore-unaligned-usertrap
Allows arch to define/use @no_unaligned_warning to possibly warn
about unaligned access emulation going on under the hood.
config SYSCTL_ARCH_UNALIGN_ALLOW
bool
help
Enable support for /proc/sys/kernel/unaligned-trap
Allows arches to define/use @unaligned_enabled to runtime toggle
the unaligned access emulation.
see arch/parisc/kernel/unaligned.c for reference
config HAVE_PCSPKR_PLATFORM
bool
# interpreter that classic socket filters depend on
config BPF
bool
menuconfig EXPERT
bool "Configure standard kernel features (expert users)"
# Unhide debug options, to make the on-by-default options visible
select DEBUG_KERNEL
help
This option allows certain base kernel options and settings
to be disabled or tweaked. This is for specialized
environments which can tolerate a "non-standard" kernel.
Only use this if you really know what you are doing.
config UID16
bool "Enable 16-bit UID system calls" if EXPERT
kernel: conditionally support non-root users, groups and capabilities There are a lot of embedded systems that run most or all of their functionality in init, running as root:root. For these systems, supporting multiple users is not necessary. This patch adds a new symbol, CONFIG_MULTIUSER, that makes support for non-root users, non-root groups, and capabilities optional. It is enabled under CONFIG_EXPERT menu. When this symbol is not defined, UID and GID are zero in any possible case and processes always have all capabilities. The following syscalls are compiled out: setuid, setregid, setgid, setreuid, setresuid, getresuid, setresgid, getresgid, setgroups, getgroups, setfsuid, setfsgid, capget, capset. Also, groups.c is compiled out completely. In kernel/capability.c, capable function was moved in order to avoid adding two ifdef blocks. This change saves about 25 KB on a defconfig build. The most minimal kernels have total text sizes in the high hundreds of kB rather than low MB. (The 25k goes down a bit with allnoconfig, but not that much. The kernel was booted in Qemu. All the common functionalities work. Adding users/groups is not possible, failing with -ENOSYS. Bloat-o-meter output: add/remove: 7/87 grow/shrink: 19/397 up/down: 1675/-26325 (-24650) [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Iulia Manda <iulia.manda21@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 23:16:41 +00:00
depends on HAVE_UID16 && MULTIUSER
default y
help
This enables the legacy 16-bit UID syscall wrappers.
kernel: conditionally support non-root users, groups and capabilities There are a lot of embedded systems that run most or all of their functionality in init, running as root:root. For these systems, supporting multiple users is not necessary. This patch adds a new symbol, CONFIG_MULTIUSER, that makes support for non-root users, non-root groups, and capabilities optional. It is enabled under CONFIG_EXPERT menu. When this symbol is not defined, UID and GID are zero in any possible case and processes always have all capabilities. The following syscalls are compiled out: setuid, setregid, setgid, setreuid, setresuid, getresuid, setresgid, getresgid, setgroups, getgroups, setfsuid, setfsgid, capget, capset. Also, groups.c is compiled out completely. In kernel/capability.c, capable function was moved in order to avoid adding two ifdef blocks. This change saves about 25 KB on a defconfig build. The most minimal kernels have total text sizes in the high hundreds of kB rather than low MB. (The 25k goes down a bit with allnoconfig, but not that much. The kernel was booted in Qemu. All the common functionalities work. Adding users/groups is not possible, failing with -ENOSYS. Bloat-o-meter output: add/remove: 7/87 grow/shrink: 19/397 up/down: 1675/-26325 (-24650) [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Iulia Manda <iulia.manda21@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 23:16:41 +00:00
config MULTIUSER
bool "Multiple users, groups and capabilities support" if EXPERT
default y
help
This option enables support for non-root users, groups and
capabilities.
If you say N here, all processes will run with UID 0, GID 0, and all
possible capabilities. Saying N here also compiles out support for
system calls related to UIDs, GIDs, and capabilities, such as setuid,
setgid, and capset.
If unsure, say Y here.
config SGETMASK_SYSCALL
bool "sgetmask/ssetmask syscalls support" if EXPERT
def_bool PARISC || M68K || PPC || MIPS || X86 || SPARC || MICROBLAZE || SUPERH
help
sys_sgetmask and sys_ssetmask are obsolete system calls
no longer supported in libc but still enabled by default in some
architectures.
If unsure, leave the default option here.
config SYSFS_SYSCALL
bool "Sysfs syscall support" if EXPERT
default y
help
sys_sysfs is an obsolete system call no longer supported in libc.
Note that disabling this option is more secure but might break
compatibility with some systems.
If unsure say Y here.
config FHANDLE
bool "open by fhandle syscalls" if EXPERT
select EXPORTFS
default y
help
If you say Y here, a user level program will be able to map
file names to handle and then later use the handle for
different file system operations. This is useful in implementing
userspace file servers, which now track files using handles instead
of names. The handle would remain the same even if file names
get renamed. Enables open_by_handle_at(2) and name_to_handle_at(2)
syscalls.
config POSIX_TIMERS
bool "Posix Clocks & timers" if EXPERT
default y
help
This includes native support for POSIX timers to the kernel.
Some embedded systems have no use for them and therefore they
can be configured out to reduce the size of the kernel image.
When this option is disabled, the following syscalls won't be
available: timer_create, timer_gettime: timer_getoverrun,
timer_settime, timer_delete, clock_adjtime, getitimer,
setitimer, alarm. Furthermore, the clock_settime, clock_gettime,
clock_getres and clock_nanosleep syscalls will be limited to
CLOCK_REALTIME, CLOCK_MONOTONIC and CLOCK_BOOTTIME only.
If unsure say y.
config PRINTK
default y
bool "Enable support for printk" if EXPERT
select IRQ_WORK
help
This option enables normal printk support. Removing it
eliminates most of the message strings from the kernel image
and makes the kernel more or less silent. As this makes it
very difficult to diagnose system problems, saying N here is
strongly discouraged.
printk/nmi: generic solution for safe printk in NMI printk() takes some locks and could not be used a safe way in NMI context. The chance of a deadlock is real especially when printing stacks from all CPUs. This particular problem has been addressed on x86 by the commit a9edc8809328 ("x86/nmi: Perform a safe NMI stack trace on all CPUs"). The patchset brings two big advantages. First, it makes the NMI backtraces safe on all architectures for free. Second, it makes all NMI messages almost safe on all architectures (the temporary buffer is limited. We still should keep the number of messages in NMI context at minimum). Note that there already are several messages printed in NMI context: WARN_ON(in_nmi()), BUG_ON(in_nmi()), anything being printed out from MCE handlers. These are not easy to avoid. This patch reuses most of the code and makes it generic. It is useful for all messages and architectures that support NMI. The alternative printk_func is set when entering and is reseted when leaving NMI context. It queues IRQ work to copy the messages into the main ring buffer in a safe context. __printk_nmi_flush() copies all available messages and reset the buffer. Then we could use a simple cmpxchg operations to get synchronized with writers. There is also used a spinlock to get synchronized with other flushers. We do not longer use seq_buf because it depends on external lock. It would be hard to make all supported operations safe for a lockless use. It would be confusing and error prone to make only some operations safe. The code is put into separate printk/nmi.c as suggested by Steven Rostedt. It needs a per-CPU buffer and is compiled only on architectures that call nmi_enter(). This is achieved by the new HAVE_NMI Kconfig flag. The are MN10300 and Xtensa architectures. We need to clean up NMI handling there first. Let's do it separately. The patch is heavily based on the draft from Peter Zijlstra, see https://lkml.org/lkml/2015/6/10/327 [arnd@arndb.de: printk-nmi: use %zu format string for size_t] [akpm@linux-foundation.org: min_t->min - all types are size_t here] Signed-off-by: Petr Mladek <pmladek@suse.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Suggested-by: Steven Rostedt <rostedt@goodmis.org> Cc: Jan Kara <jack@suse.cz> Acked-by: Russell King <rmk+kernel@arm.linux.org.uk> [arm part] Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: Jiri Kosina <jkosina@suse.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: David Miller <davem@davemloft.net> Cc: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 00:00:33 +00:00
config PRINTK_NMI
def_bool y
depends on PRINTK
depends on HAVE_NMI
config BUG
bool "BUG() support" if EXPERT
default y
help
Disabling this option eliminates support for BUG and WARN, reducing
the size of your kernel image and potentially quietly ignoring
numerous fatal conditions. You should only consider disabling this
option for embedded systems with no facilities for reporting errors.
Just say Y.
config ELF_CORE
depends on COREDUMP
default y
bool "Enable ELF core dumps" if EXPERT
help
Enable support for generating core dumps. Disabling saves about 4k.
config PCSPKR_PLATFORM
bool "Enable PC-Speaker support" if EXPERT
depends on HAVE_PCSPKR_PLATFORM
select I8253_LOCK
default y
help
This option allows to disable the internal PC-Speaker
support, saving some memory.
config BASE_FULL
default y
bool "Enable full-sized data structures for core" if EXPERT
help
Disabling this option reduces the size of miscellaneous core
kernel data structures. This saves memory on small machines,
but may reduce performance.
config FUTEX
bool "Enable futex support" if EXPERT
default y
imply RT_MUTEXES
help
Disabling this option will cause the kernel to be built without
support for "fast userspace mutexes". The resulting kernel may not
run glibc-based applications correctly.
config FUTEX_PI
bool
depends on FUTEX && RT_MUTEXES
default y
config HAVE_FUTEX_CMPXCHG
bool
depends on FUTEX
help
Architectures should select this if futex_atomic_cmpxchg_inatomic()
is implemented and always working. This removes a couple of runtime
checks.
config EPOLL
bool "Enable eventpoll support" if EXPERT
default y
help
Disabling this option will cause the kernel to be built without
support for epoll family of system calls.
signal/timer/event: signalfd core This patch series implements the new signalfd() system call. I took part of the original Linus code (and you know how badly it can be broken :), and I added even more breakage ;) Signals are fetched from the same signal queue used by the process, so signalfd will compete with standard kernel delivery in dequeue_signal(). If you want to reliably fetch signals on the signalfd file, you need to block them with sigprocmask(SIG_BLOCK). This seems to be working fine on my Dual Opteron machine. I made a quick test program for it: http://www.xmailserver.org/signafd-test.c The signalfd() system call implements signal delivery into a file descriptor receiver. The signalfd file descriptor if created with the following API: int signalfd(int ufd, const sigset_t *mask, size_t masksize); The "ufd" parameter allows to change an existing signalfd sigmask, w/out going to close/create cycle (Linus idea). Use "ufd" == -1 if you want a brand new signalfd file. The "mask" allows to specify the signal mask of signals that we are interested in. The "masksize" parameter is the size of "mask". The signalfd fd supports the poll(2) and read(2) system calls. The poll(2) will return POLLIN when signals are available to be dequeued. As a direct consequence of supporting the Linux poll subsystem, the signalfd fd can use used together with epoll(2) too. The read(2) system call will return a "struct signalfd_siginfo" structure in the userspace supplied buffer. The return value is the number of bytes copied in the supplied buffer, or -1 in case of error. The read(2) call can also return 0, in case the sighand structure to which the signalfd was attached, has been orphaned. The O_NONBLOCK flag is also supported, and read(2) will return -EAGAIN in case no signal is available. If the size of the buffer passed to read(2) is lower than sizeof(struct signalfd_siginfo), -EINVAL is returned. A read from the signalfd can also return -ERESTARTSYS in case a signal hits the process. The format of the struct signalfd_siginfo is, and the valid fields depends of the (->code & __SI_MASK) value, in the same way a struct siginfo would: struct signalfd_siginfo { __u32 signo; /* si_signo */ __s32 err; /* si_errno */ __s32 code; /* si_code */ __u32 pid; /* si_pid */ __u32 uid; /* si_uid */ __s32 fd; /* si_fd */ __u32 tid; /* si_fd */ __u32 band; /* si_band */ __u32 overrun; /* si_overrun */ __u32 trapno; /* si_trapno */ __s32 status; /* si_status */ __s32 svint; /* si_int */ __u64 svptr; /* si_ptr */ __u64 utime; /* si_utime */ __u64 stime; /* si_stime */ __u64 addr; /* si_addr */ }; [akpm@linux-foundation.org: fix signalfd_copyinfo() on i386] Signed-off-by: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 05:23:13 +00:00
config SIGNALFD
bool "Enable signalfd() system call" if EXPERT
signal/timer/event: signalfd core This patch series implements the new signalfd() system call. I took part of the original Linus code (and you know how badly it can be broken :), and I added even more breakage ;) Signals are fetched from the same signal queue used by the process, so signalfd will compete with standard kernel delivery in dequeue_signal(). If you want to reliably fetch signals on the signalfd file, you need to block them with sigprocmask(SIG_BLOCK). This seems to be working fine on my Dual Opteron machine. I made a quick test program for it: http://www.xmailserver.org/signafd-test.c The signalfd() system call implements signal delivery into a file descriptor receiver. The signalfd file descriptor if created with the following API: int signalfd(int ufd, const sigset_t *mask, size_t masksize); The "ufd" parameter allows to change an existing signalfd sigmask, w/out going to close/create cycle (Linus idea). Use "ufd" == -1 if you want a brand new signalfd file. The "mask" allows to specify the signal mask of signals that we are interested in. The "masksize" parameter is the size of "mask". The signalfd fd supports the poll(2) and read(2) system calls. The poll(2) will return POLLIN when signals are available to be dequeued. As a direct consequence of supporting the Linux poll subsystem, the signalfd fd can use used together with epoll(2) too. The read(2) system call will return a "struct signalfd_siginfo" structure in the userspace supplied buffer. The return value is the number of bytes copied in the supplied buffer, or -1 in case of error. The read(2) call can also return 0, in case the sighand structure to which the signalfd was attached, has been orphaned. The O_NONBLOCK flag is also supported, and read(2) will return -EAGAIN in case no signal is available. If the size of the buffer passed to read(2) is lower than sizeof(struct signalfd_siginfo), -EINVAL is returned. A read from the signalfd can also return -ERESTARTSYS in case a signal hits the process. The format of the struct signalfd_siginfo is, and the valid fields depends of the (->code & __SI_MASK) value, in the same way a struct siginfo would: struct signalfd_siginfo { __u32 signo; /* si_signo */ __s32 err; /* si_errno */ __s32 code; /* si_code */ __u32 pid; /* si_pid */ __u32 uid; /* si_uid */ __s32 fd; /* si_fd */ __u32 tid; /* si_fd */ __u32 band; /* si_band */ __u32 overrun; /* si_overrun */ __u32 trapno; /* si_trapno */ __s32 status; /* si_status */ __s32 svint; /* si_int */ __u64 svptr; /* si_ptr */ __u64 utime; /* si_utime */ __u64 stime; /* si_stime */ __u64 addr; /* si_addr */ }; [akpm@linux-foundation.org: fix signalfd_copyinfo() on i386] Signed-off-by: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 05:23:13 +00:00
default y
help
Enable the signalfd() system call that allows to receive signals
on a file descriptor.
If unsure, say Y.
signal/timer/event: timerfd core This patch introduces a new system call for timers events delivered though file descriptors. This allows timer event to be used with standard POSIX poll(2), select(2) and read(2). As a consequence of supporting the Linux f_op->poll subsystem, they can be used with epoll(2) too. The system call is defined as: int timerfd(int ufd, int clockid, int flags, const struct itimerspec *utmr); The "ufd" parameter allows for re-use (re-programming) of an existing timerfd w/out going through the close/open cycle (same as signalfd). If "ufd" is -1, s new file descriptor will be created, otherwise the existing "ufd" will be re-programmed. The "clockid" parameter is either CLOCK_MONOTONIC or CLOCK_REALTIME. The time specified in the "utmr->it_value" parameter is the expiry time for the timer. If the TFD_TIMER_ABSTIME flag is set in "flags", this is an absolute time, otherwise it's a relative time. If the time specified in the "utmr->it_interval" is not zero (.tv_sec == 0, tv_nsec == 0), this is the period at which the following ticks should be generated. The "utmr->it_interval" should be set to zero if only one tick is requested. Setting the "utmr->it_value" to zero will disable the timer, or will create a timerfd without the timer enabled. The function returns the new (or same, in case "ufd" is a valid timerfd descriptor) file, or -1 in case of error. As stated before, the timerfd file descriptor supports poll(2), select(2) and epoll(2). When a timer event happened on the timerfd, a POLLIN mask will be returned. The read(2) call can be used, and it will return a u32 variable holding the number of "ticks" that happened on the interface since the last call to read(2). The read(2) call supportes the O_NONBLOCK flag too, and EAGAIN will be returned if no ticks happened. A quick test program, shows timerfd working correctly on my amd64 box: http://www.xmailserver.org/timerfd-test.c [akpm@linux-foundation.org: add sys_timerfd to sys_ni.c] Signed-off-by: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 05:23:16 +00:00
config TIMERFD
bool "Enable timerfd() system call" if EXPERT
signal/timer/event: timerfd core This patch introduces a new system call for timers events delivered though file descriptors. This allows timer event to be used with standard POSIX poll(2), select(2) and read(2). As a consequence of supporting the Linux f_op->poll subsystem, they can be used with epoll(2) too. The system call is defined as: int timerfd(int ufd, int clockid, int flags, const struct itimerspec *utmr); The "ufd" parameter allows for re-use (re-programming) of an existing timerfd w/out going through the close/open cycle (same as signalfd). If "ufd" is -1, s new file descriptor will be created, otherwise the existing "ufd" will be re-programmed. The "clockid" parameter is either CLOCK_MONOTONIC or CLOCK_REALTIME. The time specified in the "utmr->it_value" parameter is the expiry time for the timer. If the TFD_TIMER_ABSTIME flag is set in "flags", this is an absolute time, otherwise it's a relative time. If the time specified in the "utmr->it_interval" is not zero (.tv_sec == 0, tv_nsec == 0), this is the period at which the following ticks should be generated. The "utmr->it_interval" should be set to zero if only one tick is requested. Setting the "utmr->it_value" to zero will disable the timer, or will create a timerfd without the timer enabled. The function returns the new (or same, in case "ufd" is a valid timerfd descriptor) file, or -1 in case of error. As stated before, the timerfd file descriptor supports poll(2), select(2) and epoll(2). When a timer event happened on the timerfd, a POLLIN mask will be returned. The read(2) call can be used, and it will return a u32 variable holding the number of "ticks" that happened on the interface since the last call to read(2). The read(2) call supportes the O_NONBLOCK flag too, and EAGAIN will be returned if no ticks happened. A quick test program, shows timerfd working correctly on my amd64 box: http://www.xmailserver.org/timerfd-test.c [akpm@linux-foundation.org: add sys_timerfd to sys_ni.c] Signed-off-by: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 05:23:16 +00:00
default y
help
Enable the timerfd() system call that allows to receive timer
events on a file descriptor.
If unsure, say Y.
signal/timer/event: eventfd core This is a very simple and light file descriptor, that can be used as event wait/dispatch by userspace (both wait and dispatch) and by the kernel (dispatch only). It can be used instead of pipe(2) in all cases where those would simply be used to signal events. Their kernel overhead is much lower than pipes, and they do not consume two fds. When used in the kernel, it can offer an fd-bridge to enable, for example, functionalities like KAIO or syslets/threadlets to signal to an fd the completion of certain operations. But more in general, an eventfd can be used by the kernel to signal readiness, in a POSIX poll/select way, of interfaces that would otherwise be incompatible with it. The API is: int eventfd(unsigned int count); The eventfd API accepts an initial "count" parameter, and returns an eventfd fd. It supports poll(2) (POLLIN, POLLOUT, POLLERR), read(2) and write(2). The POLLIN flag is raised when the internal counter is greater than zero. The POLLOUT flag is raised when at least a value of "1" can be written to the internal counter. The POLLERR flag is raised when an overflow in the counter value is detected. The write(2) operation can never overflow the counter, since it blocks (unless O_NONBLOCK is set, in which case -EAGAIN is returned). But the eventfd_signal() function can do it, since it's supposed to not sleep during its operation. The read(2) function reads the __u64 counter value, and reset the internal value to zero. If the value read is equal to (__u64) -1, an overflow happened on the internal counter (due to 2^64 eventfd_signal() posts that has never been retired - unlickely, but possible). The write(2) call writes an __u64 count value, and adds it to the current counter. The eventfd fd supports O_NONBLOCK also. On the kernel side, we have: struct file *eventfd_fget(int fd); int eventfd_signal(struct file *file, unsigned int n); The eventfd_fget() should be called to get a struct file* from an eventfd fd (this is an fget() + check of f_op being an eventfd fops pointer). The kernel can then call eventfd_signal() every time it wants to post an event to userspace. The eventfd_signal() function can be called from any context. An eventfd() simple test and bench is available here: http://www.xmailserver.org/eventfd-bench.c This is the eventfd-based version of pipetest-4 (pipe(2) based): http://www.xmailserver.org/pipetest-4.c Not that performance matters much in the eventfd case, but eventfd-bench shows almost as double as performance than pipetest-4. [akpm@linux-foundation.org: fix i386 build] [akpm@linux-foundation.org: add sys_eventfd to sys_ni.c] Signed-off-by: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 05:23:19 +00:00
config EVENTFD
bool "Enable eventfd() system call" if EXPERT
signal/timer/event: eventfd core This is a very simple and light file descriptor, that can be used as event wait/dispatch by userspace (both wait and dispatch) and by the kernel (dispatch only). It can be used instead of pipe(2) in all cases where those would simply be used to signal events. Their kernel overhead is much lower than pipes, and they do not consume two fds. When used in the kernel, it can offer an fd-bridge to enable, for example, functionalities like KAIO or syslets/threadlets to signal to an fd the completion of certain operations. But more in general, an eventfd can be used by the kernel to signal readiness, in a POSIX poll/select way, of interfaces that would otherwise be incompatible with it. The API is: int eventfd(unsigned int count); The eventfd API accepts an initial "count" parameter, and returns an eventfd fd. It supports poll(2) (POLLIN, POLLOUT, POLLERR), read(2) and write(2). The POLLIN flag is raised when the internal counter is greater than zero. The POLLOUT flag is raised when at least a value of "1" can be written to the internal counter. The POLLERR flag is raised when an overflow in the counter value is detected. The write(2) operation can never overflow the counter, since it blocks (unless O_NONBLOCK is set, in which case -EAGAIN is returned). But the eventfd_signal() function can do it, since it's supposed to not sleep during its operation. The read(2) function reads the __u64 counter value, and reset the internal value to zero. If the value read is equal to (__u64) -1, an overflow happened on the internal counter (due to 2^64 eventfd_signal() posts that has never been retired - unlickely, but possible). The write(2) call writes an __u64 count value, and adds it to the current counter. The eventfd fd supports O_NONBLOCK also. On the kernel side, we have: struct file *eventfd_fget(int fd); int eventfd_signal(struct file *file, unsigned int n); The eventfd_fget() should be called to get a struct file* from an eventfd fd (this is an fget() + check of f_op being an eventfd fops pointer). The kernel can then call eventfd_signal() every time it wants to post an event to userspace. The eventfd_signal() function can be called from any context. An eventfd() simple test and bench is available here: http://www.xmailserver.org/eventfd-bench.c This is the eventfd-based version of pipetest-4 (pipe(2) based): http://www.xmailserver.org/pipetest-4.c Not that performance matters much in the eventfd case, but eventfd-bench shows almost as double as performance than pipetest-4. [akpm@linux-foundation.org: fix i386 build] [akpm@linux-foundation.org: add sys_eventfd to sys_ni.c] Signed-off-by: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 05:23:19 +00:00
default y
help
Enable the eventfd() system call that allows to receive both
kernel notification (ie. KAIO) or userspace notifications.
If unsure, say Y.
config SHMEM
bool "Use full shmem filesystem" if EXPERT
default y
depends on MMU
help
The shmem is an internal filesystem used to manage shared memory.
It is backed by swap and manages resource limits. It is also exported
to userspace as tmpfs if TMPFS is enabled. Disabling this
option replaces shmem and tmpfs with the much simpler ramfs code,
which may be appropriate on small systems without swap.
config AIO
bool "Enable AIO support" if EXPERT
default y
help
This option enables POSIX asynchronous I/O which may by used
by some high performance threaded applications. Disabling
this option saves about 7k.
Add io_uring IO interface The submission queue (SQ) and completion queue (CQ) rings are shared between the application and the kernel. This eliminates the need to copy data back and forth to submit and complete IO. IO submissions use the io_uring_sqe data structure, and completions are generated in the form of io_uring_cqe data structures. The SQ ring is an index into the io_uring_sqe array, which makes it possible to submit a batch of IOs without them being contiguous in the ring. The CQ ring is always contiguous, as completion events are inherently unordered, and hence any io_uring_cqe entry can point back to an arbitrary submission. Two new system calls are added for this: io_uring_setup(entries, params) Sets up an io_uring instance for doing async IO. On success, returns a file descriptor that the application can mmap to gain access to the SQ ring, CQ ring, and io_uring_sqes. io_uring_enter(fd, to_submit, min_complete, flags, sigset, sigsetsize) Initiates IO against the rings mapped to this fd, or waits for them to complete, or both. The behavior is controlled by the parameters passed in. If 'to_submit' is non-zero, then we'll try and submit new IO. If IORING_ENTER_GETEVENTS is set, the kernel will wait for 'min_complete' events, if they aren't already available. It's valid to set IORING_ENTER_GETEVENTS and 'min_complete' == 0 at the same time, this allows the kernel to return already completed events without waiting for them. This is useful only for polling, as for IRQ driven IO, the application can just check the CQ ring without entering the kernel. With this setup, it's possible to do async IO with a single system call. Future developments will enable polled IO with this interface, and polled submission as well. The latter will enable an application to do IO without doing ANY system calls at all. For IRQ driven IO, an application only needs to enter the kernel for completions if it wants to wait for them to occur. Each io_uring is backed by a workqueue, to support buffered async IO as well. We will only punt to an async context if the command would need to wait for IO on the device side. Any data that can be accessed directly in the page cache is done inline. This avoids the slowness issue of usual threadpools, since cached data is accessed as quickly as a sync interface. Sample application: http://git.kernel.dk/cgit/fio/plain/t/io_uring.c Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-01-07 17:46:33 +00:00
config IO_URING
bool "Enable IO uring support" if EXPERT
select IO_WQ
Add io_uring IO interface The submission queue (SQ) and completion queue (CQ) rings are shared between the application and the kernel. This eliminates the need to copy data back and forth to submit and complete IO. IO submissions use the io_uring_sqe data structure, and completions are generated in the form of io_uring_cqe data structures. The SQ ring is an index into the io_uring_sqe array, which makes it possible to submit a batch of IOs without them being contiguous in the ring. The CQ ring is always contiguous, as completion events are inherently unordered, and hence any io_uring_cqe entry can point back to an arbitrary submission. Two new system calls are added for this: io_uring_setup(entries, params) Sets up an io_uring instance for doing async IO. On success, returns a file descriptor that the application can mmap to gain access to the SQ ring, CQ ring, and io_uring_sqes. io_uring_enter(fd, to_submit, min_complete, flags, sigset, sigsetsize) Initiates IO against the rings mapped to this fd, or waits for them to complete, or both. The behavior is controlled by the parameters passed in. If 'to_submit' is non-zero, then we'll try and submit new IO. If IORING_ENTER_GETEVENTS is set, the kernel will wait for 'min_complete' events, if they aren't already available. It's valid to set IORING_ENTER_GETEVENTS and 'min_complete' == 0 at the same time, this allows the kernel to return already completed events without waiting for them. This is useful only for polling, as for IRQ driven IO, the application can just check the CQ ring without entering the kernel. With this setup, it's possible to do async IO with a single system call. Future developments will enable polled IO with this interface, and polled submission as well. The latter will enable an application to do IO without doing ANY system calls at all. For IRQ driven IO, an application only needs to enter the kernel for completions if it wants to wait for them to occur. Each io_uring is backed by a workqueue, to support buffered async IO as well. We will only punt to an async context if the command would need to wait for IO on the device side. Any data that can be accessed directly in the page cache is done inline. This avoids the slowness issue of usual threadpools, since cached data is accessed as quickly as a sync interface. Sample application: http://git.kernel.dk/cgit/fio/plain/t/io_uring.c Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-01-07 17:46:33 +00:00
default y
help
This option enables support for the io_uring interface, enabling
applications to submit and complete IO through submission and
completion rings that are shared between the kernel and application.
config ADVISE_SYSCALLS
bool "Enable madvise/fadvise syscalls" if EXPERT
default y
help
This option enables the madvise and fadvise syscalls, used by
applications to advise the kernel about their future memory or file
usage, improving performance. If building an embedded system where no
applications use these syscalls, you can disable this option to save
space.
userfaultfd: wp: add WP pagetable tracking to x86 Accurate userfaultfd WP tracking is possible by tracking exactly which virtual memory ranges were writeprotected by userland. We can't relay only on the RW bit of the mapped pagetable because that information is destroyed by fork() or KSM or swap. If we were to relay on that, we'd need to stay on the safe side and generate false positive wp faults for every swapped out page. [peterx@redhat.com: append _PAGE_UFD_WP to _PAGE_CHG_MASK] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-4-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:05:33 +00:00
config HAVE_ARCH_USERFAULTFD_WP
bool
help
Arch has userfaultfd write protection support
sys_membarrier(): system-wide memory barrier (generic, x86) Here is an implementation of a new system call, sys_membarrier(), which executes a memory barrier on all threads running on the system. It is implemented by calling synchronize_sched(). It can be used to distribute the cost of user-space memory barriers asymmetrically by transforming pairs of memory barriers into pairs consisting of sys_membarrier() and a compiler barrier. For synchronization primitives that distinguish between read-side and write-side (e.g. userspace RCU [1], rwlocks), the read-side can be accelerated significantly by moving the bulk of the memory barrier overhead to the write-side. The existing applications of which I am aware that would be improved by this system call are as follows: * Through Userspace RCU library (http://urcu.so) - DNS server (Knot DNS) https://www.knot-dns.cz/ - Network sniffer (http://netsniff-ng.org/) - Distributed object storage (https://sheepdog.github.io/sheepdog/) - User-space tracing (http://lttng.org) - Network storage system (https://www.gluster.org/) - Virtual routers (https://events.linuxfoundation.org/sites/events/files/slides/DPDK_RCU_0MQ.pdf) - Financial software (https://lkml.org/lkml/2015/3/23/189) Those projects use RCU in userspace to increase read-side speed and scalability compared to locking. Especially in the case of RCU used by libraries, sys_membarrier can speed up the read-side by moving the bulk of the memory barrier cost to synchronize_rcu(). * Direct users of sys_membarrier - core dotnet garbage collector (https://github.com/dotnet/coreclr/issues/198) Microsoft core dotnet GC developers are planning to use the mprotect() side-effect of issuing memory barriers through IPIs as a way to implement Windows FlushProcessWriteBuffers() on Linux. They are referring to sys_membarrier in their github thread, specifically stating that sys_membarrier() is what they are looking for. To explain the benefit of this scheme, let's introduce two example threads: Thread A (non-frequent, e.g. executing liburcu synchronize_rcu()) Thread B (frequent, e.g. executing liburcu rcu_read_lock()/rcu_read_unlock()) In a scheme where all smp_mb() in thread A are ordering memory accesses with respect to smp_mb() present in Thread B, we can change each smp_mb() within Thread A into calls to sys_membarrier() and each smp_mb() within Thread B into compiler barriers "barrier()". Before the change, we had, for each smp_mb() pairs: Thread A Thread B previous mem accesses previous mem accesses smp_mb() smp_mb() following mem accesses following mem accesses After the change, these pairs become: Thread A Thread B prev mem accesses prev mem accesses sys_membarrier() barrier() follow mem accesses follow mem accesses As we can see, there are two possible scenarios: either Thread B memory accesses do not happen concurrently with Thread A accesses (1), or they do (2). 1) Non-concurrent Thread A vs Thread B accesses: Thread A Thread B prev mem accesses sys_membarrier() follow mem accesses prev mem accesses barrier() follow mem accesses In this case, thread B accesses will be weakly ordered. This is OK, because at that point, thread A is not particularly interested in ordering them with respect to its own accesses. 2) Concurrent Thread A vs Thread B accesses Thread A Thread B prev mem accesses prev mem accesses sys_membarrier() barrier() follow mem accesses follow mem accesses In this case, thread B accesses, which are ensured to be in program order thanks to the compiler barrier, will be "upgraded" to full smp_mb() by synchronize_sched(). * Benchmarks On Intel Xeon E5405 (8 cores) (one thread is calling sys_membarrier, the other 7 threads are busy looping) 1000 non-expedited sys_membarrier calls in 33s =3D 33 milliseconds/call. * User-space user of this system call: Userspace RCU library Both the signal-based and the sys_membarrier userspace RCU schemes permit us to remove the memory barrier from the userspace RCU rcu_read_lock() and rcu_read_unlock() primitives, thus significantly accelerating them. These memory barriers are replaced by compiler barriers on the read-side, and all matching memory barriers on the write-side are turned into an invocation of a memory barrier on all active threads in the process. By letting the kernel perform this synchronization rather than dumbly sending a signal to every process threads (as we currently do), we diminish the number of unnecessary wake ups and only issue the memory barriers on active threads. Non-running threads do not need to execute such barrier anyway, because these are implied by the scheduler context switches. Results in liburcu: Operations in 10s, 6 readers, 2 writers: memory barriers in reader: 1701557485 reads, 2202847 writes signal-based scheme: 9830061167 reads, 6700 writes sys_membarrier: 9952759104 reads, 425 writes sys_membarrier (dyn. check): 7970328887 reads, 425 writes The dynamic sys_membarrier availability check adds some overhead to the read-side compared to the signal-based scheme, but besides that, sys_membarrier slightly outperforms the signal-based scheme. However, this non-expedited sys_membarrier implementation has a much slower grace period than signal and memory barrier schemes. Besides diminishing the number of wake-ups, one major advantage of the membarrier system call over the signal-based scheme is that it does not need to reserve a signal. This plays much more nicely with libraries, and with processes injected into for tracing purposes, for which we cannot expect that signals will be unused by the application. An expedited version of this system call can be added later on to speed up the grace period. Its implementation will likely depend on reading the cpu_curr()->mm without holding each CPU's rq lock. This patch adds the system call to x86 and to asm-generic. [1] http://urcu.so membarrier(2) man page: MEMBARRIER(2) Linux Programmer's Manual MEMBARRIER(2) NAME membarrier - issue memory barriers on a set of threads SYNOPSIS #include <linux/membarrier.h> int membarrier(int cmd, int flags); DESCRIPTION The cmd argument is one of the following: MEMBARRIER_CMD_QUERY Query the set of supported commands. It returns a bitmask of supported commands. MEMBARRIER_CMD_SHARED Execute a memory barrier on all threads running on the system. Upon return from system call, the caller thread is ensured that all running threads have passed through a state where all memory accesses to user-space addresses match program order between entry to and return from the system call (non-running threads are de facto in such a state). This covers threads from all pro=E2=80=90 cesses running on the system. This command returns 0. The flags argument needs to be 0. For future extensions. All memory accesses performed in program order from each targeted thread is guaranteed to be ordered with respect to sys_membarrier(). If we use the semantic "barrier()" to represent a compiler barrier forcing memory accesses to be performed in program order across the barrier, and smp_mb() to represent explicit memory barriers forcing full memory ordering across the barrier, we have the following ordering table for each pair of barrier(), sys_membarrier() and smp_mb(): The pair ordering is detailed as (O: ordered, X: not ordered): barrier() smp_mb() sys_membarrier() barrier() X X O smp_mb() X O O sys_membarrier() O O O RETURN VALUE On success, these system calls return zero. On error, -1 is returned, and errno is set appropriately. For a given command, with flags argument set to 0, this system call is guaranteed to always return the same value until reboot. ERRORS ENOSYS System call is not implemented. EINVAL Invalid arguments. Linux 2015-04-15 MEMBARRIER(2) Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Nicholas Miell <nmiell@comcast.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: Pranith Kumar <bobby.prani@gmail.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-11 20:07:39 +00:00
config MEMBARRIER
bool "Enable membarrier() system call" if EXPERT
default y
help
Enable the membarrier() system call that allows issuing memory
barriers across all running threads, which can be used to distribute
the cost of user-space memory barriers asymmetrically by transforming
pairs of memory barriers into pairs consisting of membarrier() and a
compiler barrier.
If unsure, say Y.
config KALLSYMS
bool "Load all symbols for debugging/ksymoops" if EXPERT
default y
help
Say Y here to let the kernel print out symbolic crash information and
symbolic stack backtraces. This increases the size of the kernel
somewhat, as all symbols have to be loaded into the kernel image.
config KALLSYMS_ALL
bool "Include all symbols in kallsyms"
depends on DEBUG_KERNEL && KALLSYMS
help
Normally kallsyms only contains the symbols of functions for nicer
OOPS messages and backtraces (i.e., symbols from the text and inittext
sections). This is sufficient for most cases. And only in very rare
cases (e.g., when a debugger is used) all symbols are required (e.g.,
names of variables from the data sections, etc).
This option makes sure that all symbols are loaded into the kernel
image (i.e., symbols from all sections) in cost of increased kernel
size (depending on the kernel configuration, it may be 300KiB or
something like this).
Say N unless you really need all symbols.
config KALLSYMS_ABSOLUTE_PERCPU
bool
depends on KALLSYMS
default X86_64 && SMP
config KALLSYMS_BASE_RELATIVE
bool
depends on KALLSYMS
default !IA64
help
Instead of emitting them as absolute values in the native word size,
emit the symbol references in the kallsyms table as 32-bit entries,
each containing a relative value in the range [base, base + U32_MAX]
or, when KALLSYMS_ABSOLUTE_PERCPU is in effect, each containing either
an absolute value in the range [0, S32_MAX] or a relative value in the
range [base, base + S32_MAX], where base is the lowest relative symbol
address encountered in the image.
On 64-bit builds, this reduces the size of the address table by 50%,
but more importantly, it results in entries whose values are build
time constants, and no relocation pass is required at runtime to fix
up the entries based on the runtime load address of the kernel.
# end of the "standard kernel features (expert users)" menu
# syscall, maps, verifier
config BPF_LSM
bool "LSM Instrumentation with BPF"
depends on BPF_EVENTS
depends on BPF_SYSCALL
depends on SECURITY
depends on BPF_JIT
help
Enables instrumentation of the security hooks with eBPF programs for
implementing dynamic MAC and Audit Policies.
If you are unsure how to answer this question, answer N.
config BPF_SYSCALL
bool "Enable bpf() system call"
select BPF
select IRQ_WORK
bpf: Introduce sleepable BPF programs Introduce sleepable BPF programs that can request such property for themselves via BPF_F_SLEEPABLE flag at program load time. In such case they will be able to use helpers like bpf_copy_from_user() that might sleep. At present only fentry/fexit/fmod_ret and lsm programs can request to be sleepable and only when they are attached to kernel functions that are known to allow sleeping. The non-sleepable programs are relying on implicit rcu_read_lock() and migrate_disable() to protect life time of programs, maps that they use and per-cpu kernel structures used to pass info between bpf programs and the kernel. The sleepable programs cannot be enclosed into rcu_read_lock(). migrate_disable() maps to preempt_disable() in non-RT kernels, so the progs should not be enclosed in migrate_disable() as well. Therefore rcu_read_lock_trace is used to protect the life time of sleepable progs. There are many networking and tracing program types. In many cases the 'struct bpf_prog *' pointer itself is rcu protected within some other kernel data structure and the kernel code is using rcu_dereference() to load that program pointer and call BPF_PROG_RUN() on it. All these cases are not touched. Instead sleepable bpf programs are allowed with bpf trampoline only. The program pointers are hard-coded into generated assembly of bpf trampoline and synchronize_rcu_tasks_trace() is used to protect the life time of the program. The same trampoline can hold both sleepable and non-sleepable progs. When rcu_read_lock_trace is held it means that some sleepable bpf program is running from bpf trampoline. Those programs can use bpf arrays and preallocated hash/lru maps. These map types are waiting on programs to complete via synchronize_rcu_tasks_trace(); Updates to trampoline now has to do synchronize_rcu_tasks_trace() and synchronize_rcu_tasks() to wait for sleepable progs to finish and for trampoline assembly to finish. This is the first step of introducing sleepable progs. Eventually dynamically allocated hash maps can be allowed and networking program types can become sleepable too. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: KP Singh <kpsingh@google.com> Link: https://lore.kernel.org/bpf/20200827220114.69225-3-alexei.starovoitov@gmail.com
2020-08-27 22:01:11 +00:00
select TASKS_TRACE_RCU
default n
help
Enable the bpf() system call that allows to manipulate eBPF
programs and maps via file descriptors.
bpf, x86, arm64: Enable jit by default when not built as always-on After Spectre 2 fix via 290af86629b2 ("bpf: introduce BPF_JIT_ALWAYS_ON config") most major distros use BPF_JIT_ALWAYS_ON configuration these days which compiles out the BPF interpreter entirely and always enables the JIT. Also given recent fix in e1608f3fa857 ("bpf: Avoid setting bpf insns pages read-only when prog is jited"), we additionally avoid fragmenting the direct map for the BPF insns pages sitting in the general data heap since they are not used during execution. Latter is only needed when run through the interpreter. Since both x86 and arm64 JITs have seen a lot of exposure over the years, are generally most up to date and maintained, there is more downside in !BPF_JIT_ALWAYS_ON configurations to have the interpreter enabled by default rather than the JIT. Add a ARCH_WANT_DEFAULT_BPF_JIT config which archs can use to set the bpf_jit_{enable,kallsyms} to 1. Back in the days the bpf_jit_kallsyms knob was set to 0 by default since major distros still had /proc/kallsyms addresses exposed to unprivileged user space which is not the case anymore. Hence both knobs are set via BPF_JIT_DEFAULT_ON which is set to 'y' in case of BPF_JIT_ALWAYS_ON or ARCH_WANT_DEFAULT_BPF_JIT. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Will Deacon <will@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/f78ad24795c2966efcc2ee19025fa3459f622185.1575903816.git.daniel@iogearbox.net
2019-12-09 15:08:03 +00:00
config ARCH_WANT_DEFAULT_BPF_JIT
bool
bpf: introduce BPF_JIT_ALWAYS_ON config The BPF interpreter has been used as part of the spectre 2 attack CVE-2017-5715. A quote from goolge project zero blog: "At this point, it would normally be necessary to locate gadgets in the host kernel code that can be used to actually leak data by reading from an attacker-controlled location, shifting and masking the result appropriately and then using the result of that as offset to an attacker-controlled address for a load. But piecing gadgets together and figuring out which ones work in a speculation context seems annoying. So instead, we decided to use the eBPF interpreter, which is built into the host kernel - while there is no legitimate way to invoke it from inside a VM, the presence of the code in the host kernel's text section is sufficient to make it usable for the attack, just like with ordinary ROP gadgets." To make attacker job harder introduce BPF_JIT_ALWAYS_ON config option that removes interpreter from the kernel in favor of JIT-only mode. So far eBPF JIT is supported by: x64, arm64, arm32, sparc64, s390, powerpc64, mips64 The start of JITed program is randomized and code page is marked as read-only. In addition "constant blinding" can be turned on with net.core.bpf_jit_harden v2->v3: - move __bpf_prog_ret0 under ifdef (Daniel) v1->v2: - fix init order, test_bpf and cBPF (Daniel's feedback) - fix offloaded bpf (Jakub's feedback) - add 'return 0' dummy in case something can invoke prog->bpf_func - retarget bpf tree. For bpf-next the patch would need one extra hunk. It will be sent when the trees are merged back to net-next Considered doing: int bpf_jit_enable __read_mostly = BPF_EBPF_JIT_DEFAULT; but it seems better to land the patch as-is and in bpf-next remove bpf_jit_enable global variable from all JITs, consolidate in one place and remove this jit_init() function. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-09 18:04:29 +00:00
config BPF_JIT_ALWAYS_ON
bool "Permanently enable BPF JIT and remove BPF interpreter"
depends on BPF_SYSCALL && HAVE_EBPF_JIT && BPF_JIT
help
Enables BPF JIT and removes BPF interpreter to avoid
speculative execution of BPF instructions by the interpreter
bpf, x86, arm64: Enable jit by default when not built as always-on After Spectre 2 fix via 290af86629b2 ("bpf: introduce BPF_JIT_ALWAYS_ON config") most major distros use BPF_JIT_ALWAYS_ON configuration these days which compiles out the BPF interpreter entirely and always enables the JIT. Also given recent fix in e1608f3fa857 ("bpf: Avoid setting bpf insns pages read-only when prog is jited"), we additionally avoid fragmenting the direct map for the BPF insns pages sitting in the general data heap since they are not used during execution. Latter is only needed when run through the interpreter. Since both x86 and arm64 JITs have seen a lot of exposure over the years, are generally most up to date and maintained, there is more downside in !BPF_JIT_ALWAYS_ON configurations to have the interpreter enabled by default rather than the JIT. Add a ARCH_WANT_DEFAULT_BPF_JIT config which archs can use to set the bpf_jit_{enable,kallsyms} to 1. Back in the days the bpf_jit_kallsyms knob was set to 0 by default since major distros still had /proc/kallsyms addresses exposed to unprivileged user space which is not the case anymore. Hence both knobs are set via BPF_JIT_DEFAULT_ON which is set to 'y' in case of BPF_JIT_ALWAYS_ON or ARCH_WANT_DEFAULT_BPF_JIT. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Will Deacon <will@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/f78ad24795c2966efcc2ee19025fa3459f622185.1575903816.git.daniel@iogearbox.net
2019-12-09 15:08:03 +00:00
config BPF_JIT_DEFAULT_ON
def_bool ARCH_WANT_DEFAULT_BPF_JIT || BPF_JIT_ALWAYS_ON
depends on HAVE_EBPF_JIT && BPF_JIT
bpf: Add kernel module with user mode driver that populates bpffs. Add kernel module with user mode driver that populates bpffs with BPF iterators. $ mount bpffs /my/bpffs/ -t bpf $ ls -la /my/bpffs/ total 4 drwxrwxrwt 2 root root 0 Jul 2 00:27 . drwxr-xr-x 19 root root 4096 Jul 2 00:09 .. -rw------- 1 root root 0 Jul 2 00:27 maps.debug -rw------- 1 root root 0 Jul 2 00:27 progs.debug The user mode driver will load BPF Type Formats, create BPF maps, populate BPF maps, load two BPF programs, attach them to BPF iterators, and finally send two bpf_link IDs back to the kernel. The kernel will pin two bpf_links into newly mounted bpffs instance under names "progs.debug" and "maps.debug". These two files become human readable. $ cat /my/bpffs/progs.debug id name attached 11 dump_bpf_map bpf_iter_bpf_map 12 dump_bpf_prog bpf_iter_bpf_prog 27 test_pkt_access 32 test_main test_pkt_access test_pkt_access 33 test_subprog1 test_pkt_access_subprog1 test_pkt_access 34 test_subprog2 test_pkt_access_subprog2 test_pkt_access 35 test_subprog3 test_pkt_access_subprog3 test_pkt_access 36 new_get_skb_len get_skb_len test_pkt_access 37 new_get_skb_ifindex get_skb_ifindex test_pkt_access 38 new_get_constant get_constant test_pkt_access The BPF program dump_bpf_prog() in iterators.bpf.c is printing this data about all BPF programs currently loaded in the system. This information is unstable and will change from kernel to kernel as ".debug" suffix conveys. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200819042759.51280-4-alexei.starovoitov@gmail.com
2020-08-19 04:27:58 +00:00
source "kernel/bpf/preload/Kconfig"
config USERFAULTFD
bool "Enable userfaultfd() system call"
depends on MMU
help
Enable the userfaultfd() system call that allows to intercept and
handle page faults in userland.
powerpc, membarrier: Skip memory barrier in switch_mm() Allow PowerPC to skip the full memory barrier in switch_mm(), and only issue the barrier when scheduling into a task belonging to a process that has registered to use expedited private. Threads targeting the same VM but which belong to different thread groups is a tricky case. It has a few consequences: It turns out that we cannot rely on get_nr_threads(p) to count the number of threads using a VM. We can use (atomic_read(&mm->mm_users) == 1 && get_nr_threads(p) == 1) instead to skip the synchronize_sched() for cases where the VM only has a single user, and that user only has a single thread. It also turns out that we cannot use for_each_thread() to set thread flags in all threads using a VM, as it only iterates on the thread group. Therefore, test the membarrier state variable directly rather than relying on thread flags. This means membarrier_register_private_expedited() needs to set the MEMBARRIER_STATE_PRIVATE_EXPEDITED flag, issue synchronize_sched(), and only then set MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY which allows private expedited membarrier commands to succeed. membarrier_arch_switch_mm() now tests for the MEMBARRIER_STATE_PRIVATE_EXPEDITED flag. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/20180129202020.8515-3-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-29 20:20:11 +00:00
config ARCH_HAS_MEMBARRIER_CALLBACKS
bool
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-29 20:20:17 +00:00
config ARCH_HAS_MEMBARRIER_SYNC_CORE
bool
kcmp: Support selection of SYS_kcmp without CHECKPOINT_RESTORE Userspace has discovered the functionality offered by SYS_kcmp and has started to depend upon it. In particular, Mesa uses SYS_kcmp for os_same_file_description() in order to identify when two fd (e.g. device or dmabuf) point to the same struct file. Since they depend on it for core functionality, lift SYS_kcmp out of the non-default CONFIG_CHECKPOINT_RESTORE into the selectable syscall category. Rasmus Villemoes also pointed out that systemd uses SYS_kcmp to deduplicate the per-service file descriptor store. Note that some distributions such as Ubuntu are already enabling CHECKPOINT_RESTORE in their configs and so, by extension, SYS_kcmp. References: https://gitlab.freedesktop.org/drm/intel/-/issues/3046 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Will Drewry <wad@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Lucas Stach <l.stach@pengutronix.de> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: stable@vger.kernel.org Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> # DRM depends on kcmp Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> # systemd uses kcmp Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Thomas Zimmermann <tzimmermann@suse.de> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20210205220012.1983-1-chris@chris-wilson.co.uk
2021-02-05 22:00:12 +00:00
config KCMP
bool "Enable kcmp() system call" if EXPERT
help
Enable the kernel resource comparison system call. It provides
user-space with the ability to compare two processes to see if they
share a common resource, such as a file descriptor or even virtual
memory space.
If unsure, say N.
rseq: Introduce restartable sequences system call Expose a new system call allowing each thread to register one userspace memory area to be used as an ABI between kernel and user-space for two purposes: user-space restartable sequences and quick access to read the current CPU number value from user-space. * Restartable sequences (per-cpu atomics) Restartables sequences allow user-space to perform update operations on per-cpu data without requiring heavy-weight atomic operations. The restartable critical sections (percpu atomics) work has been started by Paul Turner and Andrew Hunter. It lets the kernel handle restart of critical sections. [1] [2] The re-implementation proposed here brings a few simplifications to the ABI which facilitates porting to other architectures and speeds up the user-space fast path. Here are benchmarks of various rseq use-cases. Test hardware: arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading The following benchmarks were all performed on a single thread. * Per-CPU statistic counter increment getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 344.0 31.4 11.0 x86-64: 15.3 2.0 7.7 * LTTng-UST: write event 32-bit header, 32-bit payload into tracer per-cpu buffer getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 2502.0 2250.0 1.1 x86-64: 117.4 98.0 1.2 * liburcu percpu: lock-unlock pair, dereference, read/compare word getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 751.0 128.5 5.8 x86-64: 53.4 28.6 1.9 * jemalloc memory allocator adapted to use rseq Using rseq with per-cpu memory pools in jemalloc at Facebook (based on rseq 2016 implementation): The production workload response-time has 1-2% gain avg. latency, and the P99 overall latency drops by 2-3%. * Reading the current CPU number Speeding up reading the current CPU number on which the caller thread is running is done by keeping the current CPU number up do date within the cpu_id field of the memory area registered by the thread. This is done by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the current thread. Upon return to user-space, a notify-resume handler updates the current CPU value within the registered user-space memory area. User-space can then read the current CPU number directly from memory. Keeping the current cpu id in a memory area shared between kernel and user-space is an improvement over current mechanisms available to read the current CPU number, which has the following benefits over alternative approaches: - 35x speedup on ARM vs system call through glibc - 20x speedup on x86 compared to calling glibc, which calls vdso executing a "lsl" instruction, - 14x speedup on x86 compared to inlined "lsl" instruction, - Unlike vdso approaches, this cpu_id value can be read from an inline assembly, which makes it a useful building block for restartable sequences. - The approach of reading the cpu id through memory mapping shared between kernel and user-space is portable (e.g. ARM), which is not the case for the lsl-based x86 vdso. On x86, yet another possible approach would be to use the gs segment selector to point to user-space per-cpu data. This approach performs similarly to the cpu id cache, but it has two disadvantages: it is not portable, and it is incompatible with existing applications already using the gs segment selector for other purposes. Benchmarking various approaches for reading the current CPU number: ARMv7 Processor rev 4 (v7l) Machine model: Cubietruck - Baseline (empty loop): 8.4 ns - Read CPU from rseq cpu_id: 16.7 ns - Read CPU from rseq cpu_id (lazy register): 19.8 ns - glibc 2.19-0ubuntu6.6 getcpu: 301.8 ns - getcpu system call: 234.9 ns x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz: - Baseline (empty loop): 0.8 ns - Read CPU from rseq cpu_id: 0.8 ns - Read CPU from rseq cpu_id (lazy register): 0.8 ns - Read using gs segment selector: 0.8 ns - "lsl" inline assembly: 13.0 ns - glibc 2.19-0ubuntu6 getcpu: 16.6 ns - getcpu system call: 53.9 ns - Speed (benchmark taken on v8 of patchset) Running 10 runs of hackbench -l 100000 seems to indicate, contrary to expectations, that enabling CONFIG_RSEQ slightly accelerates the scheduler: Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1 kernel parameter), with a Linux v4.6 defconfig+localyesconfig, restartable sequences series applied. * CONFIG_RSEQ=n avg.: 41.37 s std.dev.: 0.36 s * CONFIG_RSEQ=y avg.: 40.46 s std.dev.: 0.33 s - Size On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is 567 bytes, and the data size increase of vmlinux is 5696 bytes. [1] https://lwn.net/Articles/650333/ [2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdf Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Joel Fernandes <joelaf@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Watson <davejwatson@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Chris Lameter <cl@linux.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Andrew Hunter <ahh@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Paul Turner <pjt@google.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Maurer <bmaurer@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: linux-api@vger.kernel.org Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com
2018-06-02 12:43:54 +00:00
config RSEQ
bool "Enable rseq() system call" if EXPERT
default y
depends on HAVE_RSEQ
select MEMBARRIER
help
Enable the restartable sequences system call. It provides a
user-space cache for the current CPU number value, which
speeds up getting the current CPU number from user-space,
as well as an ABI to speed up user-space operations on
per-CPU data.
If unsure, say Y.
config DEBUG_RSEQ
default n
bool "Enabled debugging of rseq() system call" if EXPERT
depends on RSEQ && DEBUG_KERNEL
help
Enable extra debugging checks for the rseq system call.
If unsure, say N.
config EMBEDDED
bool "Embedded system"
option allnoconfig_y
select EXPERT
help
This option should be enabled if compiling the kernel for
an embedded system so certain expert options are available
for configuration.
perf: Do the big rename: Performance Counters -> Performance Events Bye-bye Performance Counters, welcome Performance Events! In the past few months the perfcounters subsystem has grown out its initial role of counting hardware events, and has become (and is becoming) a much broader generic event enumeration, reporting, logging, monitoring, analysis facility. Naming its core object 'perf_counter' and naming the subsystem 'perfcounters' has become more and more of a misnomer. With pending code like hw-breakpoints support the 'counter' name is less and less appropriate. All in one, we've decided to rename the subsystem to 'performance events' and to propagate this rename through all fields, variables and API names. (in an ABI compatible fashion) The word 'event' is also a bit shorter than 'counter' - which makes it slightly more convenient to write/handle as well. Thanks goes to Stephane Eranian who first observed this misnomer and suggested a rename. User-space tooling and ABI compatibility is not affected - this patch should be function-invariant. (Also, defconfigs were not touched to keep the size down.) This patch has been generated via the following script: FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/PERF_EVENT_/PERF_RECORD_/g' \ -e 's/PERF_COUNTER/PERF_EVENT/g' \ -e 's/perf_counter/perf_event/g' \ -e 's/nb_counters/nb_events/g' \ -e 's/swcounter/swevent/g' \ -e 's/tpcounter_event/tp_event/g' \ $FILES for N in $(find . -name perf_counter.[ch]); do M=$(echo $N | sed 's/perf_counter/perf_event/g') mv $N $M done FILES=$(find . -name perf_event.*) sed -i \ -e 's/COUNTER_MASK/REG_MASK/g' \ -e 's/COUNTER/EVENT/g' \ -e 's/\<event\>/event_id/g' \ -e 's/counter/event/g' \ -e 's/Counter/Event/g' \ $FILES ... to keep it as correct as possible. This script can also be used by anyone who has pending perfcounters patches - it converts a Linux kernel tree over to the new naming. We tried to time this change to the point in time where the amount of pending patches is the smallest: the end of the merge window. Namespace clashes were fixed up in a preparatory patch - and some stylistic fallout will be fixed up in a subsequent patch. ( NOTE: 'counters' are still the proper terminology when we deal with hardware registers - and these sed scripts are a bit over-eager in renaming them. I've undone some of that, but in case there's something left where 'counter' would be better than 'event' we can undo that on an individual basis instead of touching an otherwise nicely automated patch. ) Suggested-by: Stephane Eranian <eranian@google.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-21 10:02:48 +00:00
config HAVE_PERF_EVENTS
bool
help
See tools/perf/design.txt for details.
config PERF_USE_VMALLOC
bool
help
See tools/perf/design.txt for details
config PC104
bool "PC/104 support" if EXPERT
help
Expose PC/104 form factor device drivers and options available for
selection and configuration. Enable this option if your target
machine has a PC/104 bus.
menu "Kernel Performance Events And Counters"
perf: Do the big rename: Performance Counters -> Performance Events Bye-bye Performance Counters, welcome Performance Events! In the past few months the perfcounters subsystem has grown out its initial role of counting hardware events, and has become (and is becoming) a much broader generic event enumeration, reporting, logging, monitoring, analysis facility. Naming its core object 'perf_counter' and naming the subsystem 'perfcounters' has become more and more of a misnomer. With pending code like hw-breakpoints support the 'counter' name is less and less appropriate. All in one, we've decided to rename the subsystem to 'performance events' and to propagate this rename through all fields, variables and API names. (in an ABI compatible fashion) The word 'event' is also a bit shorter than 'counter' - which makes it slightly more convenient to write/handle as well. Thanks goes to Stephane Eranian who first observed this misnomer and suggested a rename. User-space tooling and ABI compatibility is not affected - this patch should be function-invariant. (Also, defconfigs were not touched to keep the size down.) This patch has been generated via the following script: FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/PERF_EVENT_/PERF_RECORD_/g' \ -e 's/PERF_COUNTER/PERF_EVENT/g' \ -e 's/perf_counter/perf_event/g' \ -e 's/nb_counters/nb_events/g' \ -e 's/swcounter/swevent/g' \ -e 's/tpcounter_event/tp_event/g' \ $FILES for N in $(find . -name perf_counter.[ch]); do M=$(echo $N | sed 's/perf_counter/perf_event/g') mv $N $M done FILES=$(find . -name perf_event.*) sed -i \ -e 's/COUNTER_MASK/REG_MASK/g' \ -e 's/COUNTER/EVENT/g' \ -e 's/\<event\>/event_id/g' \ -e 's/counter/event/g' \ -e 's/Counter/Event/g' \ $FILES ... to keep it as correct as possible. This script can also be used by anyone who has pending perfcounters patches - it converts a Linux kernel tree over to the new naming. We tried to time this change to the point in time where the amount of pending patches is the smallest: the end of the merge window. Namespace clashes were fixed up in a preparatory patch - and some stylistic fallout will be fixed up in a subsequent patch. ( NOTE: 'counters' are still the proper terminology when we deal with hardware registers - and these sed scripts are a bit over-eager in renaming them. I've undone some of that, but in case there's something left where 'counter' would be better than 'event' we can undo that on an individual basis instead of touching an otherwise nicely automated patch. ) Suggested-by: Stephane Eranian <eranian@google.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-21 10:02:48 +00:00
config PERF_EVENTS
bool "Kernel performance events and counters"
default y if PROFILING
perf: Do the big rename: Performance Counters -> Performance Events Bye-bye Performance Counters, welcome Performance Events! In the past few months the perfcounters subsystem has grown out its initial role of counting hardware events, and has become (and is becoming) a much broader generic event enumeration, reporting, logging, monitoring, analysis facility. Naming its core object 'perf_counter' and naming the subsystem 'perfcounters' has become more and more of a misnomer. With pending code like hw-breakpoints support the 'counter' name is less and less appropriate. All in one, we've decided to rename the subsystem to 'performance events' and to propagate this rename through all fields, variables and API names. (in an ABI compatible fashion) The word 'event' is also a bit shorter than 'counter' - which makes it slightly more convenient to write/handle as well. Thanks goes to Stephane Eranian who first observed this misnomer and suggested a rename. User-space tooling and ABI compatibility is not affected - this patch should be function-invariant. (Also, defconfigs were not touched to keep the size down.) This patch has been generated via the following script: FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/PERF_EVENT_/PERF_RECORD_/g' \ -e 's/PERF_COUNTER/PERF_EVENT/g' \ -e 's/perf_counter/perf_event/g' \ -e 's/nb_counters/nb_events/g' \ -e 's/swcounter/swevent/g' \ -e 's/tpcounter_event/tp_event/g' \ $FILES for N in $(find . -name perf_counter.[ch]); do M=$(echo $N | sed 's/perf_counter/perf_event/g') mv $N $M done FILES=$(find . -name perf_event.*) sed -i \ -e 's/COUNTER_MASK/REG_MASK/g' \ -e 's/COUNTER/EVENT/g' \ -e 's/\<event\>/event_id/g' \ -e 's/counter/event/g' \ -e 's/Counter/Event/g' \ $FILES ... to keep it as correct as possible. This script can also be used by anyone who has pending perfcounters patches - it converts a Linux kernel tree over to the new naming. We tried to time this change to the point in time where the amount of pending patches is the smallest: the end of the merge window. Namespace clashes were fixed up in a preparatory patch - and some stylistic fallout will be fixed up in a subsequent patch. ( NOTE: 'counters' are still the proper terminology when we deal with hardware registers - and these sed scripts are a bit over-eager in renaming them. I've undone some of that, but in case there's something left where 'counter' would be better than 'event' we can undo that on an individual basis instead of touching an otherwise nicely automated patch. ) Suggested-by: Stephane Eranian <eranian@google.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-21 10:02:48 +00:00
depends on HAVE_PERF_EVENTS
select IRQ_WORK
select SRCU
help
Enable kernel support for various performance events provided
by software and hardware.
Software events are supported either built-in or via the
use of generic tracepoints.
Most modern CPUs support performance events via performance
counter registers. These registers count the number of certain
types of hw events: such as instructions executed, cachemisses
suffered, or branches mis-predicted - without slowing down the
kernel or applications. These registers can also trigger interrupts
when a threshold number of events have passed - and can thus be
used to profile the code that runs on that CPU.
The Linux Performance Event subsystem provides an abstraction of
these software and hardware event capabilities, available via a
system call and used by the "perf" utility in tools/perf/. It
provides per task and per CPU counters, and it provides event
capabilities on top of those.
Say Y if unsure.
config DEBUG_PERF_USE_VMALLOC
default n
bool "Debug: use vmalloc to back perf mmap() buffers"
depends on PERF_EVENTS && DEBUG_KERNEL && !PPC
select PERF_USE_VMALLOC
help
Use vmalloc memory to back perf mmap() buffers.
Mostly useful for debugging the vmalloc code on platforms
that don't require it.
Say N if unsure.
endmenu
[PATCH] Light weight event counters The remaining counters in page_state after the zoned VM counter patches have been applied are all just for show in /proc/vmstat. They have no essential function for the VM. We use a simple increment of per cpu variables. In order to avoid the most severe races we disable preempt. Preempt does not prevent the race between an increment and an interrupt handler incrementing the same statistics counter. However, that race is exceedingly rare, we may only loose one increment or so and there is no requirement (at least not in kernel) that the vm event counters have to be accurate. In the non preempt case this results in a simple increment for each counter. For many architectures this will be reduced by the compiler to a single instruction. This single instruction is atomic for i386 and x86_64. And therefore even the rare race condition in an interrupt is avoided for both architectures in most cases. The patchset also adds an off switch for embedded systems that allows a building of linux kernels without these counters. The implementation of these counters is through inline code that hopefully results in only a single instruction increment instruction being emitted (i386, x86_64) or in the increment being hidden though instruction concurrency (EPIC architectures such as ia64 can get that done). Benefits: - VM event counter operations usually reduce to a single inline instruction on i386 and x86_64. - No interrupt disable, only preempt disable for the preempt case. Preempt disable can also be avoided by moving the counter into a spinlock. - Handling is similar to zoned VM counters. - Simple and easily extendable. - Can be omitted to reduce memory use for embedded use. References: RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2 RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2 local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2 V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 08:55:45 +00:00
config VM_EVENT_COUNTERS
default y
bool "Enable VM event counters for /proc/vmstat" if EXPERT
[PATCH] Light weight event counters The remaining counters in page_state after the zoned VM counter patches have been applied are all just for show in /proc/vmstat. They have no essential function for the VM. We use a simple increment of per cpu variables. In order to avoid the most severe races we disable preempt. Preempt does not prevent the race between an increment and an interrupt handler incrementing the same statistics counter. However, that race is exceedingly rare, we may only loose one increment or so and there is no requirement (at least not in kernel) that the vm event counters have to be accurate. In the non preempt case this results in a simple increment for each counter. For many architectures this will be reduced by the compiler to a single instruction. This single instruction is atomic for i386 and x86_64. And therefore even the rare race condition in an interrupt is avoided for both architectures in most cases. The patchset also adds an off switch for embedded systems that allows a building of linux kernels without these counters. The implementation of these counters is through inline code that hopefully results in only a single instruction increment instruction being emitted (i386, x86_64) or in the increment being hidden though instruction concurrency (EPIC architectures such as ia64 can get that done). Benefits: - VM event counter operations usually reduce to a single inline instruction on i386 and x86_64. - No interrupt disable, only preempt disable for the preempt case. Preempt disable can also be avoided by moving the counter into a spinlock. - Handling is similar to zoned VM counters. - Simple and easily extendable. - Can be omitted to reduce memory use for embedded use. References: RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2 RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2 local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2 V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 08:55:45 +00:00
help
VM event counters are needed for event counts to be shown.
This option allows the disabling of the VM event counters
on EXPERT systems. /proc/vmstat will only show page counts
if VM event counters are disabled.
[PATCH] Light weight event counters The remaining counters in page_state after the zoned VM counter patches have been applied are all just for show in /proc/vmstat. They have no essential function for the VM. We use a simple increment of per cpu variables. In order to avoid the most severe races we disable preempt. Preempt does not prevent the race between an increment and an interrupt handler incrementing the same statistics counter. However, that race is exceedingly rare, we may only loose one increment or so and there is no requirement (at least not in kernel) that the vm event counters have to be accurate. In the non preempt case this results in a simple increment for each counter. For many architectures this will be reduced by the compiler to a single instruction. This single instruction is atomic for i386 and x86_64. And therefore even the rare race condition in an interrupt is avoided for both architectures in most cases. The patchset also adds an off switch for embedded systems that allows a building of linux kernels without these counters. The implementation of these counters is through inline code that hopefully results in only a single instruction increment instruction being emitted (i386, x86_64) or in the increment being hidden though instruction concurrency (EPIC architectures such as ia64 can get that done). Benefits: - VM event counter operations usually reduce to a single inline instruction on i386 and x86_64. - No interrupt disable, only preempt disable for the preempt case. Preempt disable can also be avoided by moving the counter into a spinlock. - Handling is similar to zoned VM counters. - Simple and easily extendable. - Can be omitted to reduce memory use for embedded use. References: RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2 RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2 local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2 V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 08:55:45 +00:00
config SLUB_DEBUG
default y
bool "Enable SLUB debugging support" if EXPERT
depends on SLUB && SYSFS
help
SLUB has extensive debug support features. Disabling these can
result in significant savings in code size. This also disables
SLUB sysfs support. /sys/slab will not exist and there will be
no support for cache validation etc.
config COMPAT_BRK
bool "Disable heap randomization"
default y
help
Randomizing heap placement makes heap exploits harder, but it
also breaks ancient binaries (including anything libc5 based).
This option changes the bootup default to heap randomization
disabled, and can be overridden at runtime by setting
/proc/sys/kernel/randomize_va_space to 2.
On non-ancient distros (post-2000 ones) N is usually a safe choice.
SLUB core This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:49:36 +00:00
choice
prompt "Choose SLAB allocator"
default SLUB
SLUB core This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:49:36 +00:00
help
This option allows to select a slab allocator.
config SLAB
bool "SLAB"
select HAVE_HARDENED_USERCOPY_ALLOCATOR
SLUB core This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:49:36 +00:00
help
The regular slab allocator that is established and known to work
well in all environments. It organizes cache hot objects in
per cpu and per node queues.
SLUB core This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:49:36 +00:00
config SLUB
bool "SLUB (Unqueued Allocator)"
select HAVE_HARDENED_USERCOPY_ALLOCATOR
SLUB core This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:49:36 +00:00
help
SLUB is a slab allocator that minimizes cache line usage
instead of managing queues of cached objects (SLAB approach).
Per cpu caching is realized using slabs of objects instead
of queues of objects. SLUB can use memory efficiently
and has enhanced diagnostics. SLUB is the default choice for
a slab allocator.
SLUB core This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:49:36 +00:00
config SLOB
depends on EXPERT
SLUB core This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:49:36 +00:00
bool "SLOB (Simple Allocator)"
help
SLOB replaces the stock allocator with a drastically simpler
allocator. SLOB is generally more space efficient but
does not perform as well on large systems.
SLUB core This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:49:36 +00:00
endchoice
mm: allow slab_nomerge to be set at build time Some hardened environments want to build kernels with slab_nomerge already set (so that they do not depend on remembering to set the kernel command line option). This is desired to reduce the risk of kernel heap overflows being able to overwrite objects from merged caches and changes the requirements for cache layout control, increasing the difficulty of these attacks. By keeping caches unmerged, these kinds of exploits can usually only damage objects in the same cache (though the risk to metadata exploitation is unchanged). Link: http://lkml.kernel.org/r/20170620230911.GA25238@beast Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Cc: David Windsor <dave@nullcore.net> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: David Windsor <dave@nullcore.net> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Nicolas Pitre <nicolas.pitre@linaro.org> Cc: Tejun Heo <tj@kernel.org> Cc: Daniel Mack <daniel@zonque.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Helge Deller <deller@gmx.de> Cc: Rik van Riel <riel@redhat.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 22:36:40 +00:00
config SLAB_MERGE_DEFAULT
bool "Allow slab caches to be merged"
default y
help
For reduced kernel memory fragmentation, slab caches can be
merged when they share the same size and other characteristics.
This carries a risk of kernel heap overflows being able to
overwrite objects from merged caches (and more easily control
cache layout), which makes such heap attacks easier to exploit
by attackers. By keeping caches unmerged, these kinds of exploits
can usually only damage objects in the same cache. To disable
merging at runtime, "slab_nomerge" can be passed on the kernel
command line.
mm: SLAB freelist randomization Provides an optional config (CONFIG_SLAB_FREELIST_RANDOM) to randomize the SLAB freelist. The list is randomized during initialization of a new set of pages. The order on different freelist sizes is pre-computed at boot for performance. Each kmem_cache has its own randomized freelist. Before pre-computed lists are available freelists are generated dynamically. This security feature reduces the predictability of the kernel SLAB allocator against heap overflows rendering attacks much less stable. For example this attack against SLUB (also applicable against SLAB) would be affected: https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/ Also, since v4.6 the freelist was moved at the end of the SLAB. It means a controllable heap is opened to new attacks not yet publicly discussed. A kernel heap overflow can be transformed to multiple use-after-free. This feature makes this type of attack harder too. To generate entropy, we use get_random_bytes_arch because 0 bits of entropy is available in the boot stage. In the worse case this function will fallback to the get_random_bytes sub API. We also generate a shift random number to shift pre-computed freelist for each new set of pages. The config option name is not specific to the SLAB as this approach will be extended to other allocators like SLUB. Performance results highlighted no major changes: Hackbench (running 90 10 times): Before average: 0.0698 After average: 0.0663 (-5.01%) slab_test 1 run on boot. Difference only seen on the 2048 size test being the worse case scenario covered by freelist randomization. New slab pages are constantly being created on the 10000 allocations. Variance should be mainly due to getting new pages every few allocations. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles 10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles 10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles 10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles 10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles 10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles 10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles 10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles 10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles 10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles 10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles 10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 121 cycles 10000 times kmalloc(16)/kfree -> 121 cycles 10000 times kmalloc(32)/kfree -> 121 cycles 10000 times kmalloc(64)/kfree -> 121 cycles 10000 times kmalloc(128)/kfree -> 121 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 119 cycles 10000 times kmalloc(1024)/kfree -> 119 cycles 10000 times kmalloc(2048)/kfree -> 119 cycles 10000 times kmalloc(4096)/kfree -> 121 cycles 10000 times kmalloc(8192)/kfree -> 119 cycles 10000 times kmalloc(16384)/kfree -> 119 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles 10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles 10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles 10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles 10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles 10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles 10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles 10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles 10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles 10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles 10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles 10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 121 cycles 10000 times kmalloc(16)/kfree -> 121 cycles 10000 times kmalloc(32)/kfree -> 123 cycles 10000 times kmalloc(64)/kfree -> 142 cycles 10000 times kmalloc(128)/kfree -> 121 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 119 cycles 10000 times kmalloc(1024)/kfree -> 119 cycles 10000 times kmalloc(2048)/kfree -> 119 cycles 10000 times kmalloc(4096)/kfree -> 119 cycles 10000 times kmalloc(8192)/kfree -> 119 cycles 10000 times kmalloc(16384)/kfree -> 119 cycles [akpm@linux-foundation.org: propagate gfp_t into cache_random_seq_create()] Signed-off-by: Thomas Garnier <thgarnie@google.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Greg Thelen <gthelen@google.com> Cc: Laura Abbott <labbott@fedoraproject.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 00:10:37 +00:00
config SLAB_FREELIST_RANDOM
mm/slab: expand CONFIG_SLAB_FREELIST_HARDENED to include SLAB Patch series "mm: Expand CONFIG_SLAB_FREELIST_HARDENED to include SLAB" In reviewing Vlastimil Babka's latest slub debug series, I realized[1] that several checks under CONFIG_SLAB_FREELIST_HARDENED weren't being applied to SLAB. Fix this by expanding the Kconfig coverage, and adding a simple double-free test for SLAB. This patch (of 2): Include SLAB caches when performing kmem_cache pointer verification. A defense against such corruption[1] should be applied to all the allocators. With this added, the "SLAB_FREE_CROSS" and "SLAB_FREE_PAGE" LKDTM tests now pass on SLAB: lkdtm: Performing direct entry SLAB_FREE_CROSS lkdtm: Attempting cross-cache slab free ... ------------[ cut here ]------------ cache_from_obj: Wrong slab cache. lkdtm-heap-b but object is from lkdtm-heap-a WARNING: CPU: 2 PID: 2195 at mm/slab.h:530 kmem_cache_free+0x8d/0x1d0 ... lkdtm: Performing direct entry SLAB_FREE_PAGE lkdtm: Attempting non-Slab slab free ... ------------[ cut here ]------------ virt_to_cache: Object is not a Slab page! WARNING: CPU: 1 PID: 2202 at mm/slab.h:489 kmem_cache_free+0x196/0x1d0 Additionally clean up neighboring Kconfig entries for clarity, readability, and redundant option removal. [1] https://github.com/ThomasKing2014/slides/raw/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf Fixes: 598a0717a816 ("mm/slab: validate cache membership under freelist hardening") Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alexander Popov <alex.popov@linux.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Garrett <mjg59@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Link: http://lkml.kernel.org/r/20200625215548.389774-1-keescook@chromium.org Link: http://lkml.kernel.org/r/20200625215548.389774-2-keescook@chromium.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:18:20 +00:00
bool "Randomize slab freelist"
mm: SLUB freelist randomization Implements freelist randomization for the SLUB allocator. It was previous implemented for the SLAB allocator. Both use the same configuration option (CONFIG_SLAB_FREELIST_RANDOM). The list is randomized during initialization of a new set of pages. The order on different freelist sizes is pre-computed at boot for performance. Each kmem_cache has its own randomized freelist. This security feature reduces the predictability of the kernel SLUB allocator against heap overflows rendering attacks much less stable. For example these attacks exploit the predictability of the heap: - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU) - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95) Performance results: slab_test impact is between 3% to 4% on average for 100000 attempts without smp. It is a very focused testing, kernbench show the overall impact on the system is way lower. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles 100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles 100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles 100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles 100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles 100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles 100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles 100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles 100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles 100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 70 cycles 100000 times kmalloc(16)/kfree -> 70 cycles 100000 times kmalloc(32)/kfree -> 70 cycles 100000 times kmalloc(64)/kfree -> 70 cycles 100000 times kmalloc(128)/kfree -> 70 cycles 100000 times kmalloc(256)/kfree -> 69 cycles 100000 times kmalloc(512)/kfree -> 70 cycles 100000 times kmalloc(1024)/kfree -> 73 cycles 100000 times kmalloc(2048)/kfree -> 72 cycles 100000 times kmalloc(4096)/kfree -> 71 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles 100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles 100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles 100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles 100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles 100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles 100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles 100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles 100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles 100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 66 cycles 100000 times kmalloc(16)/kfree -> 66 cycles 100000 times kmalloc(32)/kfree -> 66 cycles 100000 times kmalloc(64)/kfree -> 66 cycles 100000 times kmalloc(128)/kfree -> 65 cycles 100000 times kmalloc(256)/kfree -> 67 cycles 100000 times kmalloc(512)/kfree -> 67 cycles 100000 times kmalloc(1024)/kfree -> 64 cycles 100000 times kmalloc(2048)/kfree -> 67 cycles 100000 times kmalloc(4096)/kfree -> 67 cycles Kernbench, before: Average Optimal load -j 12 Run (std deviation): Elapsed Time 101.873 (1.16069) User Time 1045.22 (1.60447) System Time 88.969 (0.559195) Percent CPU 1112.9 (13.8279) Context Switches 189140 (2282.15) Sleeps 99008.6 (768.091) After: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.47 (0.562732) User Time 1045.3 (1.34263) System Time 88.311 (0.342554) Percent CPU 1105.8 (6.49444) Context Switches 189081 (2355.78) Sleeps 99231.5 (800.358) Link: http://lkml.kernel.org/r/1464295031-26375-3-git-send-email-thgarnie@google.com Signed-off-by: Thomas Garnier <thgarnie@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:21:59 +00:00
depends on SLAB || SLUB
mm: SLAB freelist randomization Provides an optional config (CONFIG_SLAB_FREELIST_RANDOM) to randomize the SLAB freelist. The list is randomized during initialization of a new set of pages. The order on different freelist sizes is pre-computed at boot for performance. Each kmem_cache has its own randomized freelist. Before pre-computed lists are available freelists are generated dynamically. This security feature reduces the predictability of the kernel SLAB allocator against heap overflows rendering attacks much less stable. For example this attack against SLUB (also applicable against SLAB) would be affected: https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/ Also, since v4.6 the freelist was moved at the end of the SLAB. It means a controllable heap is opened to new attacks not yet publicly discussed. A kernel heap overflow can be transformed to multiple use-after-free. This feature makes this type of attack harder too. To generate entropy, we use get_random_bytes_arch because 0 bits of entropy is available in the boot stage. In the worse case this function will fallback to the get_random_bytes sub API. We also generate a shift random number to shift pre-computed freelist for each new set of pages. The config option name is not specific to the SLAB as this approach will be extended to other allocators like SLUB. Performance results highlighted no major changes: Hackbench (running 90 10 times): Before average: 0.0698 After average: 0.0663 (-5.01%) slab_test 1 run on boot. Difference only seen on the 2048 size test being the worse case scenario covered by freelist randomization. New slab pages are constantly being created on the 10000 allocations. Variance should be mainly due to getting new pages every few allocations. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles 10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles 10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles 10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles 10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles 10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles 10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles 10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles 10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles 10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles 10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles 10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 121 cycles 10000 times kmalloc(16)/kfree -> 121 cycles 10000 times kmalloc(32)/kfree -> 121 cycles 10000 times kmalloc(64)/kfree -> 121 cycles 10000 times kmalloc(128)/kfree -> 121 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 119 cycles 10000 times kmalloc(1024)/kfree -> 119 cycles 10000 times kmalloc(2048)/kfree -> 119 cycles 10000 times kmalloc(4096)/kfree -> 121 cycles 10000 times kmalloc(8192)/kfree -> 119 cycles 10000 times kmalloc(16384)/kfree -> 119 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles 10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles 10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles 10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles 10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles 10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles 10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles 10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles 10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles 10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles 10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles 10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 121 cycles 10000 times kmalloc(16)/kfree -> 121 cycles 10000 times kmalloc(32)/kfree -> 123 cycles 10000 times kmalloc(64)/kfree -> 142 cycles 10000 times kmalloc(128)/kfree -> 121 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 119 cycles 10000 times kmalloc(1024)/kfree -> 119 cycles 10000 times kmalloc(2048)/kfree -> 119 cycles 10000 times kmalloc(4096)/kfree -> 119 cycles 10000 times kmalloc(8192)/kfree -> 119 cycles 10000 times kmalloc(16384)/kfree -> 119 cycles [akpm@linux-foundation.org: propagate gfp_t into cache_random_seq_create()] Signed-off-by: Thomas Garnier <thgarnie@google.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Greg Thelen <gthelen@google.com> Cc: Laura Abbott <labbott@fedoraproject.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 00:10:37 +00:00
help
mm: SLUB freelist randomization Implements freelist randomization for the SLUB allocator. It was previous implemented for the SLAB allocator. Both use the same configuration option (CONFIG_SLAB_FREELIST_RANDOM). The list is randomized during initialization of a new set of pages. The order on different freelist sizes is pre-computed at boot for performance. Each kmem_cache has its own randomized freelist. This security feature reduces the predictability of the kernel SLUB allocator against heap overflows rendering attacks much less stable. For example these attacks exploit the predictability of the heap: - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU) - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95) Performance results: slab_test impact is between 3% to 4% on average for 100000 attempts without smp. It is a very focused testing, kernbench show the overall impact on the system is way lower. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles 100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles 100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles 100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles 100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles 100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles 100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles 100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles 100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles 100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 70 cycles 100000 times kmalloc(16)/kfree -> 70 cycles 100000 times kmalloc(32)/kfree -> 70 cycles 100000 times kmalloc(64)/kfree -> 70 cycles 100000 times kmalloc(128)/kfree -> 70 cycles 100000 times kmalloc(256)/kfree -> 69 cycles 100000 times kmalloc(512)/kfree -> 70 cycles 100000 times kmalloc(1024)/kfree -> 73 cycles 100000 times kmalloc(2048)/kfree -> 72 cycles 100000 times kmalloc(4096)/kfree -> 71 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles 100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles 100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles 100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles 100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles 100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles 100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles 100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles 100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles 100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 66 cycles 100000 times kmalloc(16)/kfree -> 66 cycles 100000 times kmalloc(32)/kfree -> 66 cycles 100000 times kmalloc(64)/kfree -> 66 cycles 100000 times kmalloc(128)/kfree -> 65 cycles 100000 times kmalloc(256)/kfree -> 67 cycles 100000 times kmalloc(512)/kfree -> 67 cycles 100000 times kmalloc(1024)/kfree -> 64 cycles 100000 times kmalloc(2048)/kfree -> 67 cycles 100000 times kmalloc(4096)/kfree -> 67 cycles Kernbench, before: Average Optimal load -j 12 Run (std deviation): Elapsed Time 101.873 (1.16069) User Time 1045.22 (1.60447) System Time 88.969 (0.559195) Percent CPU 1112.9 (13.8279) Context Switches 189140 (2282.15) Sleeps 99008.6 (768.091) After: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.47 (0.562732) User Time 1045.3 (1.34263) System Time 88.311 (0.342554) Percent CPU 1105.8 (6.49444) Context Switches 189081 (2355.78) Sleeps 99231.5 (800.358) Link: http://lkml.kernel.org/r/1464295031-26375-3-git-send-email-thgarnie@google.com Signed-off-by: Thomas Garnier <thgarnie@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:21:59 +00:00
Randomizes the freelist order used on creating new pages. This
mm: SLAB freelist randomization Provides an optional config (CONFIG_SLAB_FREELIST_RANDOM) to randomize the SLAB freelist. The list is randomized during initialization of a new set of pages. The order on different freelist sizes is pre-computed at boot for performance. Each kmem_cache has its own randomized freelist. Before pre-computed lists are available freelists are generated dynamically. This security feature reduces the predictability of the kernel SLAB allocator against heap overflows rendering attacks much less stable. For example this attack against SLUB (also applicable against SLAB) would be affected: https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/ Also, since v4.6 the freelist was moved at the end of the SLAB. It means a controllable heap is opened to new attacks not yet publicly discussed. A kernel heap overflow can be transformed to multiple use-after-free. This feature makes this type of attack harder too. To generate entropy, we use get_random_bytes_arch because 0 bits of entropy is available in the boot stage. In the worse case this function will fallback to the get_random_bytes sub API. We also generate a shift random number to shift pre-computed freelist for each new set of pages. The config option name is not specific to the SLAB as this approach will be extended to other allocators like SLUB. Performance results highlighted no major changes: Hackbench (running 90 10 times): Before average: 0.0698 After average: 0.0663 (-5.01%) slab_test 1 run on boot. Difference only seen on the 2048 size test being the worse case scenario covered by freelist randomization. New slab pages are constantly being created on the 10000 allocations. Variance should be mainly due to getting new pages every few allocations. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles 10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles 10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles 10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles 10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles 10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles 10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles 10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles 10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles 10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles 10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles 10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 121 cycles 10000 times kmalloc(16)/kfree -> 121 cycles 10000 times kmalloc(32)/kfree -> 121 cycles 10000 times kmalloc(64)/kfree -> 121 cycles 10000 times kmalloc(128)/kfree -> 121 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 119 cycles 10000 times kmalloc(1024)/kfree -> 119 cycles 10000 times kmalloc(2048)/kfree -> 119 cycles 10000 times kmalloc(4096)/kfree -> 121 cycles 10000 times kmalloc(8192)/kfree -> 119 cycles 10000 times kmalloc(16384)/kfree -> 119 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles 10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles 10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles 10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles 10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles 10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles 10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles 10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles 10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles 10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles 10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles 10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 121 cycles 10000 times kmalloc(16)/kfree -> 121 cycles 10000 times kmalloc(32)/kfree -> 123 cycles 10000 times kmalloc(64)/kfree -> 142 cycles 10000 times kmalloc(128)/kfree -> 121 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 119 cycles 10000 times kmalloc(1024)/kfree -> 119 cycles 10000 times kmalloc(2048)/kfree -> 119 cycles 10000 times kmalloc(4096)/kfree -> 119 cycles 10000 times kmalloc(8192)/kfree -> 119 cycles 10000 times kmalloc(16384)/kfree -> 119 cycles [akpm@linux-foundation.org: propagate gfp_t into cache_random_seq_create()] Signed-off-by: Thomas Garnier <thgarnie@google.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Greg Thelen <gthelen@google.com> Cc: Laura Abbott <labbott@fedoraproject.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 00:10:37 +00:00
security feature reduces the predictability of the kernel slab
allocator against heap overflows.
mm: add SLUB free list pointer obfuscation This SLUB free list pointer obfuscation code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. This adds a per-cache random value to SLUB caches that is XORed with their freelist pointer address and value. This adds nearly zero overhead and frustrates the very common heap overflow exploitation method of overwriting freelist pointers. A recent example of the attack is written up here: http://cyseclabs.com/blog/cve-2016-6187-heap-off-by-one-exploit and there is a section dedicated to the technique the book "A Guide to Kernel Exploitation: Attacking the Core". This is based on patches by Daniel Micay, and refactored to minimize the use of #ifdef. With 200-count cycles of "hackbench -g 20 -l 1000" I saw the following run times: before: mean 10.11882499999999999995 variance .03320378329145728642 stdev .18221905304181911048 after: mean 10.12654000000000000014 variance .04700556623115577889 stdev .21680767106160192064 The difference gets lost in the noise, but if the above is to be taken literally, using CONFIG_FREELIST_HARDENED is 0.07% slower. Link: http://lkml.kernel.org/r/20170802180609.GA66807@beast Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Daniel Micay <danielmicay@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tycho Andersen <tycho@docker.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:19:18 +00:00
config SLAB_FREELIST_HARDENED
bool "Harden slab freelist metadata"
mm/slab: expand CONFIG_SLAB_FREELIST_HARDENED to include SLAB Patch series "mm: Expand CONFIG_SLAB_FREELIST_HARDENED to include SLAB" In reviewing Vlastimil Babka's latest slub debug series, I realized[1] that several checks under CONFIG_SLAB_FREELIST_HARDENED weren't being applied to SLAB. Fix this by expanding the Kconfig coverage, and adding a simple double-free test for SLAB. This patch (of 2): Include SLAB caches when performing kmem_cache pointer verification. A defense against such corruption[1] should be applied to all the allocators. With this added, the "SLAB_FREE_CROSS" and "SLAB_FREE_PAGE" LKDTM tests now pass on SLAB: lkdtm: Performing direct entry SLAB_FREE_CROSS lkdtm: Attempting cross-cache slab free ... ------------[ cut here ]------------ cache_from_obj: Wrong slab cache. lkdtm-heap-b but object is from lkdtm-heap-a WARNING: CPU: 2 PID: 2195 at mm/slab.h:530 kmem_cache_free+0x8d/0x1d0 ... lkdtm: Performing direct entry SLAB_FREE_PAGE lkdtm: Attempting non-Slab slab free ... ------------[ cut here ]------------ virt_to_cache: Object is not a Slab page! WARNING: CPU: 1 PID: 2202 at mm/slab.h:489 kmem_cache_free+0x196/0x1d0 Additionally clean up neighboring Kconfig entries for clarity, readability, and redundant option removal. [1] https://github.com/ThomasKing2014/slides/raw/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf Fixes: 598a0717a816 ("mm/slab: validate cache membership under freelist hardening") Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alexander Popov <alex.popov@linux.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Garrett <mjg59@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Link: http://lkml.kernel.org/r/20200625215548.389774-1-keescook@chromium.org Link: http://lkml.kernel.org/r/20200625215548.389774-2-keescook@chromium.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:18:20 +00:00
depends on SLAB || SLUB
mm: add SLUB free list pointer obfuscation This SLUB free list pointer obfuscation code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. This adds a per-cache random value to SLUB caches that is XORed with their freelist pointer address and value. This adds nearly zero overhead and frustrates the very common heap overflow exploitation method of overwriting freelist pointers. A recent example of the attack is written up here: http://cyseclabs.com/blog/cve-2016-6187-heap-off-by-one-exploit and there is a section dedicated to the technique the book "A Guide to Kernel Exploitation: Attacking the Core". This is based on patches by Daniel Micay, and refactored to minimize the use of #ifdef. With 200-count cycles of "hackbench -g 20 -l 1000" I saw the following run times: before: mean 10.11882499999999999995 variance .03320378329145728642 stdev .18221905304181911048 after: mean 10.12654000000000000014 variance .04700556623115577889 stdev .21680767106160192064 The difference gets lost in the noise, but if the above is to be taken literally, using CONFIG_FREELIST_HARDENED is 0.07% slower. Link: http://lkml.kernel.org/r/20170802180609.GA66807@beast Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Daniel Micay <danielmicay@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tycho Andersen <tycho@docker.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:19:18 +00:00
help
Many kernel heap attacks try to target slab cache metadata and
other infrastructure. This options makes minor performance
sacrifices to harden the kernel slab allocator against common
mm/slab: expand CONFIG_SLAB_FREELIST_HARDENED to include SLAB Patch series "mm: Expand CONFIG_SLAB_FREELIST_HARDENED to include SLAB" In reviewing Vlastimil Babka's latest slub debug series, I realized[1] that several checks under CONFIG_SLAB_FREELIST_HARDENED weren't being applied to SLAB. Fix this by expanding the Kconfig coverage, and adding a simple double-free test for SLAB. This patch (of 2): Include SLAB caches when performing kmem_cache pointer verification. A defense against such corruption[1] should be applied to all the allocators. With this added, the "SLAB_FREE_CROSS" and "SLAB_FREE_PAGE" LKDTM tests now pass on SLAB: lkdtm: Performing direct entry SLAB_FREE_CROSS lkdtm: Attempting cross-cache slab free ... ------------[ cut here ]------------ cache_from_obj: Wrong slab cache. lkdtm-heap-b but object is from lkdtm-heap-a WARNING: CPU: 2 PID: 2195 at mm/slab.h:530 kmem_cache_free+0x8d/0x1d0 ... lkdtm: Performing direct entry SLAB_FREE_PAGE lkdtm: Attempting non-Slab slab free ... ------------[ cut here ]------------ virt_to_cache: Object is not a Slab page! WARNING: CPU: 1 PID: 2202 at mm/slab.h:489 kmem_cache_free+0x196/0x1d0 Additionally clean up neighboring Kconfig entries for clarity, readability, and redundant option removal. [1] https://github.com/ThomasKing2014/slides/raw/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf Fixes: 598a0717a816 ("mm/slab: validate cache membership under freelist hardening") Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alexander Popov <alex.popov@linux.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Garrett <mjg59@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Link: http://lkml.kernel.org/r/20200625215548.389774-1-keescook@chromium.org Link: http://lkml.kernel.org/r/20200625215548.389774-2-keescook@chromium.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:18:20 +00:00
freelist exploit methods. Some slab implementations have more
sanity-checking than others. This option is most effective with
CONFIG_SLUB.
mm: add SLUB free list pointer obfuscation This SLUB free list pointer obfuscation code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. This adds a per-cache random value to SLUB caches that is XORed with their freelist pointer address and value. This adds nearly zero overhead and frustrates the very common heap overflow exploitation method of overwriting freelist pointers. A recent example of the attack is written up here: http://cyseclabs.com/blog/cve-2016-6187-heap-off-by-one-exploit and there is a section dedicated to the technique the book "A Guide to Kernel Exploitation: Attacking the Core". This is based on patches by Daniel Micay, and refactored to minimize the use of #ifdef. With 200-count cycles of "hackbench -g 20 -l 1000" I saw the following run times: before: mean 10.11882499999999999995 variance .03320378329145728642 stdev .18221905304181911048 after: mean 10.12654000000000000014 variance .04700556623115577889 stdev .21680767106160192064 The difference gets lost in the noise, but if the above is to be taken literally, using CONFIG_FREELIST_HARDENED is 0.07% slower. Link: http://lkml.kernel.org/r/20170802180609.GA66807@beast Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Daniel Micay <danielmicay@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tycho Andersen <tycho@docker.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:19:18 +00:00
mm: shuffle initial free memory to improve memory-side-cache utilization Patch series "mm: Randomize free memory", v10. This patch (of 3): Randomization of the page allocator improves the average utilization of a direct-mapped memory-side-cache. Memory side caching is a platform capability that Linux has been previously exposed to in HPC (high-performance computing) environments on specialty platforms. In that instance it was a smaller pool of high-bandwidth-memory relative to higher-capacity / lower-bandwidth DRAM. Now, this capability is going to be found on general purpose server platforms where DRAM is a cache in front of higher latency persistent memory [1]. Robert offered an explanation of the state of the art of Linux interactions with memory-side-caches [2], and I copy it here: It's been a problem in the HPC space: http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/ A kernel module called zonesort is available to try to help: https://software.intel.com/en-us/articles/xeon-phi-software and this abandoned patch series proposed that for the kernel: https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com Dan's patch series doesn't attempt to ensure buffers won't conflict, but also reduces the chance that the buffers will. This will make performance more consistent, albeit slower than "optimal" (which is near impossible to attain in a general-purpose kernel). That's better than forcing users to deploy remedies like: "To eliminate this gradual degradation, we have added a Stream measurement to the Node Health Check that follows each job; nodes are rebooted whenever their measured memory bandwidth falls below 300 GB/s." A replacement for zonesort was merged upstream in commit cc9aec03e58f ("x86/numa_emulation: Introduce uniform split capability"). With this numa_emulation capability, memory can be split into cache sized ("near-memory" sized) numa nodes. A bind operation to such a node, and disabling workloads on other nodes, enables full cache performance. However, once the workload exceeds the cache size then cache conflicts are unavoidable. While HPC environments might be able to tolerate time-scheduling of cache sized workloads, for general purpose server platforms, the oversubscribed cache case will be the common case. The worst case scenario is that a server system owner benchmarks a workload at boot with an un-contended cache only to see that performance degrade over time, even below the average cache performance due to excessive conflicts. Randomization clips the peaks and fills in the valleys of cache utilization to yield steady average performance. Here are some performance impact details of the patches: 1/ An Intel internal synthetic memory bandwidth measurement tool, saw a 3X speedup in a contrived case that tries to force cache conflicts. The contrived cased used the numa_emulation capability to force an instance of the benchmark to be run in two of the near-memory sized numa nodes. If both instances were placed on the same emulated they would fit and cause zero conflicts. While on separate emulated nodes without randomization they underutilized the cache and conflicted unnecessarily due to the in-order allocation per node. 2/ A well known Java server application benchmark was run with a heap size that exceeded cache size by 3X. The cache conflict rate was 8% for the first run and degraded to 21% after page allocator aging. With randomization enabled the rate levelled out at 11%. 3/ A MongoDB workload did not observe measurable difference in cache-conflict rates, but the overall throughput dropped by 7% with randomization in one case. 4/ Mel Gorman ran his suite of performance workloads with randomization enabled on platforms without a memory-side-cache and saw a mix of some improvements and some losses [3]. While there is potentially significant improvement for applications that depend on low latency access across a wide working-set, the performance may be negligible to negative for other workloads. For this reason the shuffle capability defaults to off unless a direct-mapped memory-side-cache is detected. Even then, the page_alloc.shuffle=0 parameter can be specified to disable the randomization on those systems. Outside of memory-side-cache utilization concerns there is potentially security benefit from randomization. Some data exfiltration and return-oriented-programming attacks rely on the ability to infer the location of sensitive data objects. The kernel page allocator, especially early in system boot, has predictable first-in-first out behavior for physical pages. Pages are freed in physical address order when first onlined. Quoting Kees: "While we already have a base-address randomization (CONFIG_RANDOMIZE_MEMORY), attacks against the same hardware and memory layouts would certainly be using the predictability of allocation ordering (i.e. for attacks where the base address isn't important: only the relative positions between allocated memory). This is common in lots of heap-style attacks. They try to gain control over ordering by spraying allocations, etc. I'd really like to see this because it gives us something similar to CONFIG_SLAB_FREELIST_RANDOM but for the page allocator." While SLAB_FREELIST_RANDOM reduces the predictability of some local slab caches it leaves vast bulk of memory to be predictably in order allocated. However, it should be noted, the concrete security benefits are hard to quantify, and no known CVE is mitigated by this randomization. Introduce shuffle_free_memory(), and its helper shuffle_zone(), to perform a Fisher-Yates shuffle of the page allocator 'free_area' lists when they are initially populated with free memory at boot and at hotplug time. Do this based on either the presence of a page_alloc.shuffle=Y command line parameter, or autodetection of a memory-side-cache (to be added in a follow-on patch). The shuffling is done in terms of CONFIG_SHUFFLE_PAGE_ORDER sized free pages where the default CONFIG_SHUFFLE_PAGE_ORDER is MAX_ORDER-1 i.e. 10, 4MB this trades off randomization granularity for time spent shuffling. MAX_ORDER-1 was chosen to be minimally invasive to the page allocator while still showing memory-side cache behavior improvements, and the expectation that the security implications of finer granularity randomization is mitigated by CONFIG_SLAB_FREELIST_RANDOM. The performance impact of the shuffling appears to be in the noise compared to other memory initialization work. This initial randomization can be undone over time so a follow-on patch is introduced to inject entropy on page free decisions. It is reasonable to ask if the page free entropy is sufficient, but it is not enough due to the in-order initial freeing of pages. At the start of that process putting page1 in front or behind page0 still keeps them close together, page2 is still near page1 and has a high chance of being adjacent. As more pages are added ordering diversity improves, but there is still high page locality for the low address pages and this leads to no significant impact to the cache conflict rate. [1]: https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/ [2]: https://lkml.kernel.org/r/AT5PR8401MB1169D656C8B5E121752FC0F8AB120@AT5PR8401MB1169.NAMPRD84.PROD.OUTLOOK.COM [3]: https://lkml.org/lkml/2018/10/12/309 [dan.j.williams@intel.com: fix shuffle enable] Link: http://lkml.kernel.org/r/154943713038.3858443.4125180191382062871.stgit@dwillia2-desk3.amr.corp.intel.com [cai@lca.pw: fix SHUFFLE_PAGE_ALLOCATOR help texts] Link: http://lkml.kernel.org/r/20190425201300.75650-1-cai@lca.pw Link: http://lkml.kernel.org/r/154899811738.3165233.12325692939590944259.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Robert Elliott <elliott@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:41:28 +00:00
config SHUFFLE_PAGE_ALLOCATOR
bool "Page allocator randomization"
default SLAB_FREELIST_RANDOM && ACPI_NUMA
help
Randomization of the page allocator improves the average
utilization of a direct-mapped memory-side-cache. See section
5.2.27 Heterogeneous Memory Attribute Table (HMAT) in the ACPI
6.2a specification for an example of how a platform advertises
the presence of a memory-side-cache. There are also incidental
security benefits as it reduces the predictability of page
allocations to compliment SLAB_FREELIST_RANDOM, but the
default granularity of shuffling on the "MAX_ORDER - 1" i.e,
10th order of pages is selected based on cache utilization
benefits on x86.
While the randomization improves cache utilization it may
negatively impact workloads on platforms without a cache. For
this reason, by default, the randomization is enabled only
after runtime detection of a direct-mapped memory-side-cache.
Otherwise, the randomization may be force enabled with the
'page_alloc.shuffle' kernel command line parameter.
Say Y if unsure.
config SLUB_CPU_PARTIAL
default y
depends on SLUB && SMP
bool "SLUB per cpu partial cache"
help
Per cpu partial caches accelerate objects allocation and freeing
that is local to a processor at the price of more indeterminism
in the latency of the free. On overflow these caches will be cleared
which requires the taking of locks that may cause latency spikes.
Typically one would choose no for a realtime system.
config MMAP_ALLOW_UNINITIALIZED
bool "Allow mmapped anonymous memory to be uninitialized"
depends on EXPERT && !MMU
default n
help
Normally, and according to the Linux spec, anonymous memory obtained
from mmap() has its contents cleared before it is passed to
userspace. Enabling this config option allows you to request that
mmap() skip that if it is given an MAP_UNINITIALIZED flag, thus
providing a huge performance boost. If this option is not enabled,
then the flag will be ignored.
This is taken advantage of by uClibc's malloc(), and also by
ELF-FDPIC binfmt's brk and stack allocator.
Because of the obvious security issues, this option should only be
enabled on embedded devices where you control what is run in
userspace. Since that isn't generally a problem on no-MMU systems,
it is normally safe to say Y here.
See Documentation/admin-guide/mm/nommu-mmap.rst for more information.
config SYSTEM_DATA_VERIFICATION
def_bool n
select SYSTEM_TRUSTED_KEYRING
select KEYS
select CRYPTO
select CRYPTO_RSA
select ASYMMETRIC_KEY_TYPE
select ASYMMETRIC_PUBLIC_KEY_SUBTYPE
select ASN1
select OID_REGISTRY
select X509_CERTIFICATE_PARSER
select PKCS7_MESSAGE_PARSER
help
Provide PKCS#7 message verification using the contents of the system
trusted keyring to provide public keys. This then can be used for
module verification, kexec image verification and firmware blob
verification.
config PROFILING
bool "Profiling support"
help
Say Y here to enable the extended profiling support mechanisms used
by profilers.
#
# Place an empty function call at each tracepoint site. Can be
# dynamically changed for a probe function.
#
tracing: Kernel Tracepoints Implementation of kernel tracepoints. Inspired from the Linux Kernel Markers. Allows complete typing verification by declaring both tracing statement inline functions and probe registration/unregistration static inline functions within the same macro "DEFINE_TRACE". No format string is required. See the tracepoint Documentation and Samples patches for usage examples. Taken from the documentation patch : "A tracepoint placed in code provides a hook to call a function (probe) that you can provide at runtime. A tracepoint can be "on" (a probe is connected to it) or "off" (no probe is attached). When a tracepoint is "off" it has no effect, except for adding a tiny time penalty (checking a condition for a branch) and space penalty (adding a few bytes for the function call at the end of the instrumented function and adds a data structure in a separate section). When a tracepoint is "on", the function you provide is called each time the tracepoint is executed, in the execution context of the caller. When the function provided ends its execution, it returns to the caller (continuing from the tracepoint site). You can put tracepoints at important locations in the code. They are lightweight hooks that can pass an arbitrary number of parameters, which prototypes are described in a tracepoint declaration placed in a header file." Addition and removal of tracepoints is synchronized by RCU using the scheduler (and preempt_disable) as guarantees to find a quiescent state (this is really RCU "classic"). The update side uses rcu_barrier_sched() with call_rcu_sched() and the read/execute side uses "preempt_disable()/preempt_enable()". We make sure the previous array containing probes, which has been scheduled for deletion by the rcu callback, is indeed freed before we proceed to the next update. It therefore limits the rate of modification of a single tracepoint to one update per RCU period. The objective here is to permit fast batch add/removal of probes on _different_ tracepoints. Changelog : - Use #name ":" #proto as string to identify the tracepoint in the tracepoint table. This will make sure not type mismatch happens due to connexion of a probe with the wrong type to a tracepoint declared with the same name in a different header. - Add tracepoint_entry_free_old. - Change __TO_TRACE to get rid of the 'i' iterator. Masami Hiramatsu <mhiramat@redhat.com> : Tested on x86-64. Performance impact of a tracepoint : same as markers, except that it adds about 70 bytes of instructions in an unlikely branch of each instrumented function (the for loop, the stack setup and the function call). It currently adds a memory read, a test and a conditional branch at the instrumentation site (in the hot path). Immediate values will eventually change this into a load immediate, test and branch, which removes the memory read which will make the i-cache impact smaller (changing the memory read for a load immediate removes 3-4 bytes per site on x86_32 (depending on mov prefixes), or 7-8 bytes on x86_64, it also saves the d-cache hit). About the performance impact of tracepoints (which is comparable to markers), even without immediate values optimizations, tests done by Hideo Aoki on ia64 show no regression. His test case was using hackbench on a kernel where scheduler instrumentation (about 5 events in code scheduler code) was added. Quoting Hideo Aoki about Markers : I evaluated overhead of kernel marker using linux-2.6-sched-fixes git tree, which includes several markers for LTTng, using an ia64 server. While the immediate trace mark feature isn't implemented on ia64, there is no major performance regression. So, I think that we don't have any issues to propose merging marker point patches into Linus's tree from the viewpoint of performance impact. I prepared two kernels to evaluate. The first one was compiled without CONFIG_MARKERS. The second one was enabled CONFIG_MARKERS. I downloaded the original hackbench from the following URL: http://devresources.linux-foundation.org/craiger/hackbench/src/hackbench.c I ran hackbench 5 times in each condition and calculated the average and difference between the kernels. The parameter of hackbench: every 50 from 50 to 800 The number of CPUs of the server: 2, 4, and 8 Below is the results. As you can see, major performance regression wasn't found in any case. Even if number of processes increases, differences between marker-enabled kernel and marker- disabled kernel doesn't increase. Moreover, if number of CPUs increases, the differences doesn't increase either. Curiously, marker-enabled kernel is better than marker-disabled kernel in more than half cases, although I guess it comes from the difference of memory access pattern. * 2 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 4.811 | 4.872 | +0.061 | +1.27 | 100 | 9.854 | 10.309 | +0.454 | +4.61 | 150 | 15.602 | 15.040 | -0.562 | -3.6 | 200 | 20.489 | 20.380 | -0.109 | -0.53 | 250 | 25.798 | 25.652 | -0.146 | -0.56 | 300 | 31.260 | 30.797 | -0.463 | -1.48 | 350 | 36.121 | 35.770 | -0.351 | -0.97 | 400 | 42.288 | 42.102 | -0.186 | -0.44 | 450 | 47.778 | 47.253 | -0.526 | -1.1 | 500 | 51.953 | 52.278 | +0.325 | +0.63 | 550 | 58.401 | 57.700 | -0.701 | -1.2 | 600 | 63.334 | 63.222 | -0.112 | -0.18 | 650 | 68.816 | 68.511 | -0.306 | -0.44 | 700 | 74.667 | 74.088 | -0.579 | -0.78 | 750 | 78.612 | 79.582 | +0.970 | +1.23 | 800 | 85.431 | 85.263 | -0.168 | -0.2 | -------------------------------------------------------------- * 4 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 2.586 | 2.584 | -0.003 | -0.1 | 100 | 5.254 | 5.283 | +0.030 | +0.56 | 150 | 8.012 | 8.074 | +0.061 | +0.76 | 200 | 11.172 | 11.000 | -0.172 | -1.54 | 250 | 13.917 | 14.036 | +0.119 | +0.86 | 300 | 16.905 | 16.543 | -0.362 | -2.14 | 350 | 19.901 | 20.036 | +0.135 | +0.68 | 400 | 22.908 | 23.094 | +0.186 | +0.81 | 450 | 26.273 | 26.101 | -0.172 | -0.66 | 500 | 29.554 | 29.092 | -0.461 | -1.56 | 550 | 32.377 | 32.274 | -0.103 | -0.32 | 600 | 35.855 | 35.322 | -0.533 | -1.49 | 650 | 39.192 | 38.388 | -0.804 | -2.05 | 700 | 41.744 | 41.719 | -0.025 | -0.06 | 750 | 45.016 | 44.496 | -0.520 | -1.16 | 800 | 48.212 | 47.603 | -0.609 | -1.26 | -------------------------------------------------------------- * 8 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 2.094 | 2.072 | -0.022 | -1.07 | 100 | 4.162 | 4.273 | +0.111 | +2.66 | 150 | 6.485 | 6.540 | +0.055 | +0.84 | 200 | 8.556 | 8.478 | -0.078 | -0.91 | 250 | 10.458 | 10.258 | -0.200 | -1.91 | 300 | 12.425 | 12.750 | +0.325 | +2.62 | 350 | 14.807 | 14.839 | +0.032 | +0.22 | 400 | 16.801 | 16.959 | +0.158 | +0.94 | 450 | 19.478 | 19.009 | -0.470 | -2.41 | 500 | 21.296 | 21.504 | +0.208 | +0.98 | 550 | 23.842 | 23.979 | +0.137 | +0.57 | 600 | 26.309 | 26.111 | -0.198 | -0.75 | 650 | 28.705 | 28.446 | -0.259 | -0.9 | 700 | 31.233 | 31.394 | +0.161 | +0.52 | 750 | 34.064 | 33.720 | -0.344 | -1.01 | 800 | 36.320 | 36.114 | -0.206 | -0.57 | -------------------------------------------------------------- Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: 'Peter Zijlstra' <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-18 16:16:16 +00:00
config TRACEPOINTS
bool
tracing: Kernel Tracepoints Implementation of kernel tracepoints. Inspired from the Linux Kernel Markers. Allows complete typing verification by declaring both tracing statement inline functions and probe registration/unregistration static inline functions within the same macro "DEFINE_TRACE". No format string is required. See the tracepoint Documentation and Samples patches for usage examples. Taken from the documentation patch : "A tracepoint placed in code provides a hook to call a function (probe) that you can provide at runtime. A tracepoint can be "on" (a probe is connected to it) or "off" (no probe is attached). When a tracepoint is "off" it has no effect, except for adding a tiny time penalty (checking a condition for a branch) and space penalty (adding a few bytes for the function call at the end of the instrumented function and adds a data structure in a separate section). When a tracepoint is "on", the function you provide is called each time the tracepoint is executed, in the execution context of the caller. When the function provided ends its execution, it returns to the caller (continuing from the tracepoint site). You can put tracepoints at important locations in the code. They are lightweight hooks that can pass an arbitrary number of parameters, which prototypes are described in a tracepoint declaration placed in a header file." Addition and removal of tracepoints is synchronized by RCU using the scheduler (and preempt_disable) as guarantees to find a quiescent state (this is really RCU "classic"). The update side uses rcu_barrier_sched() with call_rcu_sched() and the read/execute side uses "preempt_disable()/preempt_enable()". We make sure the previous array containing probes, which has been scheduled for deletion by the rcu callback, is indeed freed before we proceed to the next update. It therefore limits the rate of modification of a single tracepoint to one update per RCU period. The objective here is to permit fast batch add/removal of probes on _different_ tracepoints. Changelog : - Use #name ":" #proto as string to identify the tracepoint in the tracepoint table. This will make sure not type mismatch happens due to connexion of a probe with the wrong type to a tracepoint declared with the same name in a different header. - Add tracepoint_entry_free_old. - Change __TO_TRACE to get rid of the 'i' iterator. Masami Hiramatsu <mhiramat@redhat.com> : Tested on x86-64. Performance impact of a tracepoint : same as markers, except that it adds about 70 bytes of instructions in an unlikely branch of each instrumented function (the for loop, the stack setup and the function call). It currently adds a memory read, a test and a conditional branch at the instrumentation site (in the hot path). Immediate values will eventually change this into a load immediate, test and branch, which removes the memory read which will make the i-cache impact smaller (changing the memory read for a load immediate removes 3-4 bytes per site on x86_32 (depending on mov prefixes), or 7-8 bytes on x86_64, it also saves the d-cache hit). About the performance impact of tracepoints (which is comparable to markers), even without immediate values optimizations, tests done by Hideo Aoki on ia64 show no regression. His test case was using hackbench on a kernel where scheduler instrumentation (about 5 events in code scheduler code) was added. Quoting Hideo Aoki about Markers : I evaluated overhead of kernel marker using linux-2.6-sched-fixes git tree, which includes several markers for LTTng, using an ia64 server. While the immediate trace mark feature isn't implemented on ia64, there is no major performance regression. So, I think that we don't have any issues to propose merging marker point patches into Linus's tree from the viewpoint of performance impact. I prepared two kernels to evaluate. The first one was compiled without CONFIG_MARKERS. The second one was enabled CONFIG_MARKERS. I downloaded the original hackbench from the following URL: http://devresources.linux-foundation.org/craiger/hackbench/src/hackbench.c I ran hackbench 5 times in each condition and calculated the average and difference between the kernels. The parameter of hackbench: every 50 from 50 to 800 The number of CPUs of the server: 2, 4, and 8 Below is the results. As you can see, major performance regression wasn't found in any case. Even if number of processes increases, differences between marker-enabled kernel and marker- disabled kernel doesn't increase. Moreover, if number of CPUs increases, the differences doesn't increase either. Curiously, marker-enabled kernel is better than marker-disabled kernel in more than half cases, although I guess it comes from the difference of memory access pattern. * 2 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 4.811 | 4.872 | +0.061 | +1.27 | 100 | 9.854 | 10.309 | +0.454 | +4.61 | 150 | 15.602 | 15.040 | -0.562 | -3.6 | 200 | 20.489 | 20.380 | -0.109 | -0.53 | 250 | 25.798 | 25.652 | -0.146 | -0.56 | 300 | 31.260 | 30.797 | -0.463 | -1.48 | 350 | 36.121 | 35.770 | -0.351 | -0.97 | 400 | 42.288 | 42.102 | -0.186 | -0.44 | 450 | 47.778 | 47.253 | -0.526 | -1.1 | 500 | 51.953 | 52.278 | +0.325 | +0.63 | 550 | 58.401 | 57.700 | -0.701 | -1.2 | 600 | 63.334 | 63.222 | -0.112 | -0.18 | 650 | 68.816 | 68.511 | -0.306 | -0.44 | 700 | 74.667 | 74.088 | -0.579 | -0.78 | 750 | 78.612 | 79.582 | +0.970 | +1.23 | 800 | 85.431 | 85.263 | -0.168 | -0.2 | -------------------------------------------------------------- * 4 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 2.586 | 2.584 | -0.003 | -0.1 | 100 | 5.254 | 5.283 | +0.030 | +0.56 | 150 | 8.012 | 8.074 | +0.061 | +0.76 | 200 | 11.172 | 11.000 | -0.172 | -1.54 | 250 | 13.917 | 14.036 | +0.119 | +0.86 | 300 | 16.905 | 16.543 | -0.362 | -2.14 | 350 | 19.901 | 20.036 | +0.135 | +0.68 | 400 | 22.908 | 23.094 | +0.186 | +0.81 | 450 | 26.273 | 26.101 | -0.172 | -0.66 | 500 | 29.554 | 29.092 | -0.461 | -1.56 | 550 | 32.377 | 32.274 | -0.103 | -0.32 | 600 | 35.855 | 35.322 | -0.533 | -1.49 | 650 | 39.192 | 38.388 | -0.804 | -2.05 | 700 | 41.744 | 41.719 | -0.025 | -0.06 | 750 | 45.016 | 44.496 | -0.520 | -1.16 | 800 | 48.212 | 47.603 | -0.609 | -1.26 | -------------------------------------------------------------- * 8 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 2.094 | 2.072 | -0.022 | -1.07 | 100 | 4.162 | 4.273 | +0.111 | +2.66 | 150 | 6.485 | 6.540 | +0.055 | +0.84 | 200 | 8.556 | 8.478 | -0.078 | -0.91 | 250 | 10.458 | 10.258 | -0.200 | -1.91 | 300 | 12.425 | 12.750 | +0.325 | +2.62 | 350 | 14.807 | 14.839 | +0.032 | +0.22 | 400 | 16.801 | 16.959 | +0.158 | +0.94 | 450 | 19.478 | 19.009 | -0.470 | -2.41 | 500 | 21.296 | 21.504 | +0.208 | +0.98 | 550 | 23.842 | 23.979 | +0.137 | +0.57 | 600 | 26.309 | 26.111 | -0.198 | -0.75 | 650 | 28.705 | 28.446 | -0.259 | -0.9 | 700 | 31.233 | 31.394 | +0.161 | +0.52 | 750 | 34.064 | 33.720 | -0.344 | -1.01 | 800 | 36.320 | 36.114 | -0.206 | -0.57 | -------------------------------------------------------------- Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: 'Peter Zijlstra' <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-18 16:16:16 +00:00
endmenu # General setup
source "arch/Kconfig"
config RT_MUTEXES
bool
config BASE_SMALL
int
default 0 if BASE_FULL
default 1 if !BASE_FULL
config MODULE_SIG_FORMAT
def_bool n
select SYSTEM_DATA_VERIFICATION
menuconfig MODULES
bool "Enable loadable module support"
option modules
help
Kernel modules are small pieces of compiled code which can
be inserted in the running kernel, rather than being
permanently built into the kernel. You use the "modprobe"
tool to add (and sometimes remove) them. If you say Y here,
many parts of the kernel can be built as modules (by
answering M instead of Y where indicated): this is most
useful for infrequently used options which are not required
for booting. For more information, see the man pages for
modprobe, lsmod, modinfo, insmod and rmmod.
If you say Y here, you will need to run "make
modules_install" to put the modules under /lib/modules/
where modprobe can find them (you may need to be root to do
this).
If unsure, say Y.
if MODULES
config MODULE_FORCE_LOAD
bool "Forced module loading"
default n
help
Allow loading of modules without version information (ie. modprobe
--force). Forced module loading sets the 'F' (forced) taint flag and
is usually a really bad idea.
config MODULE_UNLOAD
bool "Module unloading"
help
Without this option you will not be able to unload any
modules (note that some modules may not be unloadable
anyway), which makes your kernel smaller, faster
and simpler. If unsure, say Y.
config MODULE_FORCE_UNLOAD
bool "Forced module unloading"
depends on MODULE_UNLOAD
help
This option allows you to force a module to unload, even if the
kernel believes it is unsafe: the kernel will remove the module
without waiting for anyone to stop using it (using the -f option to
rmmod). This is mainly for kernel developers and desperate users.
If unsure, say N.
config MODVERSIONS
bool "Module versioning support"
help
Usually, you have to use modules compiled with your kernel.
Saying Y here makes it sometimes possible to use modules
compiled for different kernels, by adding enough information
to the modules to (hopefully) spot any changes which would
make them incompatible with the kernel you are running. If
unsure, say N.
config ASM_MODVERSIONS
bool
default HAVE_ASM_MODVERSIONS && MODVERSIONS
help
This enables module versioning for exported symbols also from
assembly. This can be enabled only when the target architecture
supports it.
config MODULE_REL_CRCS
bool
depends on MODVERSIONS
config MODULE_SRCVERSION_ALL
bool "Source checksum for all modules"
help
Modules which contain a MODULE_VERSION get an extra "srcversion"
field inserted into their modinfo section, which contains a
sum of the source files which made it. This helps maintainers
see exactly which source was used to build a module (since
others sometimes change the module source without updating
the version). With this option, such a "srcversion" field
will be created for all modules. If unsure, say N.
config MODULE_SIG
bool "Module signature verification"
select MODULE_SIG_FORMAT
help
Check modules for valid signatures upon load: the signature
is simply appended to the module. For more information see
<file:Documentation/admin-guide/module-signing.rst>.
Note that this option adds the OpenSSL development packages as a
kernel build dependency so that the signing tool can use its crypto
library.
You should enable this option if you wish to use either
CONFIG_SECURITY_LOCKDOWN_LSM or lockdown functionality imposed via
another LSM - otherwise unsigned modules will be loadable regardless
of the lockdown policy.
!!!WARNING!!! If you enable this option, you MUST make sure that the
module DOES NOT get stripped after being signed. This includes the
debuginfo strip done by some packagers (such as rpmbuild) and
inclusion into an initramfs that wants the module size reduced.
config MODULE_SIG_FORCE
bool "Require modules to be validly signed"
depends on MODULE_SIG
help
Reject unsigned modules or signed modules for which we don't have a
key. Without this, such modules will simply taint the kernel.
config MODULE_SIG_ALL
bool "Automatically sign all modules"
default y
depends on MODULE_SIG
help
Sign all modules during make modules_install. Without this option,
modules must be signed manually, using the scripts/sign-file tool.
comment "Do not forget to sign required modules with scripts/sign-file"
depends on MODULE_SIG_FORCE && !MODULE_SIG_ALL
choice
prompt "Which hash algorithm should modules be signed with?"
depends on MODULE_SIG
help
This determines which sort of hashing algorithm will be used during
signature generation. This algorithm _must_ be built into the kernel
directly so that signature verification can take place. It is not
possible to load a signed module containing the algorithm to check
the signature on that module.
config MODULE_SIG_SHA1
bool "Sign modules with SHA-1"
select CRYPTO_SHA1
config MODULE_SIG_SHA224
bool "Sign modules with SHA-224"
select CRYPTO_SHA256
config MODULE_SIG_SHA256
bool "Sign modules with SHA-256"
select CRYPTO_SHA256
config MODULE_SIG_SHA384
bool "Sign modules with SHA-384"
select CRYPTO_SHA512
config MODULE_SIG_SHA512
bool "Sign modules with SHA-512"
select CRYPTO_SHA512
endchoice
config MODULE_SIG_HASH
string
depends on MODULE_SIG
default "sha1" if MODULE_SIG_SHA1
default "sha224" if MODULE_SIG_SHA224
default "sha256" if MODULE_SIG_SHA256
default "sha384" if MODULE_SIG_SHA384
default "sha512" if MODULE_SIG_SHA512
kbuild: handle module compression while running 'make modules_install'. Since module-init-tools (gzip) and kmod (gzip and xz) support compressed modules, it could be useful to include a support for compressing modules right after having them installed. Doing this in kbuild instead of per distro can permit to make this kind of usage more generic. This patch add a Kconfig entry to "Enable loadable module support" menu and let you choose to compress using gzip (default) or xz. Both gzip and xz does not used any extra -[1-9] option since Andi Kleen and Rusty Russell prove no gain is made using them. gzip is called with -n argument to avoid storing original filename inside compressed file, that way we can save some more bytes. On a v3.16 kernel, 'make allmodconfig' generated 4680 modules for a total of 378MB (no strip, no sign, no compress), the following table shows observed disk space gain based on the allmodconfig .config : | time | +-------------+-----------------+ | manual .ko | make | size | percent | compression | modules_install | | gain +-------------+-----------------+------+-------- - | | 18.61s | 378M | GZIP | 3m16s | 3m37s | 102M | 73.41% XZ | 5m22s | 5m39s | 77M | 79.83% The gain for restricted environnement seems to be interesting while uncompress can be time consuming but happens only while loading a module, that is generally done only once. This is fully compatible with signed modules while the signed module is compressed. module-init-tools or kmod handles decompression and provide to other layer the uncompressed but signed payload. Reviewed-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Bertrand Jacquin <beber@meleeweb.net> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2014-08-27 11:01:56 +00:00
config MODULE_COMPRESS
bool "Compress modules on installation"
help
Compresses kernel modules when 'make modules_install' is run; gzip or
xz depending on "Compression algorithm" below.
kbuild: handle module compression while running 'make modules_install'. Since module-init-tools (gzip) and kmod (gzip and xz) support compressed modules, it could be useful to include a support for compressing modules right after having them installed. Doing this in kbuild instead of per distro can permit to make this kind of usage more generic. This patch add a Kconfig entry to "Enable loadable module support" menu and let you choose to compress using gzip (default) or xz. Both gzip and xz does not used any extra -[1-9] option since Andi Kleen and Rusty Russell prove no gain is made using them. gzip is called with -n argument to avoid storing original filename inside compressed file, that way we can save some more bytes. On a v3.16 kernel, 'make allmodconfig' generated 4680 modules for a total of 378MB (no strip, no sign, no compress), the following table shows observed disk space gain based on the allmodconfig .config : | time | +-------------+-----------------+ | manual .ko | make | size | percent | compression | modules_install | | gain +-------------+-----------------+------+-------- - | | 18.61s | 378M | GZIP | 3m16s | 3m37s | 102M | 73.41% XZ | 5m22s | 5m39s | 77M | 79.83% The gain for restricted environnement seems to be interesting while uncompress can be time consuming but happens only while loading a module, that is generally done only once. This is fully compatible with signed modules while the signed module is compressed. module-init-tools or kmod handles decompression and provide to other layer the uncompressed but signed payload. Reviewed-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Bertrand Jacquin <beber@meleeweb.net> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2014-08-27 11:01:56 +00:00
module-init-tools MAY support gzip, and kmod MAY support gzip and xz.
kbuild: handle module compression while running 'make modules_install'. Since module-init-tools (gzip) and kmod (gzip and xz) support compressed modules, it could be useful to include a support for compressing modules right after having them installed. Doing this in kbuild instead of per distro can permit to make this kind of usage more generic. This patch add a Kconfig entry to "Enable loadable module support" menu and let you choose to compress using gzip (default) or xz. Both gzip and xz does not used any extra -[1-9] option since Andi Kleen and Rusty Russell prove no gain is made using them. gzip is called with -n argument to avoid storing original filename inside compressed file, that way we can save some more bytes. On a v3.16 kernel, 'make allmodconfig' generated 4680 modules for a total of 378MB (no strip, no sign, no compress), the following table shows observed disk space gain based on the allmodconfig .config : | time | +-------------+-----------------+ | manual .ko | make | size | percent | compression | modules_install | | gain +-------------+-----------------+------+-------- - | | 18.61s | 378M | GZIP | 3m16s | 3m37s | 102M | 73.41% XZ | 5m22s | 5m39s | 77M | 79.83% The gain for restricted environnement seems to be interesting while uncompress can be time consuming but happens only while loading a module, that is generally done only once. This is fully compatible with signed modules while the signed module is compressed. module-init-tools or kmod handles decompression and provide to other layer the uncompressed but signed payload. Reviewed-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Bertrand Jacquin <beber@meleeweb.net> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2014-08-27 11:01:56 +00:00
Out-of-tree kernel modules installed using Kbuild will also be
compressed upon installation.
kbuild: handle module compression while running 'make modules_install'. Since module-init-tools (gzip) and kmod (gzip and xz) support compressed modules, it could be useful to include a support for compressing modules right after having them installed. Doing this in kbuild instead of per distro can permit to make this kind of usage more generic. This patch add a Kconfig entry to "Enable loadable module support" menu and let you choose to compress using gzip (default) or xz. Both gzip and xz does not used any extra -[1-9] option since Andi Kleen and Rusty Russell prove no gain is made using them. gzip is called with -n argument to avoid storing original filename inside compressed file, that way we can save some more bytes. On a v3.16 kernel, 'make allmodconfig' generated 4680 modules for a total of 378MB (no strip, no sign, no compress), the following table shows observed disk space gain based on the allmodconfig .config : | time | +-------------+-----------------+ | manual .ko | make | size | percent | compression | modules_install | | gain +-------------+-----------------+------+-------- - | | 18.61s | 378M | GZIP | 3m16s | 3m37s | 102M | 73.41% XZ | 5m22s | 5m39s | 77M | 79.83% The gain for restricted environnement seems to be interesting while uncompress can be time consuming but happens only while loading a module, that is generally done only once. This is fully compatible with signed modules while the signed module is compressed. module-init-tools or kmod handles decompression and provide to other layer the uncompressed but signed payload. Reviewed-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Bertrand Jacquin <beber@meleeweb.net> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2014-08-27 11:01:56 +00:00
Note: for modules inside an initrd or initramfs, it's more efficient
to compress the whole initrd or initramfs instead.
kbuild: handle module compression while running 'make modules_install'. Since module-init-tools (gzip) and kmod (gzip and xz) support compressed modules, it could be useful to include a support for compressing modules right after having them installed. Doing this in kbuild instead of per distro can permit to make this kind of usage more generic. This patch add a Kconfig entry to "Enable loadable module support" menu and let you choose to compress using gzip (default) or xz. Both gzip and xz does not used any extra -[1-9] option since Andi Kleen and Rusty Russell prove no gain is made using them. gzip is called with -n argument to avoid storing original filename inside compressed file, that way we can save some more bytes. On a v3.16 kernel, 'make allmodconfig' generated 4680 modules for a total of 378MB (no strip, no sign, no compress), the following table shows observed disk space gain based on the allmodconfig .config : | time | +-------------+-----------------+ | manual .ko | make | size | percent | compression | modules_install | | gain +-------------+-----------------+------+-------- - | | 18.61s | 378M | GZIP | 3m16s | 3m37s | 102M | 73.41% XZ | 5m22s | 5m39s | 77M | 79.83% The gain for restricted environnement seems to be interesting while uncompress can be time consuming but happens only while loading a module, that is generally done only once. This is fully compatible with signed modules while the signed module is compressed. module-init-tools or kmod handles decompression and provide to other layer the uncompressed but signed payload. Reviewed-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Bertrand Jacquin <beber@meleeweb.net> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2014-08-27 11:01:56 +00:00
Note: This is fully compatible with signed modules.
If in doubt, say N.
kbuild: handle module compression while running 'make modules_install'. Since module-init-tools (gzip) and kmod (gzip and xz) support compressed modules, it could be useful to include a support for compressing modules right after having them installed. Doing this in kbuild instead of per distro can permit to make this kind of usage more generic. This patch add a Kconfig entry to "Enable loadable module support" menu and let you choose to compress using gzip (default) or xz. Both gzip and xz does not used any extra -[1-9] option since Andi Kleen and Rusty Russell prove no gain is made using them. gzip is called with -n argument to avoid storing original filename inside compressed file, that way we can save some more bytes. On a v3.16 kernel, 'make allmodconfig' generated 4680 modules for a total of 378MB (no strip, no sign, no compress), the following table shows observed disk space gain based on the allmodconfig .config : | time | +-------------+-----------------+ | manual .ko | make | size | percent | compression | modules_install | | gain +-------------+-----------------+------+-------- - | | 18.61s | 378M | GZIP | 3m16s | 3m37s | 102M | 73.41% XZ | 5m22s | 5m39s | 77M | 79.83% The gain for restricted environnement seems to be interesting while uncompress can be time consuming but happens only while loading a module, that is generally done only once. This is fully compatible with signed modules while the signed module is compressed. module-init-tools or kmod handles decompression and provide to other layer the uncompressed but signed payload. Reviewed-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Bertrand Jacquin <beber@meleeweb.net> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2014-08-27 11:01:56 +00:00
choice
prompt "Compression algorithm"
depends on MODULE_COMPRESS
default MODULE_COMPRESS_GZIP
help
This determines which sort of compression will be used during
'make modules_install'.
GZIP (default) and XZ are supported.
config MODULE_COMPRESS_GZIP
bool "GZIP"
config MODULE_COMPRESS_XZ
bool "XZ"
endchoice
config MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
bool "Allow loading of modules with missing namespace imports"
help
Symbols exported with EXPORT_SYMBOL_NS*() are considered exported in
a namespace. A module that makes use of a symbol exported with such a
namespace is required to import the namespace via MODULE_IMPORT_NS().
There is no technical reason to enforce correct namespace imports,
but it creates consistency between symbols defining namespaces and
users importing namespaces they make use of. This option relaxes this
requirement and lifts the enforcement when loading a module.
If unsure, say N.
config TRIM_UNUSED_KSYMS
bool "Trim unused exported kernel symbols" if EXPERT
depends on !COMPILE_TEST
help
The kernel and some modules make many symbols available for
other modules to use via EXPORT_SYMBOL() and variants. Depending
on the set of modules being selected in your kernel configuration,
many of those exported symbols might never be used.
This option allows for unused exported symbols to be dropped from
the build. In turn, this provides the compiler more opportunities
(especially when using LTO) for optimizing the code and reducing
binary size. This might have some security advantages as well.
If unsure, or if you need to build out-of-tree modules, say N.
config UNUSED_KSYMS_WHITELIST
string "Whitelist of symbols to keep in ksymtab"
depends on TRIM_UNUSED_KSYMS
help
By default, all unused exported symbols will be un-exported from the
build when TRIM_UNUSED_KSYMS is selected.
UNUSED_KSYMS_WHITELIST allows to whitelist symbols that must be kept
exported at all times, even in absence of in-tree users. The value to
set here is the path to a text file containing the list of symbols,
one per line. The path can be absolute, or relative to the kernel
source tree.
endif # MODULES
config MODULES_TREE_LOOKUP
def_bool y
depends on PERF_EVENTS || TRACING
config INIT_ALL_POSSIBLE
bool
help
Back when each arch used to define their own cpu_online_mask and
cpu_possible_mask, some of them chose to initialize cpu_possible_mask
with all 1s, and others with all 0s. When they were centralised,
it was better to provide this option than to break all the archs
and have several arch maintainers pursuing me down dark alleys.
source "block/Kconfig"
config PREEMPT_NOTIFIERS
bool
config PADATA
depends on SMP
bool
config ASN1
tristate
help
Build a simple ASN.1 grammar compiler that produces a bytecode output
that can be interpreted by the ASN.1 stream decoder and used to
inform it as to what tags are to be expected in a stream and what
functions to call on what tags.
source "kernel/Kconfig.locks"
bpf: Restrict bpf_probe_read{, str}() only to archs where they work Given the legacy bpf_probe_read{,str}() BPF helpers are broken on archs with overlapping address ranges, we should really take the next step to disable them from BPF use there. To generally fix the situation, we've recently added new helper variants bpf_probe_read_{user,kernel}() and bpf_probe_read_{user,kernel}_str(). For details on them, see 6ae08ae3dea2 ("bpf: Add probe_read_{user, kernel} and probe_read_{user,kernel}_str helpers"). Given bpf_probe_read{,str}() have been around for ~5 years by now, there are plenty of users at least on x86 still relying on them today, so we cannot remove them entirely w/o breaking the BPF tracing ecosystem. However, their use should be restricted to archs with non-overlapping address ranges where they are working in their current form. Therefore, move this behind a CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE and have x86, arm64, arm select it (other archs supporting it can follow-up on it as well). For the remaining archs, they can workaround easily by relying on the feature probe from bpftool which spills out defines that can be used out of BPF C code to implement the drop-in replacement for old/new kernels via: bpftool feature probe macro Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/bpf/20200515101118.6508-2-daniel@iogearbox.net
2020-05-15 10:11:16 +00:00
config ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
bool
config ARCH_HAS_SYNC_CORE_BEFORE_USERMODE
bool
# It may be useful for an architecture to override the definitions of the
syscalls/core: Prepare CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y for compat syscalls It may be useful for an architecture to override the definitions of the COMPAT_SYSCALL_DEFINE0() and __COMPAT_SYSCALL_DEFINEx() macros in <linux/compat.h>, in particular to use a different calling convention for syscalls. This patch provides a mechanism to do so, based on the previously introduced CONFIG_ARCH_HAS_SYSCALL_WRAPPER. If it is enabled, <asm/sycall_wrapper.h> is included in <linux/compat.h> and may be used to define the macros mentioned above. Moreover, as the syscall calling convention may be different if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is set, the compat syscall function prototypes in <linux/compat.h> are #ifndef'd out in that case. As some of the syscalls and/or compat syscalls may not be present, the COND_SYSCALL() and COND_SYSCALL_COMPAT() macros in kernel/sys_ni.c as well as the SYS_NI() and COMPAT_SYS_NI() macros in kernel/time/posix-stubs.c can be re-defined in <asm/syscall_wrapper.h> iff CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180405095307.3730-5-linux@dominikbrodowski.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-04-05 09:53:03 +00:00
# SYSCALL_DEFINE() and __SYSCALL_DEFINEx() macros in <linux/syscalls.h>
# and the COMPAT_ variants in <linux/compat.h>, in particular to use a
# different calling convention for syscalls. They can also override the
# macros for not-implemented syscalls in kernel/sys_ni.c and
# kernel/time/posix-stubs.c. All these overrides need to be available in
# <asm/syscall_wrapper.h>.
config ARCH_HAS_SYSCALL_WRAPPER
def_bool n