2019-06-04 10:11:33 +02:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
2010-05-13 16:48:03 +02:00
|
|
|
/*
|
2013-02-13 10:51:08 +01:00
|
|
|
* Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
|
2020-03-26 15:09:40 +02:00
|
|
|
* Copyright (C) 2019-2020 Intel Corporation
|
2010-05-13 16:48:03 +02:00
|
|
|
*/
|
|
|
|
#include <linux/netdevice.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <linux/random.h>
|
2014-10-21 10:38:38 +02:00
|
|
|
#include <linux/moduleparam.h>
|
2010-05-13 16:48:03 +02:00
|
|
|
#include <linux/ieee80211.h>
|
|
|
|
#include <net/mac80211.h>
|
|
|
|
#include "rate.h"
|
2016-12-14 20:46:55 +01:00
|
|
|
#include "sta_info.h"
|
2010-05-13 16:48:03 +02:00
|
|
|
#include "rc80211_minstrel_ht.h"
|
|
|
|
|
2015-03-13 10:54:44 +01:00
|
|
|
#define AVG_AMPDU_SIZE 16
|
2010-05-13 16:48:03 +02:00
|
|
|
#define AVG_PKT_SIZE 1200
|
|
|
|
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
#define SAMPLE_SWITCH_THR 100
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
/* Number of bits for an average sized packet */
|
2015-03-13 10:54:44 +01:00
|
|
|
#define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
|
2010-05-13 16:48:03 +02:00
|
|
|
|
|
|
|
/* Number of symbols for a packet with (bps) bits per symbol */
|
2014-05-19 11:24:19 +02:00
|
|
|
#define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2013-03-02 21:20:12 +01:00
|
|
|
/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
|
2010-05-13 16:48:03 +02:00
|
|
|
#define MCS_SYMBOL_TIME(sgi, syms) \
|
|
|
|
(sgi ? \
|
2013-03-02 21:20:12 +01:00
|
|
|
((syms) * 18000 + 4000) / 5 : /* syms * 3.6 us */ \
|
|
|
|
((syms) * 1000) << 2 /* syms * 4 us */ \
|
2010-05-13 16:48:03 +02:00
|
|
|
)
|
|
|
|
|
|
|
|
/* Transmit duration for the raw data part of an average sized packet */
|
2015-03-13 10:54:44 +01:00
|
|
|
#define MCS_DURATION(streams, sgi, bps) \
|
|
|
|
(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2014-10-20 15:46:00 +02:00
|
|
|
#define BW_20 0
|
|
|
|
#define BW_40 1
|
2014-10-21 10:38:38 +02:00
|
|
|
#define BW_80 2
|
2014-10-20 15:46:00 +02:00
|
|
|
|
2011-11-14 15:28:20 +01:00
|
|
|
/*
|
|
|
|
* Define group sort order: HT40 -> SGI -> #streams
|
|
|
|
*/
|
|
|
|
#define GROUP_IDX(_streams, _sgi, _ht40) \
|
2014-10-20 15:46:00 +02:00
|
|
|
MINSTREL_HT_GROUP_0 + \
|
2011-11-14 15:28:20 +01:00
|
|
|
MINSTREL_MAX_STREAMS * 2 * _ht40 + \
|
2014-10-20 15:46:00 +02:00
|
|
|
MINSTREL_MAX_STREAMS * _sgi + \
|
2011-11-14 15:28:20 +01:00
|
|
|
_streams - 1
|
|
|
|
|
2019-03-25 09:50:16 +01:00
|
|
|
#define _MAX(a, b) (((a)>(b))?(a):(b))
|
|
|
|
|
|
|
|
#define GROUP_SHIFT(duration) \
|
|
|
|
_MAX(0, 16 - __builtin_clz(duration))
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
/* MCS rate information for an MCS group */
|
2019-03-25 09:50:16 +01:00
|
|
|
#define __MCS_GROUP(_streams, _sgi, _ht40, _s) \
|
2011-11-14 15:28:20 +01:00
|
|
|
[GROUP_IDX(_streams, _sgi, _ht40)] = { \
|
2010-05-13 16:48:03 +02:00
|
|
|
.streams = _streams, \
|
2018-10-06 19:35:02 +02:00
|
|
|
.shift = _s, \
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
.bw = _ht40, \
|
2010-05-13 16:48:03 +02:00
|
|
|
.flags = \
|
2014-10-20 15:46:01 +02:00
|
|
|
IEEE80211_TX_RC_MCS | \
|
2010-05-13 16:48:03 +02:00
|
|
|
(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \
|
|
|
|
(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \
|
|
|
|
.duration = { \
|
2018-10-06 19:35:02 +02:00
|
|
|
MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s, \
|
|
|
|
MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s, \
|
|
|
|
MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s, \
|
|
|
|
MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s, \
|
|
|
|
MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s, \
|
|
|
|
MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s, \
|
|
|
|
MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s, \
|
|
|
|
MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s \
|
2010-05-13 16:48:03 +02:00
|
|
|
} \
|
|
|
|
}
|
|
|
|
|
2019-03-25 09:50:16 +01:00
|
|
|
#define MCS_GROUP_SHIFT(_streams, _sgi, _ht40) \
|
|
|
|
GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26))
|
|
|
|
|
|
|
|
#define MCS_GROUP(_streams, _sgi, _ht40) \
|
|
|
|
__MCS_GROUP(_streams, _sgi, _ht40, \
|
|
|
|
MCS_GROUP_SHIFT(_streams, _sgi, _ht40))
|
|
|
|
|
2014-10-21 10:38:38 +02:00
|
|
|
#define VHT_GROUP_IDX(_streams, _sgi, _bw) \
|
|
|
|
(MINSTREL_VHT_GROUP_0 + \
|
|
|
|
MINSTREL_MAX_STREAMS * 2 * (_bw) + \
|
|
|
|
MINSTREL_MAX_STREAMS * (_sgi) + \
|
|
|
|
(_streams) - 1)
|
|
|
|
|
|
|
|
#define BW2VBPS(_bw, r3, r2, r1) \
|
|
|
|
(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
|
|
|
|
|
2019-03-25 09:50:16 +01:00
|
|
|
#define __VHT_GROUP(_streams, _sgi, _bw, _s) \
|
2014-10-21 10:38:38 +02:00
|
|
|
[VHT_GROUP_IDX(_streams, _sgi, _bw)] = { \
|
|
|
|
.streams = _streams, \
|
2018-10-06 19:35:02 +02:00
|
|
|
.shift = _s, \
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
.bw = _bw, \
|
2014-10-21 10:38:38 +02:00
|
|
|
.flags = \
|
|
|
|
IEEE80211_TX_RC_VHT_MCS | \
|
|
|
|
(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \
|
|
|
|
(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH : \
|
|
|
|
_bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \
|
|
|
|
.duration = { \
|
|
|
|
MCS_DURATION(_streams, _sgi, \
|
2018-10-06 19:35:02 +02:00
|
|
|
BW2VBPS(_bw, 117, 54, 26)) >> _s, \
|
2014-10-21 10:38:38 +02:00
|
|
|
MCS_DURATION(_streams, _sgi, \
|
2018-10-06 19:35:02 +02:00
|
|
|
BW2VBPS(_bw, 234, 108, 52)) >> _s, \
|
2014-10-21 10:38:38 +02:00
|
|
|
MCS_DURATION(_streams, _sgi, \
|
2018-10-06 19:35:02 +02:00
|
|
|
BW2VBPS(_bw, 351, 162, 78)) >> _s, \
|
2014-10-21 10:38:38 +02:00
|
|
|
MCS_DURATION(_streams, _sgi, \
|
2018-10-06 19:35:02 +02:00
|
|
|
BW2VBPS(_bw, 468, 216, 104)) >> _s, \
|
2014-10-21 10:38:38 +02:00
|
|
|
MCS_DURATION(_streams, _sgi, \
|
2018-10-06 19:35:02 +02:00
|
|
|
BW2VBPS(_bw, 702, 324, 156)) >> _s, \
|
2014-10-21 10:38:38 +02:00
|
|
|
MCS_DURATION(_streams, _sgi, \
|
2018-10-06 19:35:02 +02:00
|
|
|
BW2VBPS(_bw, 936, 432, 208)) >> _s, \
|
2014-10-21 10:38:38 +02:00
|
|
|
MCS_DURATION(_streams, _sgi, \
|
2018-10-06 19:35:02 +02:00
|
|
|
BW2VBPS(_bw, 1053, 486, 234)) >> _s, \
|
2014-10-21 10:38:38 +02:00
|
|
|
MCS_DURATION(_streams, _sgi, \
|
2018-10-06 19:35:02 +02:00
|
|
|
BW2VBPS(_bw, 1170, 540, 260)) >> _s, \
|
2014-10-21 10:38:38 +02:00
|
|
|
MCS_DURATION(_streams, _sgi, \
|
2018-10-06 19:35:02 +02:00
|
|
|
BW2VBPS(_bw, 1404, 648, 312)) >> _s, \
|
2014-10-21 10:38:38 +02:00
|
|
|
MCS_DURATION(_streams, _sgi, \
|
2018-10-06 19:35:02 +02:00
|
|
|
BW2VBPS(_bw, 1560, 720, 346)) >> _s \
|
2014-10-21 10:38:38 +02:00
|
|
|
} \
|
|
|
|
}
|
|
|
|
|
2019-03-25 09:50:16 +01:00
|
|
|
#define VHT_GROUP_SHIFT(_streams, _sgi, _bw) \
|
|
|
|
GROUP_SHIFT(MCS_DURATION(_streams, _sgi, \
|
|
|
|
BW2VBPS(_bw, 117, 54, 26)))
|
|
|
|
|
|
|
|
#define VHT_GROUP(_streams, _sgi, _bw) \
|
|
|
|
__VHT_GROUP(_streams, _sgi, _bw, \
|
|
|
|
VHT_GROUP_SHIFT(_streams, _sgi, _bw))
|
|
|
|
|
2021-01-15 13:02:34 +01:00
|
|
|
#define CCK_DURATION(_bitrate, _short) \
|
2013-03-02 21:20:12 +01:00
|
|
|
(1000 * (10 /* SIFS */ + \
|
2013-12-18 15:44:16 +08:00
|
|
|
(_short ? 72 + 24 : 144 + 48) + \
|
2021-01-15 13:02:34 +01:00
|
|
|
(8 * (AVG_PKT_SIZE + 4) * 10) / (_bitrate)))
|
2013-02-13 10:51:08 +01:00
|
|
|
|
2018-10-06 19:35:02 +02:00
|
|
|
#define CCK_DURATION_LIST(_short, _s) \
|
2021-01-15 13:02:34 +01:00
|
|
|
CCK_DURATION(10, _short) >> _s, \
|
|
|
|
CCK_DURATION(20, _short) >> _s, \
|
|
|
|
CCK_DURATION(55, _short) >> _s, \
|
|
|
|
CCK_DURATION(110, _short) >> _s
|
2013-02-13 10:51:08 +01:00
|
|
|
|
2019-03-25 09:50:16 +01:00
|
|
|
#define __CCK_GROUP(_s) \
|
2014-10-20 15:46:00 +02:00
|
|
|
[MINSTREL_CCK_GROUP] = { \
|
2018-10-06 19:35:04 +02:00
|
|
|
.streams = 1, \
|
2014-10-20 15:46:01 +02:00
|
|
|
.flags = 0, \
|
2018-10-06 19:35:02 +02:00
|
|
|
.shift = _s, \
|
2014-10-20 15:46:00 +02:00
|
|
|
.duration = { \
|
2018-10-06 19:35:02 +02:00
|
|
|
CCK_DURATION_LIST(false, _s), \
|
|
|
|
CCK_DURATION_LIST(true, _s) \
|
2014-10-20 15:46:00 +02:00
|
|
|
} \
|
2013-02-13 10:51:08 +01:00
|
|
|
}
|
|
|
|
|
2019-03-25 09:50:16 +01:00
|
|
|
#define CCK_GROUP_SHIFT \
|
2021-01-15 13:02:34 +01:00
|
|
|
GROUP_SHIFT(CCK_DURATION(10, false))
|
2019-03-25 09:50:16 +01:00
|
|
|
|
|
|
|
#define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT)
|
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
#define OFDM_DURATION(_bitrate) \
|
|
|
|
(1000 * (16 /* SIFS + signal ext */ + \
|
|
|
|
16 /* T_PREAMBLE */ + \
|
|
|
|
4 /* T_SIGNAL */ + \
|
|
|
|
4 * (((16 + 80 * (AVG_PKT_SIZE + 4) + 6) / \
|
|
|
|
((_bitrate) * 4)))))
|
|
|
|
|
|
|
|
#define OFDM_DURATION_LIST(_s) \
|
|
|
|
OFDM_DURATION(60) >> _s, \
|
|
|
|
OFDM_DURATION(90) >> _s, \
|
|
|
|
OFDM_DURATION(120) >> _s, \
|
|
|
|
OFDM_DURATION(180) >> _s, \
|
|
|
|
OFDM_DURATION(240) >> _s, \
|
|
|
|
OFDM_DURATION(360) >> _s, \
|
|
|
|
OFDM_DURATION(480) >> _s, \
|
|
|
|
OFDM_DURATION(540) >> _s
|
|
|
|
|
|
|
|
#define __OFDM_GROUP(_s) \
|
|
|
|
[MINSTREL_OFDM_GROUP] = { \
|
|
|
|
.streams = 1, \
|
|
|
|
.flags = 0, \
|
|
|
|
.shift = _s, \
|
|
|
|
.duration = { \
|
|
|
|
OFDM_DURATION_LIST(_s), \
|
|
|
|
} \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define OFDM_GROUP_SHIFT \
|
|
|
|
GROUP_SHIFT(OFDM_DURATION(60))
|
|
|
|
|
|
|
|
#define OFDM_GROUP __OFDM_GROUP(OFDM_GROUP_SHIFT)
|
|
|
|
|
2019-03-25 09:50:16 +01:00
|
|
|
|
2014-10-21 10:38:38 +02:00
|
|
|
static bool minstrel_vht_only = true;
|
|
|
|
module_param(minstrel_vht_only, bool, 0644);
|
|
|
|
MODULE_PARM_DESC(minstrel_vht_only,
|
|
|
|
"Use only VHT rates when VHT is supported by sta.");
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
/*
|
|
|
|
* To enable sufficiently targeted rate sampling, MCS rates are divided into
|
|
|
|
* groups, based on the number of streams and flags (HT40, SGI) that they
|
|
|
|
* use.
|
2011-11-14 15:28:20 +01:00
|
|
|
*
|
|
|
|
* Sortorder has to be fixed for GROUP_IDX macro to be applicable:
|
2014-10-20 15:46:00 +02:00
|
|
|
* BW -> SGI -> #streams
|
2010-05-13 16:48:03 +02:00
|
|
|
*/
|
|
|
|
const struct mcs_group minstrel_mcs_groups[] = {
|
2019-03-25 09:50:16 +01:00
|
|
|
MCS_GROUP(1, 0, BW_20),
|
|
|
|
MCS_GROUP(2, 0, BW_20),
|
|
|
|
MCS_GROUP(3, 0, BW_20),
|
|
|
|
MCS_GROUP(4, 0, BW_20),
|
|
|
|
|
|
|
|
MCS_GROUP(1, 1, BW_20),
|
|
|
|
MCS_GROUP(2, 1, BW_20),
|
|
|
|
MCS_GROUP(3, 1, BW_20),
|
|
|
|
MCS_GROUP(4, 1, BW_20),
|
|
|
|
|
|
|
|
MCS_GROUP(1, 0, BW_40),
|
|
|
|
MCS_GROUP(2, 0, BW_40),
|
|
|
|
MCS_GROUP(3, 0, BW_40),
|
|
|
|
MCS_GROUP(4, 0, BW_40),
|
|
|
|
|
|
|
|
MCS_GROUP(1, 1, BW_40),
|
|
|
|
MCS_GROUP(2, 1, BW_40),
|
|
|
|
MCS_GROUP(3, 1, BW_40),
|
|
|
|
MCS_GROUP(4, 1, BW_40),
|
|
|
|
|
|
|
|
CCK_GROUP,
|
2021-01-15 13:02:35 +01:00
|
|
|
OFDM_GROUP,
|
2019-03-25 09:50:16 +01:00
|
|
|
|
|
|
|
VHT_GROUP(1, 0, BW_20),
|
|
|
|
VHT_GROUP(2, 0, BW_20),
|
|
|
|
VHT_GROUP(3, 0, BW_20),
|
|
|
|
VHT_GROUP(4, 0, BW_20),
|
|
|
|
|
|
|
|
VHT_GROUP(1, 1, BW_20),
|
|
|
|
VHT_GROUP(2, 1, BW_20),
|
|
|
|
VHT_GROUP(3, 1, BW_20),
|
|
|
|
VHT_GROUP(4, 1, BW_20),
|
|
|
|
|
|
|
|
VHT_GROUP(1, 0, BW_40),
|
|
|
|
VHT_GROUP(2, 0, BW_40),
|
|
|
|
VHT_GROUP(3, 0, BW_40),
|
|
|
|
VHT_GROUP(4, 0, BW_40),
|
|
|
|
|
|
|
|
VHT_GROUP(1, 1, BW_40),
|
|
|
|
VHT_GROUP(2, 1, BW_40),
|
|
|
|
VHT_GROUP(3, 1, BW_40),
|
|
|
|
VHT_GROUP(4, 1, BW_40),
|
|
|
|
|
|
|
|
VHT_GROUP(1, 0, BW_80),
|
|
|
|
VHT_GROUP(2, 0, BW_80),
|
|
|
|
VHT_GROUP(3, 0, BW_80),
|
|
|
|
VHT_GROUP(4, 0, BW_80),
|
|
|
|
|
|
|
|
VHT_GROUP(1, 1, BW_80),
|
|
|
|
VHT_GROUP(2, 1, BW_80),
|
|
|
|
VHT_GROUP(3, 1, BW_80),
|
|
|
|
VHT_GROUP(4, 1, BW_80),
|
2014-10-21 10:38:38 +02:00
|
|
|
};
|
2013-02-13 10:51:08 +01:00
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
const s16 minstrel_cck_bitrates[4] = { 10, 20, 55, 110 };
|
|
|
|
const s16 minstrel_ofdm_bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 };
|
2014-01-21 00:32:52 +01:00
|
|
|
static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2013-04-22 16:14:42 +02:00
|
|
|
static void
|
|
|
|
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
|
|
|
|
|
2014-10-21 10:38:38 +02:00
|
|
|
/*
|
|
|
|
* Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
|
|
|
|
* e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
|
|
|
|
*
|
|
|
|
* Returns the valid mcs map for struct minstrel_mcs_group_data.supported
|
|
|
|
*/
|
|
|
|
static u16
|
|
|
|
minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
|
|
|
|
{
|
|
|
|
u16 mask = 0;
|
|
|
|
|
|
|
|
if (bw == BW_20) {
|
|
|
|
if (nss != 3 && nss != 6)
|
|
|
|
mask = BIT(9);
|
|
|
|
} else if (bw == BW_80) {
|
|
|
|
if (nss == 3 || nss == 7)
|
|
|
|
mask = BIT(6);
|
|
|
|
else if (nss == 6)
|
|
|
|
mask = BIT(9);
|
|
|
|
} else {
|
|
|
|
WARN_ON(bw != BW_40);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
|
|
|
|
case IEEE80211_VHT_MCS_SUPPORT_0_7:
|
|
|
|
mask |= 0x300;
|
|
|
|
break;
|
|
|
|
case IEEE80211_VHT_MCS_SUPPORT_0_8:
|
|
|
|
mask |= 0x200;
|
|
|
|
break;
|
|
|
|
case IEEE80211_VHT_MCS_SUPPORT_0_9:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
mask = 0x3ff;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0x3ff & ~mask;
|
|
|
|
}
|
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
static bool
|
|
|
|
minstrel_ht_is_legacy_group(int group)
|
|
|
|
{
|
|
|
|
return group == MINSTREL_CCK_GROUP ||
|
|
|
|
group == MINSTREL_OFDM_GROUP;
|
|
|
|
}
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
/*
|
|
|
|
* Look up an MCS group index based on mac80211 rate information
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
|
|
|
|
{
|
2014-09-29 02:36:30 +02:00
|
|
|
return GROUP_IDX((rate->idx / 8) + 1,
|
2011-11-14 15:28:20 +01:00
|
|
|
!!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
|
|
|
|
!!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
2014-10-21 10:38:38 +02:00
|
|
|
static int
|
|
|
|
minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
|
|
|
|
{
|
|
|
|
return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
|
|
|
|
!!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
|
|
|
|
!!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
|
|
|
|
2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
|
|
|
|
}
|
|
|
|
|
2013-02-13 10:51:08 +01:00
|
|
|
static struct minstrel_rate_stats *
|
|
|
|
minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
|
|
|
|
struct ieee80211_tx_rate *rate)
|
|
|
|
{
|
|
|
|
int group, idx;
|
|
|
|
|
|
|
|
if (rate->flags & IEEE80211_TX_RC_MCS) {
|
|
|
|
group = minstrel_ht_get_group_idx(rate);
|
2013-11-11 13:12:55 +01:00
|
|
|
idx = rate->idx % 8;
|
2021-01-15 13:02:35 +01:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
|
2014-10-21 10:38:38 +02:00
|
|
|
group = minstrel_vht_get_group_idx(rate);
|
|
|
|
idx = ieee80211_rate_get_vht_mcs(rate);
|
2021-01-15 13:02:35 +01:00
|
|
|
goto out;
|
|
|
|
}
|
2013-02-13 10:51:08 +01:00
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
group = MINSTREL_CCK_GROUP;
|
|
|
|
for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) {
|
|
|
|
if (rate->idx != mp->cck_rates[idx])
|
|
|
|
continue;
|
2013-02-13 10:51:08 +01:00
|
|
|
|
|
|
|
/* short preamble */
|
2018-10-06 19:35:05 +02:00
|
|
|
if ((mi->supported[group] & BIT(idx + 4)) &&
|
|
|
|
(rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
|
2021-01-15 13:02:35 +01:00
|
|
|
idx += 4;
|
|
|
|
goto out;
|
2013-02-13 10:51:08 +01:00
|
|
|
}
|
2021-01-15 13:02:35 +01:00
|
|
|
|
|
|
|
group = MINSTREL_OFDM_GROUP;
|
|
|
|
for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++)
|
|
|
|
if (rate->idx == mp->ofdm_rates[mi->band][idx])
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
idx = 0;
|
|
|
|
out:
|
2013-02-13 10:51:08 +01:00
|
|
|
return &mi->groups[group].rates[idx];
|
|
|
|
}
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
static inline struct minstrel_rate_stats *
|
|
|
|
minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
|
|
|
|
{
|
2021-01-27 06:57:30 +01:00
|
|
|
return &mi->groups[MI_RATE_GROUP(index)].rates[MI_RATE_IDX(index)];
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
2021-01-15 13:02:38 +01:00
|
|
|
static inline int minstrel_get_duration(int index)
|
|
|
|
{
|
2021-01-27 06:57:30 +01:00
|
|
|
const struct mcs_group *group = &minstrel_mcs_groups[MI_RATE_GROUP(index)];
|
|
|
|
unsigned int duration = group->duration[MI_RATE_IDX(index)];
|
2021-01-15 13:02:38 +01:00
|
|
|
|
|
|
|
return duration << group->shift;
|
|
|
|
}
|
|
|
|
|
2019-01-16 22:32:12 +01:00
|
|
|
static unsigned int
|
|
|
|
minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta *mi)
|
|
|
|
{
|
2021-01-15 13:02:38 +01:00
|
|
|
int duration;
|
|
|
|
|
|
|
|
if (mi->avg_ampdu_len)
|
|
|
|
return MINSTREL_TRUNC(mi->avg_ampdu_len);
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(mi->max_tp_rate[0])))
|
2021-01-15 13:02:38 +01:00
|
|
|
return 1;
|
|
|
|
|
|
|
|
duration = minstrel_get_duration(mi->max_tp_rate[0]);
|
2019-01-16 22:32:12 +01:00
|
|
|
|
2021-01-15 13:02:38 +01:00
|
|
|
if (duration > 400 * 1000)
|
|
|
|
return 2;
|
|
|
|
|
|
|
|
if (duration > 250 * 1000)
|
|
|
|
return 4;
|
|
|
|
|
|
|
|
if (duration > 150 * 1000)
|
|
|
|
return 8;
|
|
|
|
|
|
|
|
return 16;
|
2019-01-16 22:32:12 +01:00
|
|
|
}
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
/*
|
2015-03-24 21:09:40 +01:00
|
|
|
* Return current throughput based on the average A-MPDU length, taking into
|
|
|
|
* account the expected number of retransmissions and their expected length
|
2010-05-13 16:48:03 +02:00
|
|
|
*/
|
2015-03-24 21:09:40 +01:00
|
|
|
int
|
2015-03-24 21:09:41 +01:00
|
|
|
minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
|
2019-10-08 19:11:39 +02:00
|
|
|
int prob_avg)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
2021-01-15 13:02:34 +01:00
|
|
|
unsigned int nsecs = 0, overhead = mi->overhead;
|
|
|
|
unsigned int ampdu_len = 1;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2015-03-24 21:09:39 +01:00
|
|
|
/* do not account throughput if sucess prob is below 10% */
|
2019-10-08 19:11:39 +02:00
|
|
|
if (prob_avg < MINSTREL_FRAC(10, 100))
|
2015-03-24 21:09:40 +01:00
|
|
|
return 0;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
if (minstrel_ht_is_legacy_group(group))
|
2021-01-15 13:02:34 +01:00
|
|
|
overhead = mi->overhead_legacy;
|
|
|
|
else
|
|
|
|
ampdu_len = minstrel_ht_avg_ampdu_len(mi);
|
2013-02-13 10:51:08 +01:00
|
|
|
|
2021-01-15 13:02:34 +01:00
|
|
|
nsecs = 1000 * overhead / ampdu_len;
|
2018-10-06 19:35:02 +02:00
|
|
|
nsecs += minstrel_mcs_groups[group].duration[rate] <<
|
|
|
|
minstrel_mcs_groups[group].shift;
|
2013-03-02 21:20:12 +01:00
|
|
|
|
2015-03-24 21:09:41 +01:00
|
|
|
/*
|
|
|
|
* For the throughput calculation, limit the probability value to 90% to
|
|
|
|
* account for collision related packet error rate fluctuation
|
|
|
|
* (prob is scaled - see MINSTREL_FRAC above)
|
|
|
|
*/
|
2019-10-08 19:11:39 +02:00
|
|
|
if (prob_avg > MINSTREL_FRAC(90, 100))
|
2021-01-15 13:02:42 +01:00
|
|
|
prob_avg = MINSTREL_FRAC(90, 100);
|
|
|
|
|
|
|
|
return MINSTREL_TRUNC(100 * ((prob_avg * 1000000) / nsecs));
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
2014-09-09 23:22:14 +02:00
|
|
|
/*
|
|
|
|
* Find & sort topmost throughput rates
|
|
|
|
*
|
|
|
|
* If multiple rates provide equal throughput the sorting is based on their
|
|
|
|
* current success probability. Higher success probability is preferred among
|
|
|
|
* MCS groups, CCK rates do not provide aggregation and are therefore at last.
|
|
|
|
*/
|
|
|
|
static void
|
2014-10-20 15:45:59 +02:00
|
|
|
minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
|
|
|
|
u16 *tp_list)
|
2014-09-09 23:22:14 +02:00
|
|
|
{
|
2015-03-24 21:09:40 +01:00
|
|
|
int cur_group, cur_idx, cur_tp_avg, cur_prob;
|
|
|
|
int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
|
2014-09-09 23:22:14 +02:00
|
|
|
int j = MAX_THR_RATES;
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
cur_group = MI_RATE_GROUP(index);
|
|
|
|
cur_idx = MI_RATE_IDX(index);
|
2019-10-08 19:11:39 +02:00
|
|
|
cur_prob = mi->groups[cur_group].rates[cur_idx].prob_avg;
|
2015-03-24 21:09:41 +01:00
|
|
|
cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
|
2014-09-09 23:22:14 +02:00
|
|
|
|
2014-11-18 22:35:31 +01:00
|
|
|
do {
|
2021-01-27 06:57:30 +01:00
|
|
|
tmp_group = MI_RATE_GROUP(tp_list[j - 1]);
|
|
|
|
tmp_idx = MI_RATE_IDX(tp_list[j - 1]);
|
2019-10-08 19:11:39 +02:00
|
|
|
tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
|
2015-03-24 21:09:41 +01:00
|
|
|
tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
|
|
|
|
tmp_prob);
|
2015-03-24 21:09:40 +01:00
|
|
|
if (cur_tp_avg < tmp_tp_avg ||
|
|
|
|
(cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
|
2014-11-18 22:35:31 +01:00
|
|
|
break;
|
|
|
|
j--;
|
|
|
|
} while (j > 0);
|
2014-09-09 23:22:14 +02:00
|
|
|
|
|
|
|
if (j < MAX_THR_RATES - 1) {
|
|
|
|
memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
|
|
|
|
(MAX_THR_RATES - (j + 1))));
|
|
|
|
}
|
|
|
|
if (j < MAX_THR_RATES)
|
|
|
|
tp_list[j] = index;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Find and set the topmost probability rate per sta and per group
|
|
|
|
*/
|
|
|
|
static void
|
2021-01-15 13:02:40 +01:00
|
|
|
minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 *dest, u16 index)
|
2014-09-09 23:22:14 +02:00
|
|
|
{
|
|
|
|
struct minstrel_mcs_group_data *mg;
|
2015-03-24 21:09:39 +01:00
|
|
|
struct minstrel_rate_stats *mrs;
|
2015-03-24 21:09:40 +01:00
|
|
|
int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
|
2021-01-15 13:02:40 +01:00
|
|
|
int max_tp_group, max_tp_idx, max_tp_prob;
|
|
|
|
int cur_tp_avg, cur_group, cur_idx;
|
2015-03-24 21:09:41 +01:00
|
|
|
int max_gpr_group, max_gpr_idx;
|
|
|
|
int max_gpr_tp_avg, max_gpr_prob;
|
2014-09-09 23:22:14 +02:00
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
cur_group = MI_RATE_GROUP(index);
|
|
|
|
cur_idx = MI_RATE_IDX(index);
|
|
|
|
mg = &mi->groups[cur_group];
|
|
|
|
mrs = &mg->rates[cur_idx];
|
2014-09-09 23:22:14 +02:00
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
tmp_group = MI_RATE_GROUP(*dest);
|
|
|
|
tmp_idx = MI_RATE_IDX(*dest);
|
2019-10-08 19:11:39 +02:00
|
|
|
tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
|
2015-03-24 21:09:41 +01:00
|
|
|
tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
|
2014-09-09 23:22:14 +02:00
|
|
|
|
|
|
|
/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
|
|
|
|
* MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
|
2021-01-27 06:57:30 +01:00
|
|
|
max_tp_group = MI_RATE_GROUP(mi->max_tp_rate[0]);
|
|
|
|
max_tp_idx = MI_RATE_IDX(mi->max_tp_rate[0]);
|
2021-01-15 13:02:40 +01:00
|
|
|
max_tp_prob = mi->groups[max_tp_group].rates[max_tp_idx].prob_avg;
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index)) &&
|
2021-01-15 13:02:35 +01:00
|
|
|
!minstrel_ht_is_legacy_group(max_tp_group))
|
2014-09-09 23:22:14 +02:00
|
|
|
return;
|
|
|
|
|
2021-01-15 13:02:40 +01:00
|
|
|
/* skip rates faster than max tp rate with lower prob */
|
|
|
|
if (minstrel_get_duration(mi->max_tp_rate[0]) > minstrel_get_duration(index) &&
|
|
|
|
mrs->prob_avg < max_tp_prob)
|
|
|
|
return;
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
max_gpr_group = MI_RATE_GROUP(mg->max_group_prob_rate);
|
|
|
|
max_gpr_idx = MI_RATE_IDX(mg->max_group_prob_rate);
|
2019-10-08 19:11:39 +02:00
|
|
|
max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_avg;
|
2016-01-29 11:35:12 +03:00
|
|
|
|
2019-10-08 19:11:39 +02:00
|
|
|
if (mrs->prob_avg > MINSTREL_FRAC(75, 100)) {
|
2015-03-24 21:09:41 +01:00
|
|
|
cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
|
2019-10-08 19:11:39 +02:00
|
|
|
mrs->prob_avg);
|
2015-03-24 21:09:40 +01:00
|
|
|
if (cur_tp_avg > tmp_tp_avg)
|
2021-01-26 16:44:09 +01:00
|
|
|
*dest = index;
|
2015-03-24 21:09:40 +01:00
|
|
|
|
2015-03-24 21:09:41 +01:00
|
|
|
max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
|
|
|
|
max_gpr_idx,
|
|
|
|
max_gpr_prob);
|
|
|
|
if (cur_tp_avg > max_gpr_tp_avg)
|
2014-09-09 23:22:14 +02:00
|
|
|
mg->max_group_prob_rate = index;
|
|
|
|
} else {
|
2019-10-08 19:11:39 +02:00
|
|
|
if (mrs->prob_avg > tmp_prob)
|
2021-01-15 13:02:40 +01:00
|
|
|
*dest = index;
|
2019-10-08 19:11:39 +02:00
|
|
|
if (mrs->prob_avg > max_gpr_prob)
|
2014-09-09 23:22:14 +02:00
|
|
|
mg->max_group_prob_rate = index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Assign new rate set per sta and use CCK rates only if the fastest
|
|
|
|
* rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
|
|
|
|
* rate sets where MCS and CCK rates are mixed, because CCK rates can
|
|
|
|
* not use aggregation.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
|
2014-10-20 15:45:59 +02:00
|
|
|
u16 tmp_mcs_tp_rate[MAX_THR_RATES],
|
2021-01-15 13:02:35 +01:00
|
|
|
u16 tmp_legacy_tp_rate[MAX_THR_RATES])
|
2014-09-09 23:22:14 +02:00
|
|
|
{
|
2015-03-24 21:09:41 +01:00
|
|
|
unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
|
2014-09-09 23:22:14 +02:00
|
|
|
int i;
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
tmp_group = MI_RATE_GROUP(tmp_legacy_tp_rate[0]);
|
|
|
|
tmp_idx = MI_RATE_IDX(tmp_legacy_tp_rate[0]);
|
2019-10-08 19:11:39 +02:00
|
|
|
tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
|
2015-03-24 21:09:41 +01:00
|
|
|
tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
|
2014-09-09 23:22:14 +02:00
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
tmp_group = MI_RATE_GROUP(tmp_mcs_tp_rate[0]);
|
|
|
|
tmp_idx = MI_RATE_IDX(tmp_mcs_tp_rate[0]);
|
2019-10-08 19:11:39 +02:00
|
|
|
tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
|
2015-03-24 21:09:41 +01:00
|
|
|
tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
|
2014-09-09 23:22:14 +02:00
|
|
|
|
2020-03-26 15:09:40 +02:00
|
|
|
if (tmp_cck_tp > tmp_mcs_tp) {
|
2014-09-09 23:22:14 +02:00
|
|
|
for(i = 0; i < MAX_THR_RATES; i++) {
|
2021-01-15 13:02:35 +01:00
|
|
|
minstrel_ht_sort_best_tp_rates(mi, tmp_legacy_tp_rate[i],
|
2014-09-09 23:22:14 +02:00
|
|
|
tmp_mcs_tp_rate);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Try to increase robustness of max_prob rate by decrease number of
|
|
|
|
* streams if possible.
|
|
|
|
*/
|
|
|
|
static inline void
|
|
|
|
minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
|
|
|
|
{
|
|
|
|
struct minstrel_mcs_group_data *mg;
|
2015-03-24 21:09:41 +01:00
|
|
|
int tmp_max_streams, group, tmp_idx, tmp_prob;
|
2014-09-09 23:22:14 +02:00
|
|
|
int tmp_tp = 0;
|
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
if (!mi->sta->ht_cap.ht_supported)
|
|
|
|
return;
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
group = MI_RATE_GROUP(mi->max_tp_rate[0]);
|
|
|
|
tmp_max_streams = minstrel_mcs_groups[group].streams;
|
2014-09-09 23:22:14 +02:00
|
|
|
for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
|
|
|
|
mg = &mi->groups[group];
|
2016-12-14 20:46:54 +01:00
|
|
|
if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
|
2014-09-09 23:22:14 +02:00
|
|
|
continue;
|
2015-03-24 21:09:40 +01:00
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
tmp_idx = MI_RATE_IDX(mg->max_group_prob_rate);
|
2019-10-08 19:11:39 +02:00
|
|
|
tmp_prob = mi->groups[group].rates[tmp_idx].prob_avg;
|
2015-03-24 21:09:40 +01:00
|
|
|
|
2015-03-24 21:09:41 +01:00
|
|
|
if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
|
2014-09-09 23:22:14 +02:00
|
|
|
(minstrel_mcs_groups[group].streams < tmp_max_streams)) {
|
|
|
|
mi->max_prob_rate = mg->max_group_prob_rate;
|
2015-03-24 21:09:40 +01:00
|
|
|
tmp_tp = minstrel_ht_get_tp_avg(mi, group,
|
2015-03-24 21:09:41 +01:00
|
|
|
tmp_idx,
|
|
|
|
tmp_prob);
|
2014-09-09 23:22:14 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
static bool
|
|
|
|
minstrel_ht_probe_group(struct minstrel_ht_sta *mi, const struct mcs_group *tp_group,
|
|
|
|
int tp_idx, const struct mcs_group *group)
|
|
|
|
{
|
|
|
|
if (group->bw < tp_group->bw)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (group->streams == tp_group->streams)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (tp_idx < 4 && group->streams == tp_group->streams - 1)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return group->streams == tp_group->streams + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
minstrel_ht_find_probe_rates(struct minstrel_ht_sta *mi, u16 *rates, int *n_rates,
|
|
|
|
bool faster_rate)
|
|
|
|
{
|
|
|
|
const struct mcs_group *group, *tp_group;
|
|
|
|
int i, g, max_dur;
|
|
|
|
int tp_idx;
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
tp_group = &minstrel_mcs_groups[MI_RATE_GROUP(mi->max_tp_rate[0])];
|
|
|
|
tp_idx = MI_RATE_IDX(mi->max_tp_rate[0]);
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
|
|
|
|
max_dur = minstrel_get_duration(mi->max_tp_rate[0]);
|
|
|
|
if (faster_rate)
|
|
|
|
max_dur -= max_dur / 16;
|
|
|
|
|
|
|
|
for (g = 0; g < MINSTREL_GROUPS_NB; g++) {
|
|
|
|
u16 supported = mi->supported[g];
|
|
|
|
|
|
|
|
if (!supported)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
group = &minstrel_mcs_groups[g];
|
|
|
|
if (!minstrel_ht_probe_group(mi, tp_group, tp_idx, group))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for (i = 0; supported; supported >>= 1, i++) {
|
|
|
|
int idx;
|
|
|
|
|
|
|
|
if (!(supported & 1))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if ((group->duration[i] << group->shift) > max_dur)
|
|
|
|
continue;
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
idx = MI_RATE(g, i);
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
if (idx == mi->max_tp_rate[0])
|
|
|
|
continue;
|
|
|
|
|
|
|
|
rates[(*n_rates)++] = idx;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
minstrel_ht_rate_sample_switch(struct minstrel_priv *mp,
|
|
|
|
struct minstrel_ht_sta *mi)
|
|
|
|
{
|
|
|
|
struct minstrel_rate_stats *mrs;
|
|
|
|
u16 rates[MINSTREL_GROUPS_NB];
|
|
|
|
int n_rates = 0;
|
|
|
|
int probe_rate = 0;
|
|
|
|
bool faster_rate;
|
|
|
|
int i;
|
|
|
|
u8 random;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Use rate switching instead of probing packets for devices with
|
|
|
|
* little control over retry fallback behavior
|
|
|
|
*/
|
|
|
|
if (mp->hw->max_rates > 1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the current EWMA prob is >75%, look for a rate that's 6.25%
|
|
|
|
* faster than the max tp rate.
|
|
|
|
* If that fails, look again for a rate that is at least as fast
|
|
|
|
*/
|
|
|
|
mrs = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
|
2019-10-08 19:11:39 +02:00
|
|
|
faster_rate = mrs->prob_avg > MINSTREL_FRAC(75, 100);
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
minstrel_ht_find_probe_rates(mi, rates, &n_rates, faster_rate);
|
|
|
|
if (!n_rates && faster_rate)
|
|
|
|
minstrel_ht_find_probe_rates(mi, rates, &n_rates, false);
|
|
|
|
|
|
|
|
/* If no suitable rate was found, try to pick the next one in the group */
|
|
|
|
if (!n_rates) {
|
2021-01-27 06:57:30 +01:00
|
|
|
int g_idx = MI_RATE_GROUP(mi->max_tp_rate[0]);
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
u16 supported = mi->supported[g_idx];
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
supported >>= MI_RATE_IDX(mi->max_tp_rate[0]);
|
2019-08-22 13:20:34 +01:00
|
|
|
for (i = 0; supported; supported >>= 1, i++) {
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
if (!(supported & 1))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
probe_rate = mi->max_tp_rate[0] + i;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
i = 0;
|
|
|
|
if (n_rates > 1) {
|
|
|
|
random = prandom_u32();
|
|
|
|
i = random % n_rates;
|
|
|
|
}
|
|
|
|
probe_rate = rates[i];
|
|
|
|
|
|
|
|
out:
|
|
|
|
mi->sample_rate = probe_rate;
|
|
|
|
mi->sample_mode = MINSTREL_SAMPLE_ACTIVE;
|
|
|
|
}
|
|
|
|
|
2021-01-15 13:02:36 +01:00
|
|
|
static inline int
|
|
|
|
minstrel_ewma(int old, int new, int weight)
|
|
|
|
{
|
|
|
|
int diff, incr;
|
|
|
|
|
|
|
|
diff = new - old;
|
|
|
|
incr = (EWMA_DIV - weight) * diff / EWMA_DIV;
|
|
|
|
|
|
|
|
return old + incr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int minstrel_filter_avg_add(u16 *prev_1, u16 *prev_2, s32 in)
|
|
|
|
{
|
|
|
|
s32 out_1 = *prev_1;
|
|
|
|
s32 out_2 = *prev_2;
|
|
|
|
s32 val;
|
|
|
|
|
|
|
|
if (!in)
|
|
|
|
in += 1;
|
|
|
|
|
|
|
|
if (!out_1) {
|
|
|
|
val = out_1 = in;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
val = MINSTREL_AVG_COEFF1 * in;
|
|
|
|
val += MINSTREL_AVG_COEFF2 * out_1;
|
|
|
|
val += MINSTREL_AVG_COEFF3 * out_2;
|
|
|
|
val >>= MINSTREL_SCALE;
|
|
|
|
|
|
|
|
if (val > 1 << MINSTREL_SCALE)
|
|
|
|
val = 1 << MINSTREL_SCALE;
|
|
|
|
if (val < 0)
|
|
|
|
val = 1;
|
|
|
|
|
|
|
|
out:
|
|
|
|
*prev_2 = out_1;
|
|
|
|
*prev_1 = val;
|
|
|
|
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Recalculate statistics and counters of a given rate
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
minstrel_ht_calc_rate_stats(struct minstrel_priv *mp,
|
|
|
|
struct minstrel_rate_stats *mrs)
|
|
|
|
{
|
|
|
|
unsigned int cur_prob;
|
|
|
|
|
|
|
|
if (unlikely(mrs->attempts > 0)) {
|
|
|
|
mrs->sample_skipped = 0;
|
|
|
|
cur_prob = MINSTREL_FRAC(mrs->success, mrs->attempts);
|
2021-01-15 13:02:37 +01:00
|
|
|
minstrel_filter_avg_add(&mrs->prob_avg,
|
|
|
|
&mrs->prob_avg_1, cur_prob);
|
2021-01-15 13:02:36 +01:00
|
|
|
mrs->att_hist += mrs->attempts;
|
|
|
|
mrs->succ_hist += mrs->success;
|
|
|
|
} else {
|
|
|
|
mrs->sample_skipped++;
|
|
|
|
}
|
|
|
|
|
|
|
|
mrs->last_success = mrs->success;
|
|
|
|
mrs->last_attempts = mrs->attempts;
|
|
|
|
mrs->success = 0;
|
|
|
|
mrs->attempts = 0;
|
|
|
|
}
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
/*
|
|
|
|
* Update rate statistics and select new primary rates
|
|
|
|
*
|
|
|
|
* Rules for rate selection:
|
|
|
|
* - max_prob_rate must use only one stream, as a tradeoff between delivery
|
|
|
|
* probability and throughput during strong fluctuations
|
2014-09-09 23:22:14 +02:00
|
|
|
* - as long as the max prob rate has a probability of more than 75%, pick
|
2010-05-13 16:48:03 +02:00
|
|
|
* higher throughput rates, even if the probablity is a bit lower
|
|
|
|
*/
|
|
|
|
static void
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
|
|
|
|
bool sample)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
|
|
|
struct minstrel_mcs_group_data *mg;
|
2015-03-24 21:09:39 +01:00
|
|
|
struct minstrel_rate_stats *mrs;
|
2015-03-24 21:09:41 +01:00
|
|
|
int group, i, j, cur_prob;
|
2014-10-20 15:45:59 +02:00
|
|
|
u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
|
2021-01-15 13:02:40 +01:00
|
|
|
u16 tmp_legacy_tp_rate[MAX_THR_RATES], tmp_max_prob_rate;
|
|
|
|
u16 index;
|
2021-01-15 13:02:35 +01:00
|
|
|
bool ht_supported = mi->sta->ht_cap.ht_supported;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
mi->sample_mode = MINSTREL_SAMPLE_IDLE;
|
|
|
|
|
|
|
|
if (sample) {
|
|
|
|
mi->total_packets_cur = mi->total_packets -
|
|
|
|
mi->total_packets_last;
|
|
|
|
mi->total_packets_last = mi->total_packets;
|
|
|
|
}
|
|
|
|
if (!mp->sample_switch)
|
|
|
|
sample = false;
|
|
|
|
if (mi->total_packets_cur < SAMPLE_SWITCH_THR && mp->sample_switch != 1)
|
|
|
|
sample = false;
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
if (mi->ampdu_packets > 0) {
|
2019-01-16 22:32:12 +01:00
|
|
|
if (!ieee80211_hw_check(mp->hw, TX_STATUS_NO_AMPDU_LEN))
|
|
|
|
mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
|
|
|
|
MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets),
|
|
|
|
EWMA_LEVEL);
|
|
|
|
else
|
|
|
|
mi->avg_ampdu_len = 0;
|
2010-05-13 16:48:03 +02:00
|
|
|
mi->ampdu_len = 0;
|
|
|
|
mi->ampdu_packets = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
mi->sample_slow = 0;
|
|
|
|
mi->sample_count = 0;
|
|
|
|
|
2019-08-20 11:54:48 +02:00
|
|
|
if (mi->supported[MINSTREL_CCK_GROUP])
|
2021-01-27 06:57:30 +01:00
|
|
|
group = MINSTREL_CCK_GROUP;
|
2021-01-15 13:02:35 +01:00
|
|
|
else if (mi->supported[MINSTREL_OFDM_GROUP])
|
2021-01-27 06:57:30 +01:00
|
|
|
group = MINSTREL_OFDM_GROUP;
|
|
|
|
else
|
|
|
|
group = 0;
|
|
|
|
|
|
|
|
index = MI_RATE(group, 0);
|
|
|
|
for (j = 0; j < ARRAY_SIZE(tmp_legacy_tp_rate); j++)
|
|
|
|
tmp_legacy_tp_rate[j] = index;
|
2019-08-20 11:54:48 +02:00
|
|
|
|
|
|
|
if (mi->supported[MINSTREL_VHT_GROUP_0])
|
2021-01-27 06:57:30 +01:00
|
|
|
group = MINSTREL_VHT_GROUP_0;
|
2021-01-15 13:02:35 +01:00
|
|
|
else if (ht_supported)
|
2021-01-27 06:57:30 +01:00
|
|
|
group = MINSTREL_HT_GROUP_0;
|
2021-01-15 13:02:35 +01:00
|
|
|
else if (mi->supported[MINSTREL_CCK_GROUP])
|
2021-01-27 06:57:30 +01:00
|
|
|
group = MINSTREL_CCK_GROUP;
|
2021-01-15 13:02:35 +01:00
|
|
|
else
|
2021-01-27 06:57:30 +01:00
|
|
|
group = MINSTREL_OFDM_GROUP;
|
2019-08-20 11:54:48 +02:00
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
index = MI_RATE(group, 0);
|
2021-01-15 13:02:40 +01:00
|
|
|
tmp_max_prob_rate = index;
|
2019-08-20 11:54:48 +02:00
|
|
|
for (j = 0; j < ARRAY_SIZE(tmp_mcs_tp_rate); j++)
|
|
|
|
tmp_mcs_tp_rate[j] = index;
|
2013-04-18 14:26:20 +02:00
|
|
|
|
2014-09-09 23:22:14 +02:00
|
|
|
/* Find best rate sets within all MCS groups*/
|
|
|
|
for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
|
2021-01-15 13:02:35 +01:00
|
|
|
u16 *tp_rate = tmp_mcs_tp_rate;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
|
|
|
mg = &mi->groups[group];
|
2016-12-14 20:46:54 +01:00
|
|
|
if (!mi->supported[group])
|
2010-05-13 16:48:03 +02:00
|
|
|
continue;
|
|
|
|
|
|
|
|
mi->sample_count++;
|
|
|
|
|
2014-09-09 23:22:14 +02:00
|
|
|
/* (re)Initialize group rate indexes */
|
|
|
|
for(j = 0; j < MAX_THR_RATES; j++)
|
2021-01-27 06:57:30 +01:00
|
|
|
tmp_group_tp_rate[j] = MI_RATE(group, 0);
|
2014-09-09 23:22:14 +02:00
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
if (group == MINSTREL_CCK_GROUP && ht_supported)
|
|
|
|
tp_rate = tmp_legacy_tp_rate;
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
for (i = 0; i < MCS_GROUP_RATES; i++) {
|
2016-12-14 20:46:54 +01:00
|
|
|
if (!(mi->supported[group] & BIT(i)))
|
2010-05-13 16:48:03 +02:00
|
|
|
continue;
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
index = MI_RATE(group, i);
|
2013-11-13 23:07:07 +01:00
|
|
|
|
2015-03-24 21:09:39 +01:00
|
|
|
mrs = &mg->rates[i];
|
|
|
|
mrs->retry_updated = false;
|
2021-01-15 13:02:36 +01:00
|
|
|
minstrel_ht_calc_rate_stats(mp, mrs);
|
2019-10-08 19:11:39 +02:00
|
|
|
cur_prob = mrs->prob_avg;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2015-03-24 21:09:41 +01:00
|
|
|
if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
|
2010-05-13 16:48:03 +02:00
|
|
|
continue;
|
|
|
|
|
2014-09-09 23:22:14 +02:00
|
|
|
/* Find max throughput rate set */
|
2021-01-15 13:02:35 +01:00
|
|
|
minstrel_ht_sort_best_tp_rates(mi, index, tp_rate);
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2014-09-09 23:22:14 +02:00
|
|
|
/* Find max throughput rate set within a group */
|
|
|
|
minstrel_ht_sort_best_tp_rates(mi, index,
|
|
|
|
tmp_group_tp_rate);
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
2014-09-09 23:22:14 +02:00
|
|
|
memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
|
|
|
|
sizeof(mg->max_group_tp_rate));
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
2014-09-09 23:22:14 +02:00
|
|
|
/* Assign new rate set per sta */
|
2021-01-15 13:02:35 +01:00
|
|
|
minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate,
|
|
|
|
tmp_legacy_tp_rate);
|
2014-09-09 23:22:14 +02:00
|
|
|
memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
|
2013-03-02 21:20:13 +01:00
|
|
|
|
2021-01-15 13:02:40 +01:00
|
|
|
for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
|
|
|
|
if (!mi->supported[group])
|
|
|
|
continue;
|
|
|
|
|
|
|
|
mg = &mi->groups[group];
|
2021-01-27 06:57:30 +01:00
|
|
|
mg->max_group_prob_rate = MI_RATE(group, 0);
|
2021-01-15 13:02:40 +01:00
|
|
|
|
|
|
|
for (i = 0; i < MCS_GROUP_RATES; i++) {
|
|
|
|
if (!(mi->supported[group] & BIT(i)))
|
|
|
|
continue;
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
index = MI_RATE(group, i);
|
2021-01-15 13:02:40 +01:00
|
|
|
|
|
|
|
/* Find max probability rate per group and global */
|
|
|
|
minstrel_ht_set_best_prob_rate(mi, &tmp_max_prob_rate,
|
|
|
|
index);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mi->max_prob_rate = tmp_max_prob_rate;
|
|
|
|
|
2014-09-09 23:22:14 +02:00
|
|
|
/* Try to increase robustness of max_prob_rate*/
|
|
|
|
minstrel_ht_prob_rate_reduce_streams(mi);
|
|
|
|
|
2021-01-15 13:02:37 +01:00
|
|
|
/* try to sample half of all available rates during each interval */
|
|
|
|
mi->sample_count *= 4;
|
2013-03-02 21:20:13 +01:00
|
|
|
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
if (sample)
|
|
|
|
minstrel_ht_rate_sample_switch(mp, mi);
|
|
|
|
|
2013-08-27 16:59:47 +02:00
|
|
|
#ifdef CONFIG_MAC80211_DEBUGFS
|
|
|
|
/* use fixed index if set */
|
|
|
|
if (mp->fixed_rate_idx != -1) {
|
2014-09-09 23:22:14 +02:00
|
|
|
for (i = 0; i < 4; i++)
|
|
|
|
mi->max_tp_rate[i] = mp->fixed_rate_idx;
|
2013-08-27 16:59:47 +02:00
|
|
|
mi->max_prob_rate = mp->fixed_rate_idx;
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
mi->sample_mode = MINSTREL_SAMPLE_IDLE;
|
2013-08-27 16:59:47 +02:00
|
|
|
}
|
|
|
|
#endif
|
2013-03-02 21:20:13 +01:00
|
|
|
|
2014-09-09 23:22:14 +02:00
|
|
|
/* Reset update timer */
|
2015-03-24 21:09:39 +01:00
|
|
|
mi->last_stats_update = jiffies;
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static bool
|
2021-01-15 13:02:35 +01:00
|
|
|
minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
|
|
|
|
struct ieee80211_tx_rate *rate)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
2021-01-15 13:02:35 +01:00
|
|
|
int i;
|
|
|
|
|
2011-11-14 15:28:19 +01:00
|
|
|
if (rate->idx < 0)
|
2010-05-13 16:48:03 +02:00
|
|
|
return false;
|
|
|
|
|
2011-11-14 15:28:19 +01:00
|
|
|
if (!rate->count)
|
2010-05-13 16:48:03 +02:00
|
|
|
return false;
|
|
|
|
|
2014-10-21 10:38:38 +02:00
|
|
|
if (rate->flags & IEEE80211_TX_RC_MCS ||
|
|
|
|
rate->flags & IEEE80211_TX_RC_VHT_MCS)
|
2013-02-13 10:51:08 +01:00
|
|
|
return true;
|
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++)
|
|
|
|
if (rate->idx == mp->cck_rates[i])
|
|
|
|
return true;
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++)
|
|
|
|
if (rate->idx == mp->ofdm_rates[mi->band][i])
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2015-03-24 21:09:39 +01:00
|
|
|
minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
|
|
|
struct minstrel_mcs_group_data *mg;
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
mi->sample_group++;
|
|
|
|
mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
|
|
|
|
mg = &mi->groups[mi->sample_group];
|
|
|
|
|
2016-12-14 20:46:54 +01:00
|
|
|
if (!mi->supported[mi->sample_group])
|
2010-05-13 16:48:03 +02:00
|
|
|
continue;
|
|
|
|
|
|
|
|
if (++mg->index >= MCS_GROUP_RATES) {
|
|
|
|
mg->index = 0;
|
|
|
|
if (++mg->column >= ARRAY_SIZE(sample_table))
|
|
|
|
mg->column = 0;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2014-10-20 15:45:59 +02:00
|
|
|
minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
|
|
|
int group, orig_group;
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
orig_group = group = MI_RATE_GROUP(*idx);
|
2010-05-13 16:48:03 +02:00
|
|
|
while (group > 0) {
|
|
|
|
group--;
|
|
|
|
|
2016-12-14 20:46:54 +01:00
|
|
|
if (!mi->supported[group])
|
2010-05-13 16:48:03 +02:00
|
|
|
continue;
|
|
|
|
|
|
|
|
if (minstrel_mcs_groups[group].streams >
|
|
|
|
minstrel_mcs_groups[orig_group].streams)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (primary)
|
2014-09-09 23:22:14 +02:00
|
|
|
*idx = mi->groups[group].max_group_tp_rate[0];
|
2010-05-13 16:48:03 +02:00
|
|
|
else
|
2014-09-09 23:22:14 +02:00
|
|
|
*idx = mi->groups[group].max_group_tp_rate[1];
|
2010-05-13 16:48:03 +02:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2011-11-15 16:44:48 +01:00
|
|
|
minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
|
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
|
|
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
|
|
|
|
u16 tid;
|
|
|
|
|
2014-11-16 00:27:55 +01:00
|
|
|
if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
|
|
|
|
return;
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
|
|
|
|
return;
|
|
|
|
|
2013-08-22 08:36:41 +02:00
|
|
|
if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
|
2010-05-13 16:48:03 +02:00
|
|
|
return;
|
|
|
|
|
2018-02-19 14:48:40 +02:00
|
|
|
tid = ieee80211_get_tid(hdr);
|
2010-06-10 10:21:39 +02:00
|
|
|
if (likely(sta->ampdu_mlme.tid_tx[tid]))
|
2010-05-13 16:48:03 +02:00
|
|
|
return;
|
|
|
|
|
2016-02-18 19:49:18 +01:00
|
|
|
ieee80211_start_tx_ba_session(pubsta, tid, 0);
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
|
2017-04-26 17:11:35 +02:00
|
|
|
void *priv_sta, struct ieee80211_tx_status *st)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
2017-04-26 17:11:35 +02:00
|
|
|
struct ieee80211_tx_info *info = st->info;
|
2021-01-15 13:02:36 +01:00
|
|
|
struct minstrel_ht_sta *mi = priv_sta;
|
2010-05-13 16:48:03 +02:00
|
|
|
struct ieee80211_tx_rate *ar = info->status.rates;
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
struct minstrel_rate_stats *rate, *rate2, *rate_sample = NULL;
|
2010-05-13 16:48:03 +02:00
|
|
|
struct minstrel_priv *mp = priv;
|
2021-01-15 13:02:37 +01:00
|
|
|
u32 update_interval = mp->update_interval;
|
2013-04-22 16:14:42 +02:00
|
|
|
bool last, update = false;
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
bool sample_status = false;
|
2012-11-13 21:36:27 +01:00
|
|
|
int i;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
|
|
|
/* This packet was aggregated but doesn't carry status info */
|
|
|
|
if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
|
|
|
|
!(info->flags & IEEE80211_TX_STAT_AMPDU))
|
|
|
|
return;
|
|
|
|
|
2010-10-10 22:14:25 +02:00
|
|
|
if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
|
|
|
|
info->status.ampdu_ack_len =
|
|
|
|
(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
|
2010-05-13 16:48:03 +02:00
|
|
|
info->status.ampdu_len = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
mi->ampdu_packets++;
|
|
|
|
mi->ampdu_len += info->status.ampdu_len;
|
|
|
|
|
|
|
|
if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
|
2019-01-16 22:32:12 +01:00
|
|
|
int avg_ampdu_len = minstrel_ht_avg_ampdu_len(mi);
|
|
|
|
|
|
|
|
mi->sample_wait = 16 + 2 * avg_ampdu_len;
|
2013-03-05 14:20:19 +01:00
|
|
|
mi->sample_tries = 1;
|
2010-05-13 16:48:03 +02:00
|
|
|
mi->sample_count--;
|
|
|
|
}
|
|
|
|
|
2011-03-09 03:10:18 -08:00
|
|
|
if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
|
2010-05-13 16:48:03 +02:00
|
|
|
mi->sample_packets += info->status.ampdu_len;
|
|
|
|
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
if (mi->sample_mode != MINSTREL_SAMPLE_IDLE)
|
|
|
|
rate_sample = minstrel_get_ratestats(mi, mi->sample_rate);
|
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
last = !minstrel_ht_txstat_valid(mp, mi, &ar[0]);
|
2010-05-13 16:48:03 +02:00
|
|
|
for (i = 0; !last; i++) {
|
|
|
|
last = (i == IEEE80211_TX_MAX_RATES - 1) ||
|
2021-01-15 13:02:35 +01:00
|
|
|
!minstrel_ht_txstat_valid(mp, mi, &ar[i + 1]);
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2013-02-13 10:51:08 +01:00
|
|
|
rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
if (rate == rate_sample)
|
|
|
|
sample_status = true;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2010-10-10 22:14:25 +02:00
|
|
|
if (last)
|
2010-05-13 16:48:03 +02:00
|
|
|
rate->success += info->status.ampdu_ack_len;
|
|
|
|
|
|
|
|
rate->attempts += ar[i].count * info->status.ampdu_len;
|
|
|
|
}
|
|
|
|
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
switch (mi->sample_mode) {
|
|
|
|
case MINSTREL_SAMPLE_IDLE:
|
2021-01-15 13:02:37 +01:00
|
|
|
if (mp->hw->max_rates > 1 ||
|
|
|
|
mi->total_packets_cur < SAMPLE_SWITCH_THR)
|
2019-10-08 19:11:38 +02:00
|
|
|
update_interval /= 2;
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
break;
|
|
|
|
|
|
|
|
case MINSTREL_SAMPLE_ACTIVE:
|
|
|
|
if (!sample_status)
|
|
|
|
break;
|
|
|
|
|
|
|
|
mi->sample_mode = MINSTREL_SAMPLE_PENDING;
|
2013-04-22 16:14:42 +02:00
|
|
|
update = true;
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
break;
|
|
|
|
|
|
|
|
case MINSTREL_SAMPLE_PENDING:
|
|
|
|
if (sample_status)
|
|
|
|
break;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2013-04-22 16:14:42 +02:00
|
|
|
update = true;
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
minstrel_ht_update_stats(mp, mi, false);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (mp->hw->max_rates > 1) {
|
|
|
|
/*
|
|
|
|
* check for sudden death of spatial multiplexing,
|
|
|
|
* downgrade to a lower number of streams if necessary.
|
|
|
|
*/
|
|
|
|
rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
|
|
|
|
if (rate->attempts > 30 &&
|
2019-10-08 19:11:37 +02:00
|
|
|
rate->success < rate->attempts / 4) {
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
|
|
|
|
update = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
|
|
|
|
if (rate2->attempts > 30 &&
|
2019-10-08 19:11:37 +02:00
|
|
|
rate2->success < rate2->attempts / 4) {
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
|
|
|
|
update = true;
|
|
|
|
}
|
2013-04-22 16:14:42 +02:00
|
|
|
}
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2019-10-08 19:11:38 +02:00
|
|
|
if (time_after(jiffies, mi->last_stats_update + update_interval)) {
|
2013-04-22 16:14:42 +02:00
|
|
|
update = true;
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
minstrel_ht_update_stats(mp, mi, true);
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
2013-04-22 16:14:42 +02:00
|
|
|
|
|
|
|
if (update)
|
|
|
|
minstrel_ht_update_rates(mp, mi);
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
|
|
|
|
int index)
|
|
|
|
{
|
2015-03-24 21:09:39 +01:00
|
|
|
struct minstrel_rate_stats *mrs;
|
2010-05-13 16:48:03 +02:00
|
|
|
unsigned int tx_time, tx_time_rtscts, tx_time_data;
|
|
|
|
unsigned int cw = mp->cw_min;
|
2011-05-10 19:00:45 -07:00
|
|
|
unsigned int ctime = 0;
|
2010-05-13 16:48:03 +02:00
|
|
|
unsigned int t_slot = 9; /* FIXME */
|
2019-01-16 22:32:12 +01:00
|
|
|
unsigned int ampdu_len = minstrel_ht_avg_ampdu_len(mi);
|
2013-02-13 10:51:08 +01:00
|
|
|
unsigned int overhead = 0, overhead_rtscts = 0;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2015-03-24 21:09:39 +01:00
|
|
|
mrs = minstrel_get_ratestats(mi, index);
|
2019-10-08 19:11:39 +02:00
|
|
|
if (mrs->prob_avg < MINSTREL_FRAC(1, 10)) {
|
2015-03-24 21:09:39 +01:00
|
|
|
mrs->retry_count = 1;
|
|
|
|
mrs->retry_count_rtscts = 1;
|
2010-05-13 16:48:03 +02:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2015-03-24 21:09:39 +01:00
|
|
|
mrs->retry_count = 2;
|
|
|
|
mrs->retry_count_rtscts = 2;
|
|
|
|
mrs->retry_updated = true;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2018-10-06 19:35:02 +02:00
|
|
|
tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000;
|
2011-05-10 19:00:45 -07:00
|
|
|
|
|
|
|
/* Contention time for first 2 tries */
|
|
|
|
ctime = (t_slot * cw) >> 1;
|
|
|
|
cw = min((cw << 1) | 1, mp->cw_max);
|
|
|
|
ctime += (t_slot * cw) >> 1;
|
|
|
|
cw = min((cw << 1) | 1, mp->cw_max);
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index))) {
|
2021-01-15 13:02:34 +01:00
|
|
|
overhead = mi->overhead_legacy;
|
|
|
|
overhead_rtscts = mi->overhead_legacy_rtscts;
|
|
|
|
} else {
|
2013-02-13 10:51:08 +01:00
|
|
|
overhead = mi->overhead;
|
|
|
|
overhead_rtscts = mi->overhead_rtscts;
|
|
|
|
}
|
|
|
|
|
2011-05-10 19:00:45 -07:00
|
|
|
/* Total TX time for data and Contention after first 2 tries */
|
2013-02-13 10:51:08 +01:00
|
|
|
tx_time = ctime + 2 * (overhead + tx_time_data);
|
|
|
|
tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
|
2011-05-10 19:00:45 -07:00
|
|
|
|
|
|
|
/* See how many more tries we can fit inside segment size */
|
2010-05-13 16:48:03 +02:00
|
|
|
do {
|
2011-05-10 19:00:45 -07:00
|
|
|
/* Contention time for this try */
|
|
|
|
ctime = (t_slot * cw) >> 1;
|
|
|
|
cw = min((cw << 1) | 1, mp->cw_max);
|
|
|
|
|
|
|
|
/* Total TX time after this try */
|
2013-02-13 10:51:08 +01:00
|
|
|
tx_time += ctime + overhead + tx_time_data;
|
|
|
|
tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
|
2011-05-10 19:00:45 -07:00
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
if (tx_time_rtscts < mp->segment_size)
|
2015-03-24 21:09:39 +01:00
|
|
|
mrs->retry_count_rtscts++;
|
2010-05-13 16:48:03 +02:00
|
|
|
} while ((tx_time < mp->segment_size) &&
|
2015-03-24 21:09:39 +01:00
|
|
|
(++mrs->retry_count < mp->max_retry));
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
|
2013-04-22 16:14:42 +02:00
|
|
|
struct ieee80211_sta_rates *ratetbl, int offset, int index)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
2021-01-27 06:57:30 +01:00
|
|
|
int group_idx = MI_RATE_GROUP(index);
|
2021-01-15 13:02:35 +01:00
|
|
|
const struct mcs_group *group = &minstrel_mcs_groups[group_idx];
|
2015-03-24 21:09:39 +01:00
|
|
|
struct minstrel_rate_stats *mrs;
|
2013-04-22 16:14:42 +02:00
|
|
|
u8 idx;
|
2014-10-20 15:46:01 +02:00
|
|
|
u16 flags = group->flags;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2015-03-24 21:09:39 +01:00
|
|
|
mrs = minstrel_get_ratestats(mi, index);
|
|
|
|
if (!mrs->retry_updated)
|
2010-05-13 16:48:03 +02:00
|
|
|
minstrel_calc_retransmit(mp, mi, index);
|
|
|
|
|
2019-10-08 19:11:39 +02:00
|
|
|
if (mrs->prob_avg < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
|
2013-04-22 16:14:42 +02:00
|
|
|
ratetbl->rate[offset].count = 2;
|
|
|
|
ratetbl->rate[offset].count_rts = 2;
|
|
|
|
ratetbl->rate[offset].count_cts = 2;
|
|
|
|
} else {
|
2015-03-24 21:09:39 +01:00
|
|
|
ratetbl->rate[offset].count = mrs->retry_count;
|
|
|
|
ratetbl->rate[offset].count_cts = mrs->retry_count;
|
|
|
|
ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
|
2013-04-22 16:14:42 +02:00
|
|
|
}
|
2013-02-13 10:51:08 +01:00
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
index = MI_RATE_IDX(index);
|
2021-01-15 13:02:35 +01:00
|
|
|
if (group_idx == MINSTREL_CCK_GROUP)
|
2013-04-22 16:14:42 +02:00
|
|
|
idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
|
2021-01-15 13:02:35 +01:00
|
|
|
else if (group_idx == MINSTREL_OFDM_GROUP)
|
|
|
|
idx = mp->ofdm_rates[mi->band][index %
|
|
|
|
ARRAY_SIZE(mp->ofdm_rates[0])];
|
2014-10-21 10:38:38 +02:00
|
|
|
else if (flags & IEEE80211_TX_RC_VHT_MCS)
|
|
|
|
idx = ((group->streams - 1) << 4) |
|
2021-01-15 13:02:35 +01:00
|
|
|
(index & 0xF);
|
2014-10-20 15:46:01 +02:00
|
|
|
else
|
2021-01-15 13:02:35 +01:00
|
|
|
idx = index + (group->streams - 1) * 8;
|
2013-04-22 16:14:42 +02:00
|
|
|
|
2015-06-12 02:34:52 +05:30
|
|
|
/* enable RTS/CTS if needed:
|
|
|
|
* - if station is in dynamic SMPS (and streams > 1)
|
|
|
|
* - for fallback rates, to increase chances of getting through
|
|
|
|
*/
|
2016-02-24 12:07:17 +01:00
|
|
|
if (offset > 0 ||
|
2015-06-12 02:34:52 +05:30
|
|
|
(mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
|
|
|
|
group->streams > 1)) {
|
2013-04-22 16:14:42 +02:00
|
|
|
ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
|
|
|
|
flags |= IEEE80211_TX_RC_USE_RTS_CTS;
|
|
|
|
}
|
|
|
|
|
|
|
|
ratetbl->rate[offset].idx = idx;
|
|
|
|
ratetbl->rate[offset].flags = flags;
|
|
|
|
}
|
|
|
|
|
2016-03-03 22:59:01 +01:00
|
|
|
static inline int
|
2019-10-08 19:11:39 +02:00
|
|
|
minstrel_ht_get_prob_avg(struct minstrel_ht_sta *mi, int rate)
|
2016-03-03 22:59:01 +01:00
|
|
|
{
|
2021-01-27 06:57:30 +01:00
|
|
|
int group = MI_RATE_GROUP(rate);
|
|
|
|
rate = MI_RATE_IDX(rate);
|
2019-10-08 19:11:39 +02:00
|
|
|
return mi->groups[group].rates[rate].prob_avg;
|
2016-03-03 22:59:01 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
|
|
|
|
{
|
2021-01-27 06:57:30 +01:00
|
|
|
int group = MI_RATE_GROUP(mi->max_prob_rate);
|
2016-03-03 22:59:01 +01:00
|
|
|
const struct mcs_group *g = &minstrel_mcs_groups[group];
|
2021-01-27 06:57:30 +01:00
|
|
|
int rate = MI_RATE_IDX(mi->max_prob_rate);
|
2018-10-06 19:35:02 +02:00
|
|
|
unsigned int duration;
|
2016-03-03 22:59:01 +01:00
|
|
|
|
|
|
|
/* Disable A-MSDU if max_prob_rate is bad */
|
2019-10-08 19:11:39 +02:00
|
|
|
if (mi->groups[group].rates[rate].prob_avg < MINSTREL_FRAC(50, 100))
|
2016-03-03 22:59:01 +01:00
|
|
|
return 1;
|
|
|
|
|
2018-10-06 19:35:02 +02:00
|
|
|
duration = g->duration[rate];
|
|
|
|
duration <<= g->shift;
|
|
|
|
|
2016-03-03 22:59:01 +01:00
|
|
|
/* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
|
2018-10-06 19:35:02 +02:00
|
|
|
if (duration > MCS_DURATION(1, 0, 52))
|
2016-03-03 22:59:01 +01:00
|
|
|
return 500;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the rate is slower than single-stream MCS4, limit A-MSDU to usual
|
|
|
|
* data packet size
|
|
|
|
*/
|
2018-10-06 19:35:02 +02:00
|
|
|
if (duration > MCS_DURATION(1, 0, 104))
|
2016-03-03 22:59:01 +01:00
|
|
|
return 1600;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the rate is slower than single-stream MCS7, or if the max throughput
|
|
|
|
* rate success probability is less than 75%, limit A-MSDU to twice the usual
|
|
|
|
* data packet size
|
|
|
|
*/
|
2018-10-06 19:35:02 +02:00
|
|
|
if (duration > MCS_DURATION(1, 0, 260) ||
|
2019-10-08 19:11:39 +02:00
|
|
|
(minstrel_ht_get_prob_avg(mi, mi->max_tp_rate[0]) <
|
2016-03-03 22:59:01 +01:00
|
|
|
MINSTREL_FRAC(75, 100)))
|
|
|
|
return 3200;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
|
|
|
|
* Since aggregation sessions are started/stopped without txq flush, use
|
|
|
|
* the limit here to avoid the complexity of having to de-aggregate
|
|
|
|
* packets in the queue.
|
|
|
|
*/
|
|
|
|
if (!mi->sta->vht_cap.vht_supported)
|
|
|
|
return IEEE80211_MAX_MPDU_LEN_HT_BA;
|
|
|
|
|
|
|
|
/* unlimited */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-04-22 16:14:42 +02:00
|
|
|
static void
|
|
|
|
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
|
|
|
|
{
|
|
|
|
struct ieee80211_sta_rates *rates;
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
u16 first_rate = mi->max_tp_rate[0];
|
2013-04-22 16:14:42 +02:00
|
|
|
int i = 0;
|
|
|
|
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
if (mi->sample_mode == MINSTREL_SAMPLE_ACTIVE)
|
|
|
|
first_rate = mi->sample_rate;
|
|
|
|
|
2013-04-22 16:14:42 +02:00
|
|
|
rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
|
|
|
|
if (!rates)
|
2013-02-13 10:51:08 +01:00
|
|
|
return;
|
2013-04-22 16:14:42 +02:00
|
|
|
|
2014-09-09 23:22:14 +02:00
|
|
|
/* Start with max_tp_rate[0] */
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
minstrel_ht_set_rate(mp, mi, rates, i++, first_rate);
|
2013-04-22 16:14:42 +02:00
|
|
|
|
|
|
|
if (mp->hw->max_rates >= 3) {
|
2014-09-09 23:22:14 +02:00
|
|
|
/* At least 3 tx rates supported, use max_tp_rate[1] next */
|
|
|
|
minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
|
2013-04-22 16:14:42 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
if (mp->hw->max_rates >= 2) {
|
|
|
|
minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
|
2013-02-13 10:51:08 +01:00
|
|
|
}
|
|
|
|
|
2016-03-03 22:59:01 +01:00
|
|
|
mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
|
2013-04-22 16:14:42 +02:00
|
|
|
rates->rate[i].idx = -1;
|
|
|
|
rate_control_set_rates(mp->hw, mi->sta, rates);
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
|
|
|
|
{
|
2015-03-24 21:09:39 +01:00
|
|
|
struct minstrel_rate_stats *mrs;
|
2010-05-13 16:48:03 +02:00
|
|
|
struct minstrel_mcs_group_data *mg;
|
2014-09-09 23:22:14 +02:00
|
|
|
unsigned int sample_dur, sample_group, cur_max_tp_streams;
|
2016-03-03 23:25:42 +01:00
|
|
|
int tp_rate1, tp_rate2;
|
2010-05-13 16:48:03 +02:00
|
|
|
int sample_idx = 0;
|
|
|
|
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
if (mp->hw->max_rates == 1 && mp->sample_switch &&
|
|
|
|
(mi->total_packets_cur >= SAMPLE_SWITCH_THR ||
|
|
|
|
mp->sample_switch == 1))
|
|
|
|
return -1;
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
if (mi->sample_wait > 0) {
|
|
|
|
mi->sample_wait--;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!mi->sample_tries)
|
|
|
|
return -1;
|
|
|
|
|
2013-11-11 13:10:49 +01:00
|
|
|
sample_group = mi->sample_group;
|
|
|
|
mg = &mi->groups[sample_group];
|
2010-05-13 16:48:03 +02:00
|
|
|
sample_idx = sample_table[mg->column][mg->index];
|
2015-03-24 21:09:39 +01:00
|
|
|
minstrel_set_next_sample_idx(mi);
|
2013-11-11 13:10:49 +01:00
|
|
|
|
2016-12-14 20:46:54 +01:00
|
|
|
if (!(mi->supported[sample_group] & BIT(sample_idx)))
|
2013-11-11 13:10:49 +01:00
|
|
|
return -1;
|
|
|
|
|
2015-03-24 21:09:39 +01:00
|
|
|
mrs = &mg->rates[sample_idx];
|
2021-01-27 06:57:30 +01:00
|
|
|
sample_idx += MI_RATE(sample_group, 0);
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2021-01-15 13:02:39 +01:00
|
|
|
tp_rate1 = mi->max_tp_rate[0];
|
|
|
|
|
|
|
|
/* Set tp_rate2 to the second highest max_tp_rate */
|
2016-03-03 23:25:42 +01:00
|
|
|
if (minstrel_get_duration(mi->max_tp_rate[0]) >
|
|
|
|
minstrel_get_duration(mi->max_tp_rate[1])) {
|
|
|
|
tp_rate2 = mi->max_tp_rate[0];
|
|
|
|
} else {
|
|
|
|
tp_rate2 = mi->max_tp_rate[1];
|
|
|
|
}
|
|
|
|
|
2012-03-14 13:31:11 +01:00
|
|
|
/*
|
|
|
|
* Sampling might add some overhead (RTS, no aggregation)
|
2016-03-03 23:25:42 +01:00
|
|
|
* to the frame. Hence, don't use sampling for the highest currently
|
|
|
|
* used highest throughput or probability rate.
|
2012-03-14 13:31:11 +01:00
|
|
|
*/
|
2016-03-03 23:25:42 +01:00
|
|
|
if (sample_idx == mi->max_tp_rate[0] || sample_idx == mi->max_prob_rate)
|
2012-03-14 13:31:11 +01:00
|
|
|
return -1;
|
2013-03-16 17:00:27 +01:00
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
/*
|
2018-10-06 19:35:06 +02:00
|
|
|
* Do not sample if the probability is already higher than 95%,
|
|
|
|
* or if the rate is 3 times slower than the current max probability
|
|
|
|
* rate, to avoid wasting airtime.
|
2010-05-13 16:48:03 +02:00
|
|
|
*/
|
2018-10-06 19:35:06 +02:00
|
|
|
sample_dur = minstrel_get_duration(sample_idx);
|
2019-10-08 19:11:39 +02:00
|
|
|
if (mrs->prob_avg > MINSTREL_FRAC(95, 100) ||
|
2018-10-06 19:35:06 +02:00
|
|
|
minstrel_get_duration(mi->max_prob_rate) * 3 < sample_dur)
|
2011-03-09 03:10:18 -08:00
|
|
|
return -1;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2019-08-20 11:54:47 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* For devices with no configurable multi-rate retry, skip sampling
|
|
|
|
* below the per-group max throughput rate, and only use one sampling
|
|
|
|
* attempt per rate
|
|
|
|
*/
|
|
|
|
if (mp->hw->max_rates == 1 &&
|
|
|
|
(minstrel_get_duration(mg->max_group_tp_rate[0]) < sample_dur ||
|
|
|
|
mrs->attempts))
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
/* Skip already sampled slow rates */
|
|
|
|
if (sample_dur >= minstrel_get_duration(tp_rate1) && mrs->attempts)
|
|
|
|
return -1;
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
/*
|
|
|
|
* Make sure that lower rates get sampled only occasionally,
|
|
|
|
* if the link is working perfectly.
|
|
|
|
*/
|
2014-09-09 23:22:14 +02:00
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
cur_max_tp_streams = minstrel_mcs_groups[MI_RATE_GROUP(tp_rate1)].streams;
|
2016-03-03 23:25:42 +01:00
|
|
|
if (sample_dur >= minstrel_get_duration(tp_rate2) &&
|
2014-09-09 23:22:14 +02:00
|
|
|
(cur_max_tp_streams - 1 <
|
2013-03-03 12:49:51 +01:00
|
|
|
minstrel_mcs_groups[sample_group].streams ||
|
|
|
|
sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
|
2015-03-24 21:09:39 +01:00
|
|
|
if (mrs->sample_skipped < 20)
|
2011-03-09 03:10:18 -08:00
|
|
|
return -1;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
|
|
|
if (mi->sample_slow++ > 2)
|
2011-03-09 03:10:18 -08:00
|
|
|
return -1;
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
2013-03-03 12:49:52 +01:00
|
|
|
mi->sample_tries--;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
|
|
|
return sample_idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
|
|
|
|
struct ieee80211_tx_rate_control *txrc)
|
|
|
|
{
|
2013-04-22 16:14:42 +02:00
|
|
|
const struct mcs_group *sample_group;
|
2010-05-13 16:48:03 +02:00
|
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
|
2013-04-22 16:14:42 +02:00
|
|
|
struct ieee80211_tx_rate *rate = &info->status.rates[0];
|
2021-01-15 13:02:36 +01:00
|
|
|
struct minstrel_ht_sta *mi = priv_sta;
|
2010-05-13 16:48:03 +02:00
|
|
|
struct minstrel_priv *mp = priv;
|
|
|
|
int sample_idx;
|
|
|
|
|
2014-11-19 20:08:07 +01:00
|
|
|
if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
|
2021-01-27 06:57:30 +01:00
|
|
|
!minstrel_ht_is_legacy_group(MI_RATE_GROUP(mi->max_prob_rate)))
|
2014-11-19 20:08:07 +01:00
|
|
|
minstrel_aggr_check(sta, txrc->skb);
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
info->flags |= mi->tx_flags;
|
2011-08-01 11:32:53 +02:00
|
|
|
|
2013-08-27 16:59:47 +02:00
|
|
|
#ifdef CONFIG_MAC80211_DEBUGFS
|
|
|
|
if (mp->fixed_rate_idx != -1)
|
|
|
|
return;
|
|
|
|
#endif
|
|
|
|
|
2011-08-01 11:32:53 +02:00
|
|
|
/* Don't use EAPOL frames for sampling on non-mrr hw */
|
|
|
|
if (mp->hw->max_rates == 1 &&
|
2013-07-02 18:09:12 +02:00
|
|
|
(info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
|
2011-08-01 11:32:53 +02:00
|
|
|
sample_idx = -1;
|
|
|
|
else
|
|
|
|
sample_idx = minstrel_get_sample_rate(mp, mi);
|
2011-05-20 20:29:17 +02:00
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
mi->total_packets++;
|
|
|
|
|
|
|
|
/* wraparound */
|
|
|
|
if (mi->total_packets == ~0) {
|
|
|
|
mi->total_packets = 0;
|
|
|
|
mi->sample_packets = 0;
|
|
|
|
}
|
2013-04-22 16:14:42 +02:00
|
|
|
|
|
|
|
if (sample_idx < 0)
|
|
|
|
return;
|
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
sample_group = &minstrel_mcs_groups[MI_RATE_GROUP(sample_idx)];
|
|
|
|
sample_idx = MI_RATE_IDX(sample_idx);
|
2018-10-06 19:35:05 +02:00
|
|
|
|
|
|
|
if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] &&
|
|
|
|
(sample_idx >= 4) != txrc->short_preamble)
|
|
|
|
return;
|
|
|
|
|
2013-04-22 16:14:42 +02:00
|
|
|
info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
|
2013-06-28 21:04:35 +02:00
|
|
|
rate->count = 1;
|
|
|
|
|
2018-10-06 19:35:05 +02:00
|
|
|
if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) {
|
2013-06-28 21:04:35 +02:00
|
|
|
int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
|
|
|
|
rate->idx = mp->cck_rates[idx];
|
2021-01-15 13:02:35 +01:00
|
|
|
} else if (sample_group == &minstrel_mcs_groups[MINSTREL_OFDM_GROUP]) {
|
|
|
|
int idx = sample_idx % ARRAY_SIZE(mp->ofdm_rates[0]);
|
|
|
|
rate->idx = mp->ofdm_rates[mi->band][idx];
|
2014-10-21 10:38:38 +02:00
|
|
|
} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
|
2021-01-27 06:57:30 +01:00
|
|
|
ieee80211_rate_set_vht(rate, MI_RATE_IDX(sample_idx),
|
2014-10-21 10:38:38 +02:00
|
|
|
sample_group->streams);
|
2014-10-20 15:46:01 +02:00
|
|
|
} else {
|
2018-10-06 19:35:05 +02:00
|
|
|
rate->idx = sample_idx + (sample_group->streams - 1) * 8;
|
2013-06-28 21:04:35 +02:00
|
|
|
}
|
|
|
|
|
2014-10-20 15:46:01 +02:00
|
|
|
rate->flags = sample_group->flags;
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
2013-02-13 10:51:08 +01:00
|
|
|
static void
|
|
|
|
minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
|
|
|
|
struct ieee80211_supported_band *sband,
|
|
|
|
struct ieee80211_sta *sta)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
2016-04-12 15:56:15 +02:00
|
|
|
if (sband->band != NL80211_BAND_2GHZ)
|
2013-02-13 10:51:08 +01:00
|
|
|
return;
|
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
if (sta->ht_cap.ht_supported &&
|
|
|
|
!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
|
2013-08-20 19:43:54 +02:00
|
|
|
return;
|
|
|
|
|
2013-02-13 10:51:08 +01:00
|
|
|
for (i = 0; i < 4; i++) {
|
2021-01-15 13:02:35 +01:00
|
|
|
if (mp->cck_rates[i] == 0xff ||
|
|
|
|
!rate_supported(sta, sband->band, mp->cck_rates[i]))
|
2013-02-13 10:51:08 +01:00
|
|
|
continue;
|
|
|
|
|
2021-01-15 13:02:34 +01:00
|
|
|
mi->supported[MINSTREL_CCK_GROUP] |= BIT(i);
|
2013-02-13 10:51:08 +01:00
|
|
|
if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
|
2021-01-15 13:02:34 +01:00
|
|
|
mi->supported[MINSTREL_CCK_GROUP] |= BIT(i + 4);
|
2013-02-13 10:51:08 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
static void
|
|
|
|
minstrel_ht_update_ofdm(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
|
|
|
|
struct ieee80211_supported_band *sband,
|
|
|
|
struct ieee80211_sta *sta)
|
|
|
|
{
|
|
|
|
const u8 *rates;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (sta->ht_cap.ht_supported)
|
|
|
|
return;
|
|
|
|
|
|
|
|
rates = mp->ofdm_rates[sband->band];
|
|
|
|
for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++) {
|
|
|
|
if (rates[i] == 0xff ||
|
|
|
|
!rate_supported(sta, sband->band, rates[i]))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
mi->supported[MINSTREL_OFDM_GROUP] |= BIT(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
static void
|
|
|
|
minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
|
2013-07-08 16:55:50 +02:00
|
|
|
struct cfg80211_chan_def *chandef,
|
2021-01-15 13:02:35 +01:00
|
|
|
struct ieee80211_sta *sta, void *priv_sta)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
|
|
|
struct minstrel_priv *mp = priv;
|
2021-01-15 13:02:36 +01:00
|
|
|
struct minstrel_ht_sta *mi = priv_sta;
|
2010-05-13 16:48:03 +02:00
|
|
|
struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
|
2018-10-06 19:34:59 +02:00
|
|
|
u16 ht_cap = sta->ht_cap.cap;
|
2014-10-21 10:38:38 +02:00
|
|
|
struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
|
2021-01-15 13:02:34 +01:00
|
|
|
const struct ieee80211_rate *ctl_rate;
|
|
|
|
bool ldpc, erp;
|
2014-10-21 10:38:38 +02:00
|
|
|
int use_vht;
|
2011-03-25 15:30:38 +01:00
|
|
|
int n_supported = 0;
|
2010-05-13 16:48:03 +02:00
|
|
|
int ack_dur;
|
|
|
|
int stbc;
|
|
|
|
int i;
|
|
|
|
|
2014-10-20 15:46:00 +02:00
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2014-10-21 10:38:38 +02:00
|
|
|
if (vht_cap->vht_supported)
|
|
|
|
use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
|
|
|
|
else
|
2018-10-06 19:35:01 +02:00
|
|
|
use_vht = 0;
|
2014-10-21 10:38:38 +02:00
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
memset(mi, 0, sizeof(*mi));
|
2013-04-22 16:14:42 +02:00
|
|
|
|
|
|
|
mi->sta = sta;
|
2021-01-15 13:02:35 +01:00
|
|
|
mi->band = sband->band;
|
2015-03-24 21:09:39 +01:00
|
|
|
mi->last_stats_update = jiffies;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2013-07-08 16:55:51 +02:00
|
|
|
ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
|
|
|
|
mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
|
|
|
|
mi->overhead += ack_dur;
|
2010-05-13 16:48:03 +02:00
|
|
|
mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
|
|
|
|
|
2021-01-15 13:02:34 +01:00
|
|
|
ctl_rate = &sband->bitrates[rate_lowest_index(sband, sta)];
|
|
|
|
erp = ctl_rate->flags & IEEE80211_RATE_ERP_G;
|
|
|
|
ack_dur = ieee80211_frame_duration(sband->band, 10,
|
|
|
|
ctl_rate->bitrate, erp, 1,
|
|
|
|
ieee80211_chandef_get_shift(chandef));
|
|
|
|
mi->overhead_legacy = ack_dur;
|
|
|
|
mi->overhead_legacy_rtscts = mi->overhead_legacy + 2 * ack_dur;
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
|
|
|
|
|
|
|
|
/* When using MRR, sample more on the first attempt, without delay */
|
|
|
|
if (mp->has_mrr) {
|
|
|
|
mi->sample_count = 16;
|
|
|
|
mi->sample_wait = 0;
|
|
|
|
} else {
|
|
|
|
mi->sample_count = 8;
|
|
|
|
mi->sample_wait = 8;
|
|
|
|
}
|
|
|
|
mi->sample_tries = 4;
|
|
|
|
|
2014-10-21 10:38:38 +02:00
|
|
|
if (!use_vht) {
|
2018-10-06 19:34:59 +02:00
|
|
|
stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >>
|
2014-10-21 10:38:38 +02:00
|
|
|
IEEE80211_HT_CAP_RX_STBC_SHIFT;
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2018-10-06 19:34:59 +02:00
|
|
|
ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING;
|
|
|
|
} else {
|
|
|
|
stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >>
|
|
|
|
IEEE80211_VHT_CAP_RXSTBC_SHIFT;
|
|
|
|
|
|
|
|
ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC;
|
2014-10-21 10:38:38 +02:00
|
|
|
}
|
2010-05-13 16:48:03 +02:00
|
|
|
|
2018-10-06 19:34:59 +02:00
|
|
|
mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
|
|
|
|
if (ldpc)
|
|
|
|
mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
|
2014-10-20 15:46:01 +02:00
|
|
|
u32 gflags = minstrel_mcs_groups[i].flags;
|
2014-10-21 10:38:38 +02:00
|
|
|
int bw, nss;
|
2014-10-20 15:46:01 +02:00
|
|
|
|
2016-12-14 20:46:54 +01:00
|
|
|
mi->supported[i] = 0;
|
2021-01-15 13:02:35 +01:00
|
|
|
if (minstrel_ht_is_legacy_group(i))
|
2013-02-13 10:51:08 +01:00
|
|
|
continue;
|
|
|
|
|
2014-10-20 15:46:01 +02:00
|
|
|
if (gflags & IEEE80211_TX_RC_SHORT_GI) {
|
|
|
|
if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
|
2018-10-06 19:34:59 +02:00
|
|
|
if (!(ht_cap & IEEE80211_HT_CAP_SGI_40))
|
2013-02-07 11:47:44 +01:00
|
|
|
continue;
|
|
|
|
} else {
|
2018-10-06 19:34:59 +02:00
|
|
|
if (!(ht_cap & IEEE80211_HT_CAP_SGI_20))
|
2013-02-07 11:47:44 +01:00
|
|
|
continue;
|
|
|
|
}
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
2014-10-20 15:46:01 +02:00
|
|
|
if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
|
2013-02-07 11:47:44 +01:00
|
|
|
sta->bandwidth < IEEE80211_STA_RX_BW_40)
|
2010-05-13 16:48:03 +02:00
|
|
|
continue;
|
|
|
|
|
2014-10-21 10:38:38 +02:00
|
|
|
nss = minstrel_mcs_groups[i].streams;
|
|
|
|
|
2012-03-09 14:13:45 +01:00
|
|
|
/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
|
2014-10-21 10:38:38 +02:00
|
|
|
if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* HT rate */
|
|
|
|
if (gflags & IEEE80211_TX_RC_MCS) {
|
2014-10-24 14:34:49 +02:00
|
|
|
if (use_vht && minstrel_vht_only)
|
2014-10-21 10:38:38 +02:00
|
|
|
continue;
|
2018-10-06 19:35:01 +02:00
|
|
|
|
2016-12-14 20:46:54 +01:00
|
|
|
mi->supported[i] = mcs->rx_mask[nss - 1];
|
|
|
|
if (mi->supported[i])
|
2014-10-21 10:38:38 +02:00
|
|
|
n_supported++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* VHT rate */
|
|
|
|
if (!vht_cap->vht_supported ||
|
|
|
|
WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
|
|
|
|
WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
|
2012-03-09 14:13:45 +01:00
|
|
|
continue;
|
|
|
|
|
2014-10-21 10:38:38 +02:00
|
|
|
if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
|
|
|
|
if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
|
|
|
|
((gflags & IEEE80211_TX_RC_SHORT_GI) &&
|
|
|
|
!(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
|
|
|
|
bw = BW_40;
|
|
|
|
else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
|
|
|
|
bw = BW_80;
|
|
|
|
else
|
|
|
|
bw = BW_20;
|
|
|
|
|
2016-12-14 20:46:54 +01:00
|
|
|
mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
|
2014-10-21 10:38:38 +02:00
|
|
|
vht_cap->vht_mcs.tx_mcs_map);
|
2011-03-25 15:30:38 +01:00
|
|
|
|
2016-12-14 20:46:54 +01:00
|
|
|
if (mi->supported[i])
|
2011-03-25 15:30:38 +01:00
|
|
|
n_supported++;
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
2011-03-25 15:30:38 +01:00
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
minstrel_ht_update_cck(mp, mi, sband, sta);
|
|
|
|
minstrel_ht_update_ofdm(mp, mi, sband, sta);
|
2011-03-25 15:30:38 +01:00
|
|
|
|
2013-04-22 16:14:42 +02:00
|
|
|
/* create an initial rate table with the lowest supported rates */
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
minstrel_ht_update_stats(mp, mi, true);
|
2013-04-22 16:14:42 +02:00
|
|
|
minstrel_ht_update_rates(mp, mi);
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
|
2013-07-08 16:55:50 +02:00
|
|
|
struct cfg80211_chan_def *chandef,
|
2010-05-13 16:48:03 +02:00
|
|
|
struct ieee80211_sta *sta, void *priv_sta)
|
|
|
|
{
|
2013-07-08 16:55:50 +02:00
|
|
|
minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
|
2013-07-08 16:55:50 +02:00
|
|
|
struct cfg80211_chan_def *chandef,
|
2010-05-13 16:48:03 +02:00
|
|
|
struct ieee80211_sta *sta, void *priv_sta,
|
2012-03-28 10:58:37 +02:00
|
|
|
u32 changed)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
2013-07-08 16:55:50 +02:00
|
|
|
minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void *
|
|
|
|
minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
|
|
|
|
{
|
|
|
|
struct ieee80211_supported_band *sband;
|
2021-01-15 13:02:36 +01:00
|
|
|
struct minstrel_ht_sta *mi;
|
2010-05-13 16:48:03 +02:00
|
|
|
struct minstrel_priv *mp = priv;
|
|
|
|
struct ieee80211_hw *hw = mp->hw;
|
|
|
|
int max_rates = 0;
|
|
|
|
int i;
|
|
|
|
|
2016-04-12 15:56:15 +02:00
|
|
|
for (i = 0; i < NUM_NL80211_BANDS; i++) {
|
2010-05-13 16:48:03 +02:00
|
|
|
sband = hw->wiphy->bands[i];
|
|
|
|
if (sband && sband->n_bitrates > max_rates)
|
|
|
|
max_rates = sband->n_bitrates;
|
|
|
|
}
|
|
|
|
|
2021-01-15 13:02:36 +01:00
|
|
|
return kzalloc(sizeof(*mi), gfp);
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
|
|
|
|
{
|
2021-01-15 13:02:36 +01:00
|
|
|
kfree(priv_sta);
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
2018-10-06 19:35:01 +02:00
|
|
|
static void
|
2021-01-15 13:02:35 +01:00
|
|
|
minstrel_ht_fill_rate_array(u8 *dest, struct ieee80211_supported_band *sband,
|
|
|
|
const s16 *bitrates, int n_rates, u32 rate_flags)
|
2018-10-06 19:35:01 +02:00
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
for (i = 0; i < sband->n_bitrates; i++) {
|
|
|
|
struct ieee80211_rate *rate = &sband->bitrates[i];
|
|
|
|
|
|
|
|
if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
|
|
|
|
continue;
|
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
for (j = 0; j < n_rates; j++) {
|
2018-10-06 19:35:01 +02:00
|
|
|
if (rate->bitrate != bitrates[j])
|
|
|
|
continue;
|
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
dest[j] = i;
|
2018-10-06 19:35:01 +02:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-01-15 13:02:35 +01:00
|
|
|
static void
|
|
|
|
minstrel_ht_init_cck_rates(struct minstrel_priv *mp)
|
|
|
|
{
|
|
|
|
static const s16 bitrates[4] = { 10, 20, 55, 110 };
|
|
|
|
struct ieee80211_supported_band *sband;
|
|
|
|
u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
|
|
|
|
|
|
|
|
memset(mp->cck_rates, 0xff, sizeof(mp->cck_rates));
|
|
|
|
sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ];
|
|
|
|
if (!sband)
|
|
|
|
return;
|
|
|
|
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(mp->cck_rates) != ARRAY_SIZE(bitrates));
|
|
|
|
minstrel_ht_fill_rate_array(mp->cck_rates, sband,
|
|
|
|
minstrel_cck_bitrates,
|
|
|
|
ARRAY_SIZE(minstrel_cck_bitrates),
|
|
|
|
rate_flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
minstrel_ht_init_ofdm_rates(struct minstrel_priv *mp, enum nl80211_band band)
|
|
|
|
{
|
|
|
|
static const s16 bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 };
|
|
|
|
struct ieee80211_supported_band *sband;
|
|
|
|
u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
|
|
|
|
|
|
|
|
memset(mp->ofdm_rates[band], 0xff, sizeof(mp->ofdm_rates[band]));
|
|
|
|
sband = mp->hw->wiphy->bands[band];
|
|
|
|
if (!sband)
|
|
|
|
return;
|
|
|
|
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(mp->ofdm_rates[band]) != ARRAY_SIZE(bitrates));
|
|
|
|
minstrel_ht_fill_rate_array(mp->ofdm_rates[band], sband,
|
|
|
|
minstrel_ofdm_bitrates,
|
|
|
|
ARRAY_SIZE(minstrel_ofdm_bitrates),
|
|
|
|
rate_flags);
|
|
|
|
}
|
|
|
|
|
2010-05-13 16:48:03 +02:00
|
|
|
static void *
|
2020-04-23 11:13:49 +02:00
|
|
|
minstrel_ht_alloc(struct ieee80211_hw *hw)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
2018-10-06 19:35:01 +02:00
|
|
|
struct minstrel_priv *mp;
|
2021-01-15 13:02:35 +01:00
|
|
|
int i;
|
2018-10-06 19:35:01 +02:00
|
|
|
|
|
|
|
mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC);
|
|
|
|
if (!mp)
|
|
|
|
return NULL;
|
|
|
|
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
mp->sample_switch = -1;
|
|
|
|
|
2018-10-06 19:35:01 +02:00
|
|
|
/* contention window settings
|
|
|
|
* Just an approximation. Using the per-queue values would complicate
|
|
|
|
* the calculations and is probably unnecessary */
|
|
|
|
mp->cw_min = 15;
|
|
|
|
mp->cw_max = 1023;
|
|
|
|
|
|
|
|
/* maximum time that the hw is allowed to stay in one MRR segment */
|
|
|
|
mp->segment_size = 6000;
|
|
|
|
|
|
|
|
if (hw->max_rate_tries > 0)
|
|
|
|
mp->max_retry = hw->max_rate_tries;
|
|
|
|
else
|
|
|
|
/* safe default, does not necessarily have to match hw properties */
|
|
|
|
mp->max_retry = 7;
|
|
|
|
|
|
|
|
if (hw->max_rates >= 4)
|
|
|
|
mp->has_mrr = true;
|
|
|
|
|
|
|
|
mp->hw = hw;
|
2021-01-15 13:02:41 +01:00
|
|
|
mp->update_interval = HZ / 10;
|
2018-10-06 19:35:01 +02:00
|
|
|
|
2020-04-23 11:13:49 +02:00
|
|
|
minstrel_ht_init_cck_rates(mp);
|
2021-01-15 13:02:35 +01:00
|
|
|
for (i = 0; i < ARRAY_SIZE(mp->hw->wiphy->bands); i++)
|
|
|
|
minstrel_ht_init_ofdm_rates(mp, i);
|
2020-04-23 11:13:49 +02:00
|
|
|
|
|
|
|
return mp;
|
|
|
|
}
|
|
|
|
|
2018-10-06 19:35:01 +02:00
|
|
|
#ifdef CONFIG_MAC80211_DEBUGFS
|
2020-04-23 11:13:49 +02:00
|
|
|
static void minstrel_ht_add_debugfs(struct ieee80211_hw *hw, void *priv,
|
|
|
|
struct dentry *debugfsdir)
|
|
|
|
{
|
|
|
|
struct minstrel_priv *mp = priv;
|
|
|
|
|
2018-10-06 19:35:01 +02:00
|
|
|
mp->fixed_rate_idx = (u32) -1;
|
|
|
|
debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir,
|
|
|
|
&mp->fixed_rate_idx);
|
mac80211: minstrel_ht: improve rate probing for devices with static fallback
On some devices that only support static rate fallback tables sending rate
control probing packets can be really expensive.
Probing lower rates can already hurt throughput quite a bit. What hurts even
more is the fact that on mt76x0/mt76x2, single probing packets can only be
forced by directing packets at a different internal hardware queue, which
causes some heavy reordering and extra latency.
The reordering issue is mainly problematic while pushing lots of packets to
a particular station. If there is little activity, the overhead of probing is
neglegible.
The static fallback behavior is designed to pretty much only handle rate
control algorithms that use only a very limited set of rates on which the
algorithm switches up/down based on packet error rate.
In order to better support that kind of hardware, this patch implements a
different approach to rate probing where it switches to a slightly higher rate,
waits for tx status feedback, then updates the stats and switches back to
the new max throughput rate. This only triggers above a packet rate of 100
per stats interval (~50ms).
For that kind of probing, the code has to reduce the set of probing rates
a lot more compared to single packet probing, so it uses only one packet
per MCS group which is either slightly faster, or as close as possible to
the max throughput rate.
This allows switching between similar rates with different numbers of
streams. The algorithm assumes that the hardware will work its way lower
within an MCS group in case of retransmissions, so that lower rates don't
have to be probed by the high packets per second rate probing code.
To further reduce the search space, it also does not probe rates with lower
channel bandwidth than the max throughput rate.
At the moment, these changes will only affect mt76x0/mt76x2.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20190820095449.45255-4-nbd@nbd.name
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-08-20 11:54:49 +02:00
|
|
|
debugfs_create_u32("sample_switch", S_IRUGO | S_IWUSR, debugfsdir,
|
|
|
|
&mp->sample_switch);
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
2020-04-23 11:13:49 +02:00
|
|
|
#endif
|
2010-05-13 16:48:03 +02:00
|
|
|
|
|
|
|
static void
|
|
|
|
minstrel_ht_free(void *priv)
|
|
|
|
{
|
2018-10-06 19:35:01 +02:00
|
|
|
kfree(priv);
|
2010-05-13 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
2014-05-19 21:53:20 +02:00
|
|
|
static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
|
|
|
|
{
|
2021-01-15 13:02:36 +01:00
|
|
|
struct minstrel_ht_sta *mi = priv_sta;
|
2015-03-24 21:09:41 +01:00
|
|
|
int i, j, prob, tp_avg;
|
2014-05-19 21:53:20 +02:00
|
|
|
|
2021-01-27 06:57:30 +01:00
|
|
|
i = MI_RATE_GROUP(mi->max_tp_rate[0]);
|
|
|
|
j = MI_RATE_IDX(mi->max_tp_rate[0]);
|
2019-10-08 19:11:39 +02:00
|
|
|
prob = mi->groups[i].rates[j].prob_avg;
|
2014-05-19 21:53:20 +02:00
|
|
|
|
2015-03-24 21:09:40 +01:00
|
|
|
/* convert tp_avg from pkt per second in kbps */
|
2016-02-02 08:12:26 +01:00
|
|
|
tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
|
|
|
|
tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
|
2015-03-24 21:09:40 +01:00
|
|
|
|
|
|
|
return tp_avg;
|
2014-05-19 21:53:20 +02:00
|
|
|
}
|
|
|
|
|
2014-01-20 23:29:34 +01:00
|
|
|
static const struct rate_control_ops mac80211_minstrel_ht = {
|
2010-05-13 16:48:03 +02:00
|
|
|
.name = "minstrel_ht",
|
2017-04-26 17:11:35 +02:00
|
|
|
.tx_status_ext = minstrel_ht_tx_status,
|
2010-05-13 16:48:03 +02:00
|
|
|
.get_rate = minstrel_ht_get_rate,
|
|
|
|
.rate_init = minstrel_ht_rate_init,
|
|
|
|
.rate_update = minstrel_ht_rate_update,
|
|
|
|
.alloc_sta = minstrel_ht_alloc_sta,
|
|
|
|
.free_sta = minstrel_ht_free_sta,
|
|
|
|
.alloc = minstrel_ht_alloc,
|
|
|
|
.free = minstrel_ht_free,
|
|
|
|
#ifdef CONFIG_MAC80211_DEBUGFS
|
2020-04-23 11:13:49 +02:00
|
|
|
.add_debugfs = minstrel_ht_add_debugfs,
|
2010-05-13 16:48:03 +02:00
|
|
|
.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
|
|
|
|
#endif
|
2014-05-19 21:53:20 +02:00
|
|
|
.get_expected_throughput = minstrel_ht_get_expected_throughput,
|
2010-05-13 16:48:03 +02:00
|
|
|
};
|
|
|
|
|
|
|
|
|
2014-01-21 00:32:52 +01:00
|
|
|
static void __init init_sample_table(void)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
|
|
|
int col, i, new_idx;
|
|
|
|
u8 rnd[MCS_GROUP_RATES];
|
|
|
|
|
|
|
|
memset(sample_table, 0xff, sizeof(sample_table));
|
|
|
|
for (col = 0; col < SAMPLE_COLUMNS; col++) {
|
2013-11-13 10:54:19 +01:00
|
|
|
prandom_bytes(rnd, sizeof(rnd));
|
2010-05-13 16:48:03 +02:00
|
|
|
for (i = 0; i < MCS_GROUP_RATES; i++) {
|
|
|
|
new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
|
|
|
|
while (sample_table[col][new_idx] != 0xff)
|
|
|
|
new_idx = (new_idx + 1) % MCS_GROUP_RATES;
|
|
|
|
|
|
|
|
sample_table[col][new_idx] = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int __init
|
2018-10-06 19:35:01 +02:00
|
|
|
rc80211_minstrel_init(void)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
|
|
|
init_sample_table();
|
|
|
|
return ieee80211_rate_control_register(&mac80211_minstrel_ht);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2018-10-06 19:35:01 +02:00
|
|
|
rc80211_minstrel_exit(void)
|
2010-05-13 16:48:03 +02:00
|
|
|
{
|
|
|
|
ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
|
|
|
|
}
|