2019-08-19 14:17:33 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
|
|
* ESSIV skcipher and aead template for block encryption
|
|
|
|
*
|
|
|
|
* This template encapsulates the ESSIV IV generation algorithm used by
|
|
|
|
* dm-crypt and fscrypt, which converts the initial vector for the skcipher
|
|
|
|
* used for block encryption, by encrypting it using the hash of the
|
|
|
|
* skcipher key as encryption key. Usually, the input IV is a 64-bit sector
|
|
|
|
* number in LE representation zero-padded to the size of the IV, but this
|
|
|
|
* is not assumed by this driver.
|
|
|
|
*
|
|
|
|
* The typical use of this template is to instantiate the skcipher
|
|
|
|
* 'essiv(cbc(aes),sha256)', which is the only instantiation used by
|
|
|
|
* fscrypt, and the most relevant one for dm-crypt. However, dm-crypt
|
|
|
|
* also permits ESSIV to be used in combination with the authenc template,
|
|
|
|
* e.g., 'essiv(authenc(hmac(sha256),cbc(aes)),sha256)', in which case
|
|
|
|
* we need to instantiate an aead that accepts the same special key format
|
|
|
|
* as the authenc template, and deals with the way the encrypted IV is
|
|
|
|
* embedded into the AAD area of the aead request. This means the AEAD
|
|
|
|
* flavor produced by this template is tightly coupled to the way dm-crypt
|
|
|
|
* happens to use it.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2019 Linaro, Ltd. <ard.biesheuvel@linaro.org>
|
|
|
|
*
|
|
|
|
* Heavily based on:
|
|
|
|
* adiantum length-preserving encryption mode
|
|
|
|
*
|
|
|
|
* Copyright 2018 Google LLC
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <crypto/authenc.h>
|
|
|
|
#include <crypto/internal/aead.h>
|
|
|
|
#include <crypto/internal/hash.h>
|
|
|
|
#include <crypto/internal/skcipher.h>
|
|
|
|
#include <crypto/scatterwalk.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
|
|
struct essiv_instance_ctx {
|
|
|
|
union {
|
|
|
|
struct crypto_skcipher_spawn skcipher_spawn;
|
|
|
|
struct crypto_aead_spawn aead_spawn;
|
|
|
|
} u;
|
|
|
|
char essiv_cipher_name[CRYPTO_MAX_ALG_NAME];
|
|
|
|
char shash_driver_name[CRYPTO_MAX_ALG_NAME];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct essiv_tfm_ctx {
|
|
|
|
union {
|
|
|
|
struct crypto_skcipher *skcipher;
|
|
|
|
struct crypto_aead *aead;
|
|
|
|
} u;
|
|
|
|
struct crypto_cipher *essiv_cipher;
|
|
|
|
struct crypto_shash *hash;
|
|
|
|
int ivoffset;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct essiv_aead_request_ctx {
|
|
|
|
struct scatterlist sg[4];
|
|
|
|
u8 *assoc;
|
|
|
|
struct aead_request aead_req;
|
|
|
|
};
|
|
|
|
|
|
|
|
static int essiv_skcipher_setkey(struct crypto_skcipher *tfm,
|
|
|
|
const u8 *key, unsigned int keylen)
|
|
|
|
{
|
|
|
|
struct essiv_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
|
|
|
|
SHASH_DESC_ON_STACK(desc, tctx->hash);
|
|
|
|
u8 salt[HASH_MAX_DIGESTSIZE];
|
|
|
|
int err;
|
|
|
|
|
|
|
|
crypto_skcipher_clear_flags(tctx->u.skcipher, CRYPTO_TFM_REQ_MASK);
|
|
|
|
crypto_skcipher_set_flags(tctx->u.skcipher,
|
|
|
|
crypto_skcipher_get_flags(tfm) &
|
|
|
|
CRYPTO_TFM_REQ_MASK);
|
|
|
|
err = crypto_skcipher_setkey(tctx->u.skcipher, key, keylen);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
desc->tfm = tctx->hash;
|
|
|
|
err = crypto_shash_digest(desc, key, keylen, salt);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
crypto_cipher_clear_flags(tctx->essiv_cipher, CRYPTO_TFM_REQ_MASK);
|
|
|
|
crypto_cipher_set_flags(tctx->essiv_cipher,
|
|
|
|
crypto_skcipher_get_flags(tfm) &
|
|
|
|
CRYPTO_TFM_REQ_MASK);
|
2019-12-31 03:19:38 +00:00
|
|
|
return crypto_cipher_setkey(tctx->essiv_cipher, salt,
|
|
|
|
crypto_shash_digestsize(tctx->hash));
|
2019-08-19 14:17:33 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int essiv_aead_setkey(struct crypto_aead *tfm, const u8 *key,
|
|
|
|
unsigned int keylen)
|
|
|
|
{
|
|
|
|
struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm);
|
|
|
|
SHASH_DESC_ON_STACK(desc, tctx->hash);
|
|
|
|
struct crypto_authenc_keys keys;
|
|
|
|
u8 salt[HASH_MAX_DIGESTSIZE];
|
|
|
|
int err;
|
|
|
|
|
|
|
|
crypto_aead_clear_flags(tctx->u.aead, CRYPTO_TFM_REQ_MASK);
|
|
|
|
crypto_aead_set_flags(tctx->u.aead, crypto_aead_get_flags(tfm) &
|
|
|
|
CRYPTO_TFM_REQ_MASK);
|
|
|
|
err = crypto_aead_setkey(tctx->u.aead, key, keylen);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
crypto: remove CRYPTO_TFM_RES_BAD_KEY_LEN
The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to
make the ->setkey() functions provide more information about errors.
However, no one actually checks for this flag, which makes it pointless.
Also, many algorithms fail to set this flag when given a bad length key.
Reviewing just the generic implementations, this is the case for
aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309,
rfc7539, rfc7539esp, salsa20, seqiv, and xcbc. But there are probably
many more in arch/*/crypto/ and drivers/crypto/.
Some algorithms can even set this flag when the key is the correct
length. For example, authenc and authencesn set it when the key payload
is malformed in any way (not just a bad length), the atmel-sha and ccree
drivers can set it if a memory allocation fails, and the chelsio driver
sets it for bad auth tag lengths, not just bad key lengths.
So even if someone actually wanted to start checking this flag (which
seems unlikely, since it's been unused for a long time), there would be
a lot of work needed to get it working correctly. But it would probably
be much better to go back to the drawing board and just define different
return values, like -EINVAL if the key is invalid for the algorithm vs.
-EKEYREJECTED if the key was rejected by a policy like "no weak keys".
That would be much simpler, less error-prone, and easier to test.
So just remove this flag.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-12-31 03:19:36 +00:00
|
|
|
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
|
2019-08-19 14:17:33 +00:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
desc->tfm = tctx->hash;
|
|
|
|
err = crypto_shash_init(desc) ?:
|
|
|
|
crypto_shash_update(desc, keys.enckey, keys.enckeylen) ?:
|
|
|
|
crypto_shash_finup(desc, keys.authkey, keys.authkeylen, salt);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
crypto_cipher_clear_flags(tctx->essiv_cipher, CRYPTO_TFM_REQ_MASK);
|
|
|
|
crypto_cipher_set_flags(tctx->essiv_cipher, crypto_aead_get_flags(tfm) &
|
|
|
|
CRYPTO_TFM_REQ_MASK);
|
2019-12-31 03:19:38 +00:00
|
|
|
return crypto_cipher_setkey(tctx->essiv_cipher, salt,
|
|
|
|
crypto_shash_digestsize(tctx->hash));
|
2019-08-19 14:17:33 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int essiv_aead_setauthsize(struct crypto_aead *tfm,
|
|
|
|
unsigned int authsize)
|
|
|
|
{
|
|
|
|
struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm);
|
|
|
|
|
|
|
|
return crypto_aead_setauthsize(tctx->u.aead, authsize);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void essiv_skcipher_done(struct crypto_async_request *areq, int err)
|
|
|
|
{
|
|
|
|
struct skcipher_request *req = areq->data;
|
|
|
|
|
|
|
|
skcipher_request_complete(req, err);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int essiv_skcipher_crypt(struct skcipher_request *req, bool enc)
|
|
|
|
{
|
|
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
|
|
const struct essiv_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
|
|
|
|
struct skcipher_request *subreq = skcipher_request_ctx(req);
|
|
|
|
|
|
|
|
crypto_cipher_encrypt_one(tctx->essiv_cipher, req->iv, req->iv);
|
|
|
|
|
|
|
|
skcipher_request_set_tfm(subreq, tctx->u.skcipher);
|
|
|
|
skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
|
|
|
|
req->iv);
|
|
|
|
skcipher_request_set_callback(subreq, skcipher_request_flags(req),
|
|
|
|
essiv_skcipher_done, req);
|
|
|
|
|
|
|
|
return enc ? crypto_skcipher_encrypt(subreq) :
|
|
|
|
crypto_skcipher_decrypt(subreq);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int essiv_skcipher_encrypt(struct skcipher_request *req)
|
|
|
|
{
|
|
|
|
return essiv_skcipher_crypt(req, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int essiv_skcipher_decrypt(struct skcipher_request *req)
|
|
|
|
{
|
|
|
|
return essiv_skcipher_crypt(req, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void essiv_aead_done(struct crypto_async_request *areq, int err)
|
|
|
|
{
|
|
|
|
struct aead_request *req = areq->data;
|
|
|
|
struct essiv_aead_request_ctx *rctx = aead_request_ctx(req);
|
|
|
|
|
2019-11-16 06:51:00 +00:00
|
|
|
kfree(rctx->assoc);
|
2019-08-19 14:17:33 +00:00
|
|
|
aead_request_complete(req, err);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int essiv_aead_crypt(struct aead_request *req, bool enc)
|
|
|
|
{
|
|
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
|
|
const struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm);
|
|
|
|
struct essiv_aead_request_ctx *rctx = aead_request_ctx(req);
|
|
|
|
struct aead_request *subreq = &rctx->aead_req;
|
|
|
|
struct scatterlist *src = req->src;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
crypto_cipher_encrypt_one(tctx->essiv_cipher, req->iv, req->iv);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* dm-crypt embeds the sector number and the IV in the AAD region, so
|
|
|
|
* we have to copy the converted IV into the right scatterlist before
|
|
|
|
* we pass it on.
|
|
|
|
*/
|
|
|
|
rctx->assoc = NULL;
|
|
|
|
if (req->src == req->dst || !enc) {
|
|
|
|
scatterwalk_map_and_copy(req->iv, req->dst,
|
|
|
|
req->assoclen - crypto_aead_ivsize(tfm),
|
|
|
|
crypto_aead_ivsize(tfm), 1);
|
|
|
|
} else {
|
|
|
|
u8 *iv = (u8 *)aead_request_ctx(req) + tctx->ivoffset;
|
|
|
|
int ivsize = crypto_aead_ivsize(tfm);
|
|
|
|
int ssize = req->assoclen - ivsize;
|
|
|
|
struct scatterlist *sg;
|
|
|
|
int nents;
|
|
|
|
|
|
|
|
if (ssize < 0)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
nents = sg_nents_for_len(req->src, ssize);
|
|
|
|
if (nents < 0)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
memcpy(iv, req->iv, ivsize);
|
|
|
|
sg_init_table(rctx->sg, 4);
|
|
|
|
|
|
|
|
if (unlikely(nents > 1)) {
|
|
|
|
/*
|
|
|
|
* This is a case that rarely occurs in practice, but
|
|
|
|
* for correctness, we have to deal with it nonetheless.
|
|
|
|
*/
|
|
|
|
rctx->assoc = kmalloc(ssize, GFP_ATOMIC);
|
|
|
|
if (!rctx->assoc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
scatterwalk_map_and_copy(rctx->assoc, req->src, 0,
|
|
|
|
ssize, 0);
|
|
|
|
sg_set_buf(rctx->sg, rctx->assoc, ssize);
|
|
|
|
} else {
|
|
|
|
sg_set_page(rctx->sg, sg_page(req->src), ssize,
|
|
|
|
req->src->offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
sg_set_buf(rctx->sg + 1, iv, ivsize);
|
|
|
|
sg = scatterwalk_ffwd(rctx->sg + 2, req->src, req->assoclen);
|
|
|
|
if (sg != rctx->sg + 2)
|
|
|
|
sg_chain(rctx->sg, 3, sg);
|
|
|
|
|
|
|
|
src = rctx->sg;
|
|
|
|
}
|
|
|
|
|
|
|
|
aead_request_set_tfm(subreq, tctx->u.aead);
|
|
|
|
aead_request_set_ad(subreq, req->assoclen);
|
|
|
|
aead_request_set_callback(subreq, aead_request_flags(req),
|
|
|
|
essiv_aead_done, req);
|
|
|
|
aead_request_set_crypt(subreq, src, req->dst, req->cryptlen, req->iv);
|
|
|
|
|
|
|
|
err = enc ? crypto_aead_encrypt(subreq) :
|
|
|
|
crypto_aead_decrypt(subreq);
|
|
|
|
|
|
|
|
if (rctx->assoc && err != -EINPROGRESS)
|
|
|
|
kfree(rctx->assoc);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int essiv_aead_encrypt(struct aead_request *req)
|
|
|
|
{
|
|
|
|
return essiv_aead_crypt(req, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int essiv_aead_decrypt(struct aead_request *req)
|
|
|
|
{
|
|
|
|
return essiv_aead_crypt(req, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int essiv_init_tfm(struct essiv_instance_ctx *ictx,
|
|
|
|
struct essiv_tfm_ctx *tctx)
|
|
|
|
{
|
|
|
|
struct crypto_cipher *essiv_cipher;
|
|
|
|
struct crypto_shash *hash;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
essiv_cipher = crypto_alloc_cipher(ictx->essiv_cipher_name, 0, 0);
|
|
|
|
if (IS_ERR(essiv_cipher))
|
|
|
|
return PTR_ERR(essiv_cipher);
|
|
|
|
|
|
|
|
hash = crypto_alloc_shash(ictx->shash_driver_name, 0, 0);
|
|
|
|
if (IS_ERR(hash)) {
|
|
|
|
err = PTR_ERR(hash);
|
|
|
|
goto err_free_essiv_cipher;
|
|
|
|
}
|
|
|
|
|
|
|
|
tctx->essiv_cipher = essiv_cipher;
|
|
|
|
tctx->hash = hash;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_free_essiv_cipher:
|
|
|
|
crypto_free_cipher(essiv_cipher);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int essiv_skcipher_init_tfm(struct crypto_skcipher *tfm)
|
|
|
|
{
|
|
|
|
struct skcipher_instance *inst = skcipher_alg_instance(tfm);
|
|
|
|
struct essiv_instance_ctx *ictx = skcipher_instance_ctx(inst);
|
|
|
|
struct essiv_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
|
|
|
|
struct crypto_skcipher *skcipher;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
skcipher = crypto_spawn_skcipher(&ictx->u.skcipher_spawn);
|
|
|
|
if (IS_ERR(skcipher))
|
|
|
|
return PTR_ERR(skcipher);
|
|
|
|
|
|
|
|
crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
|
|
|
|
crypto_skcipher_reqsize(skcipher));
|
|
|
|
|
|
|
|
err = essiv_init_tfm(ictx, tctx);
|
|
|
|
if (err) {
|
|
|
|
crypto_free_skcipher(skcipher);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
tctx->u.skcipher = skcipher;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int essiv_aead_init_tfm(struct crypto_aead *tfm)
|
|
|
|
{
|
|
|
|
struct aead_instance *inst = aead_alg_instance(tfm);
|
|
|
|
struct essiv_instance_ctx *ictx = aead_instance_ctx(inst);
|
|
|
|
struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm);
|
|
|
|
struct crypto_aead *aead;
|
|
|
|
unsigned int subreq_size;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
BUILD_BUG_ON(offsetofend(struct essiv_aead_request_ctx, aead_req) !=
|
|
|
|
sizeof(struct essiv_aead_request_ctx));
|
|
|
|
|
|
|
|
aead = crypto_spawn_aead(&ictx->u.aead_spawn);
|
|
|
|
if (IS_ERR(aead))
|
|
|
|
return PTR_ERR(aead);
|
|
|
|
|
|
|
|
subreq_size = FIELD_SIZEOF(struct essiv_aead_request_ctx, aead_req) +
|
|
|
|
crypto_aead_reqsize(aead);
|
|
|
|
|
|
|
|
tctx->ivoffset = offsetof(struct essiv_aead_request_ctx, aead_req) +
|
|
|
|
subreq_size;
|
|
|
|
crypto_aead_set_reqsize(tfm, tctx->ivoffset + crypto_aead_ivsize(aead));
|
|
|
|
|
|
|
|
err = essiv_init_tfm(ictx, tctx);
|
|
|
|
if (err) {
|
|
|
|
crypto_free_aead(aead);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
tctx->u.aead = aead;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void essiv_skcipher_exit_tfm(struct crypto_skcipher *tfm)
|
|
|
|
{
|
|
|
|
struct essiv_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
|
|
|
|
|
|
|
|
crypto_free_skcipher(tctx->u.skcipher);
|
|
|
|
crypto_free_cipher(tctx->essiv_cipher);
|
|
|
|
crypto_free_shash(tctx->hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void essiv_aead_exit_tfm(struct crypto_aead *tfm)
|
|
|
|
{
|
|
|
|
struct essiv_tfm_ctx *tctx = crypto_aead_ctx(tfm);
|
|
|
|
|
|
|
|
crypto_free_aead(tctx->u.aead);
|
|
|
|
crypto_free_cipher(tctx->essiv_cipher);
|
|
|
|
crypto_free_shash(tctx->hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void essiv_skcipher_free_instance(struct skcipher_instance *inst)
|
|
|
|
{
|
|
|
|
struct essiv_instance_ctx *ictx = skcipher_instance_ctx(inst);
|
|
|
|
|
|
|
|
crypto_drop_skcipher(&ictx->u.skcipher_spawn);
|
|
|
|
kfree(inst);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void essiv_aead_free_instance(struct aead_instance *inst)
|
|
|
|
{
|
|
|
|
struct essiv_instance_ctx *ictx = aead_instance_ctx(inst);
|
|
|
|
|
|
|
|
crypto_drop_aead(&ictx->u.aead_spawn);
|
|
|
|
kfree(inst);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool parse_cipher_name(char *essiv_cipher_name, const char *cra_name)
|
|
|
|
{
|
|
|
|
const char *p, *q;
|
|
|
|
int len;
|
|
|
|
|
|
|
|
/* find the last opening parens */
|
|
|
|
p = strrchr(cra_name, '(');
|
|
|
|
if (!p++)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* find the first closing parens in the tail of the string */
|
|
|
|
q = strchr(p, ')');
|
|
|
|
if (!q)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
len = q - p;
|
|
|
|
if (len >= CRYPTO_MAX_ALG_NAME)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
memcpy(essiv_cipher_name, p, len);
|
|
|
|
essiv_cipher_name[len] = '\0';
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool essiv_supported_algorithms(const char *essiv_cipher_name,
|
|
|
|
struct shash_alg *hash_alg,
|
|
|
|
int ivsize)
|
|
|
|
{
|
|
|
|
struct crypto_alg *alg;
|
|
|
|
bool ret = false;
|
|
|
|
|
|
|
|
alg = crypto_alg_mod_lookup(essiv_cipher_name,
|
|
|
|
CRYPTO_ALG_TYPE_CIPHER,
|
|
|
|
CRYPTO_ALG_TYPE_MASK);
|
|
|
|
if (IS_ERR(alg))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (hash_alg->digestsize < alg->cra_cipher.cia_min_keysize ||
|
|
|
|
hash_alg->digestsize > alg->cra_cipher.cia_max_keysize)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (ivsize != alg->cra_blocksize)
|
|
|
|
goto out;
|
|
|
|
|
2019-11-29 19:35:22 +00:00
|
|
|
if (crypto_shash_alg_needs_key(hash_alg))
|
2019-08-19 14:17:33 +00:00
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = true;
|
|
|
|
|
|
|
|
out:
|
|
|
|
crypto_mod_put(alg);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int essiv_create(struct crypto_template *tmpl, struct rtattr **tb)
|
|
|
|
{
|
|
|
|
struct crypto_attr_type *algt;
|
|
|
|
const char *inner_cipher_name;
|
|
|
|
const char *shash_name;
|
|
|
|
struct skcipher_instance *skcipher_inst = NULL;
|
|
|
|
struct aead_instance *aead_inst = NULL;
|
|
|
|
struct crypto_instance *inst;
|
|
|
|
struct crypto_alg *base, *block_base;
|
|
|
|
struct essiv_instance_ctx *ictx;
|
|
|
|
struct skcipher_alg *skcipher_alg = NULL;
|
|
|
|
struct aead_alg *aead_alg = NULL;
|
|
|
|
struct crypto_alg *_hash_alg;
|
|
|
|
struct shash_alg *hash_alg;
|
|
|
|
int ivsize;
|
|
|
|
u32 type;
|
2020-01-03 03:58:45 +00:00
|
|
|
u32 mask;
|
2019-08-19 14:17:33 +00:00
|
|
|
int err;
|
|
|
|
|
|
|
|
algt = crypto_get_attr_type(tb);
|
|
|
|
if (IS_ERR(algt))
|
|
|
|
return PTR_ERR(algt);
|
|
|
|
|
|
|
|
inner_cipher_name = crypto_attr_alg_name(tb[1]);
|
|
|
|
if (IS_ERR(inner_cipher_name))
|
|
|
|
return PTR_ERR(inner_cipher_name);
|
|
|
|
|
|
|
|
shash_name = crypto_attr_alg_name(tb[2]);
|
|
|
|
if (IS_ERR(shash_name))
|
|
|
|
return PTR_ERR(shash_name);
|
|
|
|
|
|
|
|
type = algt->type & algt->mask;
|
2020-01-03 03:58:45 +00:00
|
|
|
mask = crypto_requires_sync(algt->type, algt->mask);
|
2019-08-19 14:17:33 +00:00
|
|
|
|
|
|
|
switch (type) {
|
crypto: skcipher - remove the "blkcipher" algorithm type
Now that all "blkcipher" algorithms have been converted to "skcipher",
remove the blkcipher algorithm type.
The skcipher (symmetric key cipher) algorithm type was introduced a few
years ago to replace both blkcipher and ablkcipher (synchronous and
asynchronous block cipher). The advantages of skcipher include:
- A much less confusing name, since none of these algorithm types have
ever actually been for raw block ciphers, but rather for all
length-preserving encryption modes including block cipher modes of
operation, stream ciphers, and other length-preserving modes.
- It unified blkcipher and ablkcipher into a single algorithm type
which supports both synchronous and asynchronous implementations.
Note, blkcipher already operated only on scatterlists, so the fact
that skcipher does too isn't a regression in functionality.
- Better type safety by using struct skcipher_alg, struct
crypto_skcipher, etc. instead of crypto_alg, crypto_tfm, etc.
- It sometimes simplifies the implementations of algorithms.
Also, the blkcipher API was no longer being tested.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-10-25 19:41:12 +00:00
|
|
|
case CRYPTO_ALG_TYPE_SKCIPHER:
|
2019-08-19 14:17:33 +00:00
|
|
|
skcipher_inst = kzalloc(sizeof(*skcipher_inst) +
|
|
|
|
sizeof(*ictx), GFP_KERNEL);
|
|
|
|
if (!skcipher_inst)
|
|
|
|
return -ENOMEM;
|
|
|
|
inst = skcipher_crypto_instance(skcipher_inst);
|
|
|
|
base = &skcipher_inst->alg.base;
|
|
|
|
ictx = crypto_instance_ctx(inst);
|
|
|
|
|
|
|
|
/* Symmetric cipher, e.g., "cbc(aes)" */
|
2020-01-03 03:58:45 +00:00
|
|
|
err = crypto_grab_skcipher(&ictx->u.skcipher_spawn, inst,
|
|
|
|
inner_cipher_name, 0, mask);
|
2019-08-19 14:17:33 +00:00
|
|
|
if (err)
|
|
|
|
goto out_free_inst;
|
|
|
|
skcipher_alg = crypto_spawn_skcipher_alg(&ictx->u.skcipher_spawn);
|
|
|
|
block_base = &skcipher_alg->base;
|
|
|
|
ivsize = crypto_skcipher_alg_ivsize(skcipher_alg);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CRYPTO_ALG_TYPE_AEAD:
|
|
|
|
aead_inst = kzalloc(sizeof(*aead_inst) +
|
|
|
|
sizeof(*ictx), GFP_KERNEL);
|
|
|
|
if (!aead_inst)
|
|
|
|
return -ENOMEM;
|
|
|
|
inst = aead_crypto_instance(aead_inst);
|
|
|
|
base = &aead_inst->alg.base;
|
|
|
|
ictx = crypto_instance_ctx(inst);
|
|
|
|
|
|
|
|
/* AEAD cipher, e.g., "authenc(hmac(sha256),cbc(aes))" */
|
|
|
|
crypto_set_aead_spawn(&ictx->u.aead_spawn, inst);
|
|
|
|
err = crypto_grab_aead(&ictx->u.aead_spawn,
|
2020-01-03 03:58:45 +00:00
|
|
|
inner_cipher_name, 0, mask);
|
2019-08-19 14:17:33 +00:00
|
|
|
if (err)
|
|
|
|
goto out_free_inst;
|
|
|
|
aead_alg = crypto_spawn_aead_alg(&ictx->u.aead_spawn);
|
|
|
|
block_base = &aead_alg->base;
|
|
|
|
if (!strstarts(block_base->cra_name, "authenc(")) {
|
|
|
|
pr_warn("Only authenc() type AEADs are supported by ESSIV\n");
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out_drop_skcipher;
|
|
|
|
}
|
|
|
|
ivsize = aead_alg->ivsize;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!parse_cipher_name(ictx->essiv_cipher_name, block_base->cra_name)) {
|
|
|
|
pr_warn("Failed to parse ESSIV cipher name from skcipher cra_name\n");
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out_drop_skcipher;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Synchronous hash, e.g., "sha256" */
|
|
|
|
_hash_alg = crypto_alg_mod_lookup(shash_name,
|
|
|
|
CRYPTO_ALG_TYPE_SHASH,
|
|
|
|
CRYPTO_ALG_TYPE_MASK);
|
|
|
|
if (IS_ERR(_hash_alg)) {
|
|
|
|
err = PTR_ERR(_hash_alg);
|
|
|
|
goto out_drop_skcipher;
|
|
|
|
}
|
|
|
|
hash_alg = __crypto_shash_alg(_hash_alg);
|
|
|
|
|
|
|
|
/* Check the set of algorithms */
|
|
|
|
if (!essiv_supported_algorithms(ictx->essiv_cipher_name, hash_alg,
|
|
|
|
ivsize)) {
|
|
|
|
pr_warn("Unsupported essiv instantiation: essiv(%s,%s)\n",
|
|
|
|
block_base->cra_name, hash_alg->base.cra_name);
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out_free_hash;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* record the driver name so we can instantiate this exact algo later */
|
|
|
|
strlcpy(ictx->shash_driver_name, hash_alg->base.cra_driver_name,
|
|
|
|
CRYPTO_MAX_ALG_NAME);
|
|
|
|
|
|
|
|
/* Instance fields */
|
|
|
|
|
|
|
|
err = -ENAMETOOLONG;
|
|
|
|
if (snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME,
|
|
|
|
"essiv(%s,%s)", block_base->cra_name,
|
|
|
|
hash_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME)
|
|
|
|
goto out_free_hash;
|
|
|
|
if (snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME,
|
|
|
|
"essiv(%s,%s)", block_base->cra_driver_name,
|
|
|
|
hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
|
|
|
|
goto out_free_hash;
|
|
|
|
|
|
|
|
base->cra_flags = block_base->cra_flags & CRYPTO_ALG_ASYNC;
|
|
|
|
base->cra_blocksize = block_base->cra_blocksize;
|
|
|
|
base->cra_ctxsize = sizeof(struct essiv_tfm_ctx);
|
|
|
|
base->cra_alignmask = block_base->cra_alignmask;
|
|
|
|
base->cra_priority = block_base->cra_priority;
|
|
|
|
|
crypto: skcipher - remove the "blkcipher" algorithm type
Now that all "blkcipher" algorithms have been converted to "skcipher",
remove the blkcipher algorithm type.
The skcipher (symmetric key cipher) algorithm type was introduced a few
years ago to replace both blkcipher and ablkcipher (synchronous and
asynchronous block cipher). The advantages of skcipher include:
- A much less confusing name, since none of these algorithm types have
ever actually been for raw block ciphers, but rather for all
length-preserving encryption modes including block cipher modes of
operation, stream ciphers, and other length-preserving modes.
- It unified blkcipher and ablkcipher into a single algorithm type
which supports both synchronous and asynchronous implementations.
Note, blkcipher already operated only on scatterlists, so the fact
that skcipher does too isn't a regression in functionality.
- Better type safety by using struct skcipher_alg, struct
crypto_skcipher, etc. instead of crypto_alg, crypto_tfm, etc.
- It sometimes simplifies the implementations of algorithms.
Also, the blkcipher API was no longer being tested.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-10-25 19:41:12 +00:00
|
|
|
if (type == CRYPTO_ALG_TYPE_SKCIPHER) {
|
2019-08-19 14:17:33 +00:00
|
|
|
skcipher_inst->alg.setkey = essiv_skcipher_setkey;
|
|
|
|
skcipher_inst->alg.encrypt = essiv_skcipher_encrypt;
|
|
|
|
skcipher_inst->alg.decrypt = essiv_skcipher_decrypt;
|
|
|
|
skcipher_inst->alg.init = essiv_skcipher_init_tfm;
|
|
|
|
skcipher_inst->alg.exit = essiv_skcipher_exit_tfm;
|
|
|
|
|
|
|
|
skcipher_inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(skcipher_alg);
|
|
|
|
skcipher_inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(skcipher_alg);
|
|
|
|
skcipher_inst->alg.ivsize = ivsize;
|
|
|
|
skcipher_inst->alg.chunksize = crypto_skcipher_alg_chunksize(skcipher_alg);
|
|
|
|
skcipher_inst->alg.walksize = crypto_skcipher_alg_walksize(skcipher_alg);
|
|
|
|
|
|
|
|
skcipher_inst->free = essiv_skcipher_free_instance;
|
|
|
|
|
|
|
|
err = skcipher_register_instance(tmpl, skcipher_inst);
|
|
|
|
} else {
|
|
|
|
aead_inst->alg.setkey = essiv_aead_setkey;
|
|
|
|
aead_inst->alg.setauthsize = essiv_aead_setauthsize;
|
|
|
|
aead_inst->alg.encrypt = essiv_aead_encrypt;
|
|
|
|
aead_inst->alg.decrypt = essiv_aead_decrypt;
|
|
|
|
aead_inst->alg.init = essiv_aead_init_tfm;
|
|
|
|
aead_inst->alg.exit = essiv_aead_exit_tfm;
|
|
|
|
|
|
|
|
aead_inst->alg.ivsize = ivsize;
|
|
|
|
aead_inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(aead_alg);
|
|
|
|
aead_inst->alg.chunksize = crypto_aead_alg_chunksize(aead_alg);
|
|
|
|
|
|
|
|
aead_inst->free = essiv_aead_free_instance;
|
|
|
|
|
|
|
|
err = aead_register_instance(tmpl, aead_inst);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (err)
|
|
|
|
goto out_free_hash;
|
|
|
|
|
|
|
|
crypto_mod_put(_hash_alg);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_free_hash:
|
|
|
|
crypto_mod_put(_hash_alg);
|
|
|
|
out_drop_skcipher:
|
crypto: skcipher - remove the "blkcipher" algorithm type
Now that all "blkcipher" algorithms have been converted to "skcipher",
remove the blkcipher algorithm type.
The skcipher (symmetric key cipher) algorithm type was introduced a few
years ago to replace both blkcipher and ablkcipher (synchronous and
asynchronous block cipher). The advantages of skcipher include:
- A much less confusing name, since none of these algorithm types have
ever actually been for raw block ciphers, but rather for all
length-preserving encryption modes including block cipher modes of
operation, stream ciphers, and other length-preserving modes.
- It unified blkcipher and ablkcipher into a single algorithm type
which supports both synchronous and asynchronous implementations.
Note, blkcipher already operated only on scatterlists, so the fact
that skcipher does too isn't a regression in functionality.
- Better type safety by using struct skcipher_alg, struct
crypto_skcipher, etc. instead of crypto_alg, crypto_tfm, etc.
- It sometimes simplifies the implementations of algorithms.
Also, the blkcipher API was no longer being tested.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-10-25 19:41:12 +00:00
|
|
|
if (type == CRYPTO_ALG_TYPE_SKCIPHER)
|
2019-08-19 14:17:33 +00:00
|
|
|
crypto_drop_skcipher(&ictx->u.skcipher_spawn);
|
|
|
|
else
|
|
|
|
crypto_drop_aead(&ictx->u.aead_spawn);
|
|
|
|
out_free_inst:
|
|
|
|
kfree(skcipher_inst);
|
|
|
|
kfree(aead_inst);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* essiv(cipher_name, shash_name) */
|
|
|
|
static struct crypto_template essiv_tmpl = {
|
|
|
|
.name = "essiv",
|
|
|
|
.create = essiv_create,
|
|
|
|
.module = THIS_MODULE,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init essiv_module_init(void)
|
|
|
|
{
|
|
|
|
return crypto_register_template(&essiv_tmpl);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __exit essiv_module_exit(void)
|
|
|
|
{
|
|
|
|
crypto_unregister_template(&essiv_tmpl);
|
|
|
|
}
|
|
|
|
|
|
|
|
subsys_initcall(essiv_module_init);
|
|
|
|
module_exit(essiv_module_exit);
|
|
|
|
|
|
|
|
MODULE_DESCRIPTION("ESSIV skcipher/aead wrapper for block encryption");
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
MODULE_ALIAS_CRYPTO("essiv");
|