419 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* drivers/base/power/domain_governor.c - Governors for device PM domains.
*
* Copyright (C) 2011 Rafael J. Wysocki <rjw@sisk.pl>, Renesas Electronics Corp.
*/
#include <linux/kernel.h>
#include <linux/pm_domain.h>
#include <linux/pm_qos.h>
#include <linux/hrtimer.h>
#include <linux/cpuidle.h>
#include <linux/cpumask.h>
#include <linux/ktime.h>
static int dev_update_qos_constraint(struct device *dev, void *data)
{
s64 *constraint_ns_p = data;
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
s64 constraint_ns;
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
if (dev->power.subsys_data && dev->power.subsys_data->domain_data) {
struct gpd_timing_data *td = dev_gpd_data(dev)->td;
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
/*
* Only take suspend-time QoS constraints of devices into
* account, because constraints updated after the device has
* been suspended are not guaranteed to be taken into account
* anyway. In order for them to take effect, the device has to
* be resumed and suspended again.
*/
constraint_ns = td ? td->effective_constraint_ns :
PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS;
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
} else {
/*
* The child is not in a domain and there's no info on its
* suspend/resume latencies, so assume them to be negligible and
* take its current PM QoS constraint (that's the only thing
* known at this point anyway).
*/
constraint_ns = dev_pm_qos_read_value(dev, DEV_PM_QOS_RESUME_LATENCY);
PM / QoS: Fix device resume latency framework The special value of 0 for device resume latency PM QoS means "no restriction", but there are two problems with that. First, device resume latency PM QoS requests with 0 as the value are always put in front of requests with positive values in the priority lists used internally by the PM QoS framework, causing 0 to be chosen as an effective constraint value. However, that 0 is then interpreted as "no restriction" effectively overriding the other requests with specific restrictions which is incorrect. Second, the users of device resume latency PM QoS have no way to specify that *any* resume latency at all should be avoided, which is an artificial limitation in general. To address these issues, modify device resume latency PM QoS to use S32_MAX as the "no constraint" value and 0 as the "no latency at all" one and rework its users (the cpuidle menu governor, the genpd QoS governor and the runtime PM framework) to follow these changes. Also add a special "n/a" value to the corresponding user space I/F to allow user space to indicate that it cannot accept any resume latencies at all for the given device. Fixes: 85dc0b8a4019 (PM / QoS: Make it possible to expose PM QoS latency constraints) Link: https://bugzilla.kernel.org/show_bug.cgi?id=197323 Reported-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Reinette Chatre <reinette.chatre@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 11:33:49 +01:00
constraint_ns *= NSEC_PER_USEC;
}
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
PM / QoS: Fix device resume latency framework The special value of 0 for device resume latency PM QoS means "no restriction", but there are two problems with that. First, device resume latency PM QoS requests with 0 as the value are always put in front of requests with positive values in the priority lists used internally by the PM QoS framework, causing 0 to be chosen as an effective constraint value. However, that 0 is then interpreted as "no restriction" effectively overriding the other requests with specific restrictions which is incorrect. Second, the users of device resume latency PM QoS have no way to specify that *any* resume latency at all should be avoided, which is an artificial limitation in general. To address these issues, modify device resume latency PM QoS to use S32_MAX as the "no constraint" value and 0 as the "no latency at all" one and rework its users (the cpuidle menu governor, the genpd QoS governor and the runtime PM framework) to follow these changes. Also add a special "n/a" value to the corresponding user space I/F to allow user space to indicate that it cannot accept any resume latencies at all for the given device. Fixes: 85dc0b8a4019 (PM / QoS: Make it possible to expose PM QoS latency constraints) Link: https://bugzilla.kernel.org/show_bug.cgi?id=197323 Reported-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Reinette Chatre <reinette.chatre@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 11:33:49 +01:00
if (constraint_ns < *constraint_ns_p)
*constraint_ns_p = constraint_ns;
return 0;
}
/**
* default_suspend_ok - Default PM domain governor routine to suspend devices.
* @dev: Device to check.
*
* Returns: true if OK to suspend, false if not OK to suspend
*/
static bool default_suspend_ok(struct device *dev)
{
struct gpd_timing_data *td = dev_gpd_data(dev)->td;
unsigned long flags;
s64 constraint_ns;
dev_dbg(dev, "%s()\n", __func__);
spin_lock_irqsave(&dev->power.lock, flags);
if (!td->constraint_changed) {
bool ret = td->cached_suspend_ok;
spin_unlock_irqrestore(&dev->power.lock, flags);
return ret;
}
td->constraint_changed = false;
td->cached_suspend_ok = false;
PM / QoS: Fix device resume latency framework The special value of 0 for device resume latency PM QoS means "no restriction", but there are two problems with that. First, device resume latency PM QoS requests with 0 as the value are always put in front of requests with positive values in the priority lists used internally by the PM QoS framework, causing 0 to be chosen as an effective constraint value. However, that 0 is then interpreted as "no restriction" effectively overriding the other requests with specific restrictions which is incorrect. Second, the users of device resume latency PM QoS have no way to specify that *any* resume latency at all should be avoided, which is an artificial limitation in general. To address these issues, modify device resume latency PM QoS to use S32_MAX as the "no constraint" value and 0 as the "no latency at all" one and rework its users (the cpuidle menu governor, the genpd QoS governor and the runtime PM framework) to follow these changes. Also add a special "n/a" value to the corresponding user space I/F to allow user space to indicate that it cannot accept any resume latencies at all for the given device. Fixes: 85dc0b8a4019 (PM / QoS: Make it possible to expose PM QoS latency constraints) Link: https://bugzilla.kernel.org/show_bug.cgi?id=197323 Reported-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Reinette Chatre <reinette.chatre@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 11:33:49 +01:00
td->effective_constraint_ns = 0;
constraint_ns = __dev_pm_qos_resume_latency(dev);
spin_unlock_irqrestore(&dev->power.lock, flags);
PM / QoS: Fix device resume latency framework The special value of 0 for device resume latency PM QoS means "no restriction", but there are two problems with that. First, device resume latency PM QoS requests with 0 as the value are always put in front of requests with positive values in the priority lists used internally by the PM QoS framework, causing 0 to be chosen as an effective constraint value. However, that 0 is then interpreted as "no restriction" effectively overriding the other requests with specific restrictions which is incorrect. Second, the users of device resume latency PM QoS have no way to specify that *any* resume latency at all should be avoided, which is an artificial limitation in general. To address these issues, modify device resume latency PM QoS to use S32_MAX as the "no constraint" value and 0 as the "no latency at all" one and rework its users (the cpuidle menu governor, the genpd QoS governor and the runtime PM framework) to follow these changes. Also add a special "n/a" value to the corresponding user space I/F to allow user space to indicate that it cannot accept any resume latencies at all for the given device. Fixes: 85dc0b8a4019 (PM / QoS: Make it possible to expose PM QoS latency constraints) Link: https://bugzilla.kernel.org/show_bug.cgi?id=197323 Reported-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Reinette Chatre <reinette.chatre@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 11:33:49 +01:00
if (constraint_ns == 0)
return false;
constraint_ns *= NSEC_PER_USEC;
/*
* We can walk the children without any additional locking, because
* they all have been suspended at this point and their
* effective_constraint_ns fields won't be modified in parallel with us.
*/
if (!dev->power.ignore_children)
device_for_each_child(dev, &constraint_ns,
dev_update_qos_constraint);
PM / QoS: Fix device resume latency framework The special value of 0 for device resume latency PM QoS means "no restriction", but there are two problems with that. First, device resume latency PM QoS requests with 0 as the value are always put in front of requests with positive values in the priority lists used internally by the PM QoS framework, causing 0 to be chosen as an effective constraint value. However, that 0 is then interpreted as "no restriction" effectively overriding the other requests with specific restrictions which is incorrect. Second, the users of device resume latency PM QoS have no way to specify that *any* resume latency at all should be avoided, which is an artificial limitation in general. To address these issues, modify device resume latency PM QoS to use S32_MAX as the "no constraint" value and 0 as the "no latency at all" one and rework its users (the cpuidle menu governor, the genpd QoS governor and the runtime PM framework) to follow these changes. Also add a special "n/a" value to the corresponding user space I/F to allow user space to indicate that it cannot accept any resume latencies at all for the given device. Fixes: 85dc0b8a4019 (PM / QoS: Make it possible to expose PM QoS latency constraints) Link: https://bugzilla.kernel.org/show_bug.cgi?id=197323 Reported-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Reinette Chatre <reinette.chatre@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 11:33:49 +01:00
if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS) {
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
/* "No restriction", so the device is allowed to suspend. */
PM / QoS: Fix device resume latency framework The special value of 0 for device resume latency PM QoS means "no restriction", but there are two problems with that. First, device resume latency PM QoS requests with 0 as the value are always put in front of requests with positive values in the priority lists used internally by the PM QoS framework, causing 0 to be chosen as an effective constraint value. However, that 0 is then interpreted as "no restriction" effectively overriding the other requests with specific restrictions which is incorrect. Second, the users of device resume latency PM QoS have no way to specify that *any* resume latency at all should be avoided, which is an artificial limitation in general. To address these issues, modify device resume latency PM QoS to use S32_MAX as the "no constraint" value and 0 as the "no latency at all" one and rework its users (the cpuidle menu governor, the genpd QoS governor and the runtime PM framework) to follow these changes. Also add a special "n/a" value to the corresponding user space I/F to allow user space to indicate that it cannot accept any resume latencies at all for the given device. Fixes: 85dc0b8a4019 (PM / QoS: Make it possible to expose PM QoS latency constraints) Link: https://bugzilla.kernel.org/show_bug.cgi?id=197323 Reported-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Reinette Chatre <reinette.chatre@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 11:33:49 +01:00
td->effective_constraint_ns = PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS;
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
td->cached_suspend_ok = true;
PM / QoS: Fix device resume latency framework The special value of 0 for device resume latency PM QoS means "no restriction", but there are two problems with that. First, device resume latency PM QoS requests with 0 as the value are always put in front of requests with positive values in the priority lists used internally by the PM QoS framework, causing 0 to be chosen as an effective constraint value. However, that 0 is then interpreted as "no restriction" effectively overriding the other requests with specific restrictions which is incorrect. Second, the users of device resume latency PM QoS have no way to specify that *any* resume latency at all should be avoided, which is an artificial limitation in general. To address these issues, modify device resume latency PM QoS to use S32_MAX as the "no constraint" value and 0 as the "no latency at all" one and rework its users (the cpuidle menu governor, the genpd QoS governor and the runtime PM framework) to follow these changes. Also add a special "n/a" value to the corresponding user space I/F to allow user space to indicate that it cannot accept any resume latencies at all for the given device. Fixes: 85dc0b8a4019 (PM / QoS: Make it possible to expose PM QoS latency constraints) Link: https://bugzilla.kernel.org/show_bug.cgi?id=197323 Reported-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Reinette Chatre <reinette.chatre@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 11:33:49 +01:00
} else if (constraint_ns == 0) {
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
/*
* This triggers if one of the children that don't belong to a
PM / QoS: Fix device resume latency framework The special value of 0 for device resume latency PM QoS means "no restriction", but there are two problems with that. First, device resume latency PM QoS requests with 0 as the value are always put in front of requests with positive values in the priority lists used internally by the PM QoS framework, causing 0 to be chosen as an effective constraint value. However, that 0 is then interpreted as "no restriction" effectively overriding the other requests with specific restrictions which is incorrect. Second, the users of device resume latency PM QoS have no way to specify that *any* resume latency at all should be avoided, which is an artificial limitation in general. To address these issues, modify device resume latency PM QoS to use S32_MAX as the "no constraint" value and 0 as the "no latency at all" one and rework its users (the cpuidle menu governor, the genpd QoS governor and the runtime PM framework) to follow these changes. Also add a special "n/a" value to the corresponding user space I/F to allow user space to indicate that it cannot accept any resume latencies at all for the given device. Fixes: 85dc0b8a4019 (PM / QoS: Make it possible to expose PM QoS latency constraints) Link: https://bugzilla.kernel.org/show_bug.cgi?id=197323 Reported-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Reinette Chatre <reinette.chatre@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 11:33:49 +01:00
* domain has a zero PM QoS constraint and it's better not to
* suspend then. effective_constraint_ns is zero already and
* cached_suspend_ok is false, so bail out.
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
*/
return false;
} else {
constraint_ns -= td->suspend_latency_ns +
td->resume_latency_ns;
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
/*
PM / QoS: Fix device resume latency framework The special value of 0 for device resume latency PM QoS means "no restriction", but there are two problems with that. First, device resume latency PM QoS requests with 0 as the value are always put in front of requests with positive values in the priority lists used internally by the PM QoS framework, causing 0 to be chosen as an effective constraint value. However, that 0 is then interpreted as "no restriction" effectively overriding the other requests with specific restrictions which is incorrect. Second, the users of device resume latency PM QoS have no way to specify that *any* resume latency at all should be avoided, which is an artificial limitation in general. To address these issues, modify device resume latency PM QoS to use S32_MAX as the "no constraint" value and 0 as the "no latency at all" one and rework its users (the cpuidle menu governor, the genpd QoS governor and the runtime PM framework) to follow these changes. Also add a special "n/a" value to the corresponding user space I/F to allow user space to indicate that it cannot accept any resume latencies at all for the given device. Fixes: 85dc0b8a4019 (PM / QoS: Make it possible to expose PM QoS latency constraints) Link: https://bugzilla.kernel.org/show_bug.cgi?id=197323 Reported-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Reinette Chatre <reinette.chatre@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 11:33:49 +01:00
* effective_constraint_ns is zero already and cached_suspend_ok
* is false, so if the computed value is not positive, return
* right away.
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
*/
if (constraint_ns <= 0)
return false;
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
td->effective_constraint_ns = constraint_ns;
td->cached_suspend_ok = true;
}
/*
* The children have been suspended already, so we don't need to take
* their suspend latencies into account here.
*/
return td->cached_suspend_ok;
}
static void update_domain_next_wakeup(struct generic_pm_domain *genpd, ktime_t now)
{
ktime_t domain_wakeup = KTIME_MAX;
ktime_t next_wakeup;
struct pm_domain_data *pdd;
struct gpd_link *link;
if (!(genpd->flags & GENPD_FLAG_MIN_RESIDENCY))
return;
/*
* Devices that have a predictable wakeup pattern, may specify
* their next wakeup. Let's find the next wakeup from all the
* devices attached to this domain and from all the sub-domains.
* It is possible that component's a next wakeup may have become
* stale when we read that here. We will ignore to ensure the domain
* is able to enter its optimal idle state.
*/
list_for_each_entry(pdd, &genpd->dev_list, list_node) {
next_wakeup = to_gpd_data(pdd)->td->next_wakeup;
if (next_wakeup != KTIME_MAX && !ktime_before(next_wakeup, now))
if (ktime_before(next_wakeup, domain_wakeup))
domain_wakeup = next_wakeup;
}
list_for_each_entry(link, &genpd->parent_links, parent_node) {
struct genpd_governor_data *cgd = link->child->gd;
next_wakeup = cgd ? cgd->next_wakeup : KTIME_MAX;
if (next_wakeup != KTIME_MAX && !ktime_before(next_wakeup, now))
if (ktime_before(next_wakeup, domain_wakeup))
domain_wakeup = next_wakeup;
}
genpd->gd->next_wakeup = domain_wakeup;
}
static bool next_wakeup_allows_state(struct generic_pm_domain *genpd,
unsigned int state, ktime_t now)
{
ktime_t domain_wakeup = genpd->gd->next_wakeup;
s64 idle_time_ns, min_sleep_ns;
min_sleep_ns = genpd->states[state].power_off_latency_ns +
genpd->states[state].residency_ns;
idle_time_ns = ktime_to_ns(ktime_sub(domain_wakeup, now));
return idle_time_ns >= min_sleep_ns;
}
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
static bool __default_power_down_ok(struct dev_pm_domain *pd,
unsigned int state)
{
struct generic_pm_domain *genpd = pd_to_genpd(pd);
struct gpd_link *link;
struct pm_domain_data *pdd;
s64 min_off_time_ns;
s64 off_on_time_ns;
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
off_on_time_ns = genpd->states[state].power_off_latency_ns +
genpd->states[state].power_on_latency_ns;
min_off_time_ns = -1;
/*
* Check if subdomains can be off for enough time.
*
* All subdomains have been powered off already at this point.
*/
list_for_each_entry(link, &genpd->parent_links, parent_node) {
struct genpd_governor_data *cgd = link->child->gd;
s64 sd_max_off_ns = cgd ? cgd->max_off_time_ns : -1;
if (sd_max_off_ns < 0)
continue;
/*
* Check if the subdomain is allowed to be off long enough for
* the current domain to turn off and on (that's how much time
* it will have to wait worst case).
*/
if (sd_max_off_ns <= off_on_time_ns)
return false;
if (min_off_time_ns > sd_max_off_ns || min_off_time_ns < 0)
min_off_time_ns = sd_max_off_ns;
}
/*
* Check if the devices in the domain can be off enough time.
*/
list_for_each_entry(pdd, &genpd->dev_list, list_node) {
struct gpd_timing_data *td;
s64 constraint_ns;
/*
* Check if the device is allowed to be off long enough for the
* domain to turn off and on (that's how much time it will
* have to wait worst case).
*/
td = to_gpd_data(pdd)->td;
constraint_ns = td->effective_constraint_ns;
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
/*
PM / QoS: Fix device resume latency framework The special value of 0 for device resume latency PM QoS means "no restriction", but there are two problems with that. First, device resume latency PM QoS requests with 0 as the value are always put in front of requests with positive values in the priority lists used internally by the PM QoS framework, causing 0 to be chosen as an effective constraint value. However, that 0 is then interpreted as "no restriction" effectively overriding the other requests with specific restrictions which is incorrect. Second, the users of device resume latency PM QoS have no way to specify that *any* resume latency at all should be avoided, which is an artificial limitation in general. To address these issues, modify device resume latency PM QoS to use S32_MAX as the "no constraint" value and 0 as the "no latency at all" one and rework its users (the cpuidle menu governor, the genpd QoS governor and the runtime PM framework) to follow these changes. Also add a special "n/a" value to the corresponding user space I/F to allow user space to indicate that it cannot accept any resume latencies at all for the given device. Fixes: 85dc0b8a4019 (PM / QoS: Make it possible to expose PM QoS latency constraints) Link: https://bugzilla.kernel.org/show_bug.cgi?id=197323 Reported-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Reinette Chatre <reinette.chatre@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 11:33:49 +01:00
* Zero means "no suspend at all" and this runs only when all
* devices in the domain are suspended, so it must be positive.
PM / domains: Rework governor code to be more consistent The genpd governor currently uses negative PM QoS values to indicate the "no suspend" condition and 0 as "no restriction", but it doesn't use them consistently. Moreover, it tries to refresh QoS values for already suspended devices in a quite questionable way. For the above reasons, rework it to be a bit more consistent. First off, note that dev_pm_qos_read_value() in dev_update_qos_constraint() and __default_power_down_ok() is evaluated for devices in suspend. Moreover, that only happens if the effective_constraint_ns value for them is negative (meaning "no suspend"). It is not evaluated in any other cases, so effectively the QoS values are only updated for devices in suspend that should not have been suspended in the first place. In all of the other cases, the QoS values taken into account are the effective ones from the time before the device has been suspended, so generally devices need to be resumed and suspended again for new QoS values to take effect anyway. Thus evaluating dev_update_qos_constraint() in those two places doesn't make sense at all, so drop it. Second, initialize effective_constraint_ns to 0 ("no constraint") rather than to (-1) ("no suspend"), which makes more sense in general and in case effective_constraint_ns is never updated (the device is in suspend all the time or it is never suspended) it doesn't affect the device's parent and so on. Finally, rework default_suspend_ok() to explicitly handle the "no restriction" and "no suspend" special cases. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 02:23:18 +01:00
*/
PM / QoS: Fix device resume latency framework The special value of 0 for device resume latency PM QoS means "no restriction", but there are two problems with that. First, device resume latency PM QoS requests with 0 as the value are always put in front of requests with positive values in the priority lists used internally by the PM QoS framework, causing 0 to be chosen as an effective constraint value. However, that 0 is then interpreted as "no restriction" effectively overriding the other requests with specific restrictions which is incorrect. Second, the users of device resume latency PM QoS have no way to specify that *any* resume latency at all should be avoided, which is an artificial limitation in general. To address these issues, modify device resume latency PM QoS to use S32_MAX as the "no constraint" value and 0 as the "no latency at all" one and rework its users (the cpuidle menu governor, the genpd QoS governor and the runtime PM framework) to follow these changes. Also add a special "n/a" value to the corresponding user space I/F to allow user space to indicate that it cannot accept any resume latencies at all for the given device. Fixes: 85dc0b8a4019 (PM / QoS: Make it possible to expose PM QoS latency constraints) Link: https://bugzilla.kernel.org/show_bug.cgi?id=197323 Reported-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Reinette Chatre <reinette.chatre@intel.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-11-07 11:33:49 +01:00
if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS)
continue;
if (constraint_ns <= off_on_time_ns)
return false;
if (min_off_time_ns > constraint_ns || min_off_time_ns < 0)
min_off_time_ns = constraint_ns;
}
/*
* If the computed minimum device off time is negative, there are no
* latency constraints, so the domain can spend arbitrary time in the
* "off" state.
*/
if (min_off_time_ns < 0)
return true;
/*
* The difference between the computed minimum subdomain or device off
* time and the time needed to turn the domain on is the maximum
* theoretical time this domain can spend in the "off" state.
*/
genpd->gd->max_off_time_ns = min_off_time_ns -
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
genpd->states[state].power_on_latency_ns;
return true;
}
/**
* _default_power_down_ok - Default generic PM domain power off governor routine.
* @pd: PM domain to check.
* @now: current ktime.
*
* This routine must be executed under the PM domain's lock.
*
* Returns: true if OK to power down, false if not OK to power down
*/
static bool _default_power_down_ok(struct dev_pm_domain *pd, ktime_t now)
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
{
struct generic_pm_domain *genpd = pd_to_genpd(pd);
struct genpd_governor_data *gd = genpd->gd;
int state_idx = genpd->state_count - 1;
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
struct gpd_link *link;
/*
* Find the next wakeup from devices that can determine their own wakeup
* to find when the domain would wakeup and do it for every device down
* the hierarchy. It is not worth while to sleep if the state's residency
* cannot be met.
*/
update_domain_next_wakeup(genpd, now);
if ((genpd->flags & GENPD_FLAG_MIN_RESIDENCY) && (gd->next_wakeup != KTIME_MAX)) {
/* Let's find out the deepest domain idle state, the devices prefer */
while (state_idx >= 0) {
if (next_wakeup_allows_state(genpd, state_idx, now)) {
gd->max_off_time_changed = true;
break;
}
state_idx--;
}
if (state_idx < 0) {
state_idx = 0;
gd->cached_power_down_ok = false;
goto done;
}
}
if (!gd->max_off_time_changed) {
genpd->state_idx = gd->cached_power_down_state_idx;
return gd->cached_power_down_ok;
}
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
/*
* We have to invalidate the cached results for the parents, so
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
* use the observation that default_power_down_ok() is not
* going to be called for any parent until this instance
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
* returns.
*/
list_for_each_entry(link, &genpd->child_links, child_node) {
struct genpd_governor_data *pgd = link->parent->gd;
if (pgd)
pgd->max_off_time_changed = true;
}
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
gd->max_off_time_ns = -1;
gd->max_off_time_changed = false;
gd->cached_power_down_ok = true;
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
/*
* Find a state to power down to, starting from the state
* determined by the next wakeup.
*/
while (!__default_power_down_ok(pd, state_idx)) {
if (state_idx == 0) {
gd->cached_power_down_ok = false;
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
break;
}
state_idx--;
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
}
done:
genpd->state_idx = state_idx;
gd->cached_power_down_state_idx = genpd->state_idx;
return gd->cached_power_down_ok;
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 11:10:51 +01:00
}
static bool default_power_down_ok(struct dev_pm_domain *pd)
{
return _default_power_down_ok(pd, ktime_get());
}
#ifdef CONFIG_CPU_IDLE
static bool cpu_power_down_ok(struct dev_pm_domain *pd)
{
struct generic_pm_domain *genpd = pd_to_genpd(pd);
struct cpuidle_device *dev;
ktime_t domain_wakeup, next_hrtimer;
ktime_t now = ktime_get();
s64 idle_duration_ns;
int cpu, i;
/* Validate dev PM QoS constraints. */
if (!_default_power_down_ok(pd, now))
return false;
if (!(genpd->flags & GENPD_FLAG_CPU_DOMAIN))
return true;
/*
* Find the next wakeup for any of the online CPUs within the PM domain
* and its subdomains. Note, we only need the genpd->cpus, as it already
* contains a mask of all CPUs from subdomains.
*/
domain_wakeup = ktime_set(KTIME_SEC_MAX, 0);
for_each_cpu_and(cpu, genpd->cpus, cpu_online_mask) {
dev = per_cpu(cpuidle_devices, cpu);
if (dev) {
next_hrtimer = READ_ONCE(dev->next_hrtimer);
if (ktime_before(next_hrtimer, domain_wakeup))
domain_wakeup = next_hrtimer;
}
}
/* The minimum idle duration is from now - until the next wakeup. */
idle_duration_ns = ktime_to_ns(ktime_sub(domain_wakeup, now));
if (idle_duration_ns <= 0)
return false;
/* Store the next domain_wakeup to allow consumers to use it. */
genpd->gd->next_hrtimer = domain_wakeup;
/*
* Find the deepest idle state that has its residency value satisfied
* and by also taking into account the power off latency for the state.
* Start at the state picked by the dev PM QoS constraint validation.
*/
i = genpd->state_idx;
do {
if (idle_duration_ns >= (genpd->states[i].residency_ns +
genpd->states[i].power_off_latency_ns)) {
genpd->state_idx = i;
return true;
}
} while (--i >= 0);
return false;
}
struct dev_power_governor pm_domain_cpu_gov = {
.suspend_ok = default_suspend_ok,
.power_down_ok = cpu_power_down_ok,
};
#endif
struct dev_power_governor simple_qos_governor = {
.suspend_ok = default_suspend_ok,
.power_down_ok = default_power_down_ok,
};
/*
* pm_domain_always_on_gov - A governor implementing an always-on policy
*/
struct dev_power_governor pm_domain_always_on_gov = {
.suspend_ok = default_suspend_ok,
};