2019-06-04 10:11:33 +02:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
2011-10-14 16:34:15 +01:00
|
|
|
/**
|
|
|
|
* Copyright (c) 2011 Jonathan Cameron
|
|
|
|
*
|
|
|
|
* Buffer handling elements of industrial I/O reference driver.
|
|
|
|
* Uses the kfifo buffer.
|
|
|
|
*
|
|
|
|
* To test without hardware use the sysfs trigger.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
2011-07-10 13:09:12 -04:00
|
|
|
#include <linux/export.h>
|
2011-10-14 16:34:15 +01:00
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/irq.h>
|
|
|
|
#include <linux/bitmap.h>
|
|
|
|
|
2012-04-25 15:54:58 +01:00
|
|
|
#include <linux/iio/iio.h>
|
|
|
|
#include <linux/iio/trigger_consumer.h>
|
2017-01-02 19:28:30 +00:00
|
|
|
#include <linux/iio/buffer.h>
|
2012-04-25 15:54:58 +01:00
|
|
|
#include <linux/iio/kfifo_buf.h>
|
2011-10-14 16:34:15 +01:00
|
|
|
|
|
|
|
#include "iio_simple_dummy.h"
|
|
|
|
|
|
|
|
/* Some fake data */
|
|
|
|
|
|
|
|
static const s16 fakedata[] = {
|
2015-10-26 13:48:23 -07:00
|
|
|
[DUMMY_INDEX_VOLTAGE_0] = 7,
|
|
|
|
[DUMMY_INDEX_DIFFVOLTAGE_1M2] = -33,
|
|
|
|
[DUMMY_INDEX_DIFFVOLTAGE_3M4] = -2,
|
|
|
|
[DUMMY_INDEX_ACCELX] = 344,
|
2011-10-14 16:34:15 +01:00
|
|
|
};
|
2015-07-10 17:10:21 +03:00
|
|
|
|
2011-10-14 16:34:15 +01:00
|
|
|
/**
|
|
|
|
* iio_simple_dummy_trigger_h() - the trigger handler function
|
|
|
|
* @irq: the interrupt number
|
|
|
|
* @p: private data - always a pointer to the poll func.
|
|
|
|
*
|
2012-05-09 03:18:17 +09:00
|
|
|
* This is the guts of buffered capture. On a trigger event occurring,
|
2011-10-14 16:34:15 +01:00
|
|
|
* if the pollfunc is attached then this handler is called as a threaded
|
|
|
|
* interrupt (and hence may sleep). It is responsible for grabbing data
|
|
|
|
* from the device and pushing it into the associated buffer.
|
|
|
|
*/
|
|
|
|
static irqreturn_t iio_simple_dummy_trigger_h(int irq, void *p)
|
|
|
|
{
|
|
|
|
struct iio_poll_func *pf = p;
|
|
|
|
struct iio_dev *indio_dev = pf->indio_dev;
|
|
|
|
int len = 0;
|
2012-04-21 10:09:35 +01:00
|
|
|
u16 *data;
|
|
|
|
|
|
|
|
data = kmalloc(indio_dev->scan_bytes, GFP_KERNEL);
|
2015-03-31 12:51:38 +03:00
|
|
|
if (!data)
|
2012-07-04 17:09:00 +01:00
|
|
|
goto done;
|
2011-10-14 16:34:15 +01:00
|
|
|
|
2011-12-05 22:18:15 +00:00
|
|
|
if (!bitmap_empty(indio_dev->active_scan_mask, indio_dev->masklength)) {
|
2011-10-14 16:34:15 +01:00
|
|
|
/*
|
|
|
|
* Three common options here:
|
|
|
|
* hardware scans: certain combinations of channels make
|
|
|
|
* up a fast read. The capture will consist of all of them.
|
|
|
|
* Hence we just call the grab data function and fill the
|
|
|
|
* buffer without processing.
|
2012-05-09 03:18:17 +09:00
|
|
|
* software scans: can be considered to be random access
|
2011-10-14 16:34:15 +01:00
|
|
|
* so efficient reading is just a case of minimal bus
|
|
|
|
* transactions.
|
|
|
|
* software culled hardware scans:
|
|
|
|
* occasionally a driver may process the nearest hardware
|
|
|
|
* scan to avoid storing elements that are not desired. This
|
2012-06-15 19:27:10 +02:00
|
|
|
* is the fiddliest option by far.
|
|
|
|
* Here let's pretend we have random access. And the values are
|
2011-10-14 16:34:15 +01:00
|
|
|
* in the constant table fakedata.
|
|
|
|
*/
|
|
|
|
int i, j;
|
2014-09-18 14:55:06 -07:00
|
|
|
|
2011-12-05 22:18:15 +00:00
|
|
|
for (i = 0, j = 0;
|
|
|
|
i < bitmap_weight(indio_dev->active_scan_mask,
|
|
|
|
indio_dev->masklength);
|
2012-06-22 09:47:41 +02:00
|
|
|
i++, j++) {
|
2012-06-30 20:06:00 +01:00
|
|
|
j = find_next_bit(indio_dev->active_scan_mask,
|
2012-06-22 09:47:41 +02:00
|
|
|
indio_dev->masklength, j);
|
2012-06-18 20:33:04 +02:00
|
|
|
/* random access read from the 'device' */
|
2011-10-14 16:34:15 +01:00
|
|
|
data[i] = fakedata[j];
|
|
|
|
len += 2;
|
|
|
|
}
|
|
|
|
}
|
2013-09-19 14:00:00 +01:00
|
|
|
|
2016-03-09 19:05:49 +01:00
|
|
|
iio_push_to_buffers_with_timestamp(indio_dev, data,
|
|
|
|
iio_get_time_ns(indio_dev));
|
2011-10-14 16:34:15 +01:00
|
|
|
|
|
|
|
kfree(data);
|
|
|
|
|
2012-07-04 17:09:00 +01:00
|
|
|
done:
|
2011-10-14 16:34:15 +01:00
|
|
|
/*
|
|
|
|
* Tell the core we are done with this trigger and ready for the
|
|
|
|
* next one.
|
|
|
|
*/
|
|
|
|
iio_trigger_notify_done(indio_dev->trig);
|
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct iio_buffer_setup_ops iio_simple_dummy_buffer_setup_ops = {
|
|
|
|
/*
|
|
|
|
* iio_triggered_buffer_postenable:
|
|
|
|
* Generic function that simply attaches the pollfunc to the trigger.
|
|
|
|
* Replace this to mess with hardware state before we attach the
|
|
|
|
* trigger.
|
|
|
|
*/
|
|
|
|
.postenable = &iio_triggered_buffer_postenable,
|
|
|
|
/*
|
|
|
|
* iio_triggered_buffer_predisable:
|
|
|
|
* Generic function that simple detaches the pollfunc from the trigger.
|
|
|
|
* Replace this to put hardware state back again after the trigger is
|
|
|
|
* detached but before userspace knows we have disabled the ring.
|
|
|
|
*/
|
|
|
|
.predisable = &iio_triggered_buffer_predisable,
|
|
|
|
};
|
|
|
|
|
2014-11-26 18:55:11 +01:00
|
|
|
int iio_simple_dummy_configure_buffer(struct iio_dev *indio_dev)
|
2011-10-14 16:34:15 +01:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
struct iio_buffer *buffer;
|
|
|
|
|
|
|
|
/* Allocate a buffer to use - here a kfifo */
|
2014-12-19 18:39:24 +01:00
|
|
|
buffer = iio_kfifo_allocate();
|
2015-03-31 12:51:38 +03:00
|
|
|
if (!buffer) {
|
2011-10-14 16:34:15 +01:00
|
|
|
ret = -ENOMEM;
|
|
|
|
goto error_ret;
|
|
|
|
}
|
|
|
|
|
2013-10-04 12:06:00 +01:00
|
|
|
iio_device_attach_buffer(indio_dev, buffer);
|
2011-10-14 16:34:15 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Tell the core what device type specific functions should
|
|
|
|
* be run on either side of buffer capture enable / disable.
|
|
|
|
*/
|
2011-12-05 22:18:14 +00:00
|
|
|
indio_dev->setup_ops = &iio_simple_dummy_buffer_setup_ops;
|
2011-10-14 16:34:15 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Configure a polling function.
|
|
|
|
* When a trigger event with this polling function connected
|
|
|
|
* occurs, this function is run. Typically this grabs data
|
|
|
|
* from the device.
|
|
|
|
*
|
2012-12-19 17:56:00 +00:00
|
|
|
* NULL for the bottom half. This is normally implemented only if we
|
2011-10-14 16:34:15 +01:00
|
|
|
* either want to ping a capture now pin (no sleeping) or grab
|
|
|
|
* a timestamp as close as possible to a data ready trigger firing.
|
|
|
|
*
|
|
|
|
* IRQF_ONESHOT ensures irqs are masked such that only one instance
|
|
|
|
* of the handler can run at a time.
|
|
|
|
*
|
|
|
|
* "iio_simple_dummy_consumer%d" formatting string for the irq 'name'
|
|
|
|
* as seen under /proc/interrupts. Remaining parameters as per printk.
|
|
|
|
*/
|
|
|
|
indio_dev->pollfunc = iio_alloc_pollfunc(NULL,
|
|
|
|
&iio_simple_dummy_trigger_h,
|
|
|
|
IRQF_ONESHOT,
|
|
|
|
indio_dev,
|
|
|
|
"iio_simple_dummy_consumer%d",
|
|
|
|
indio_dev->id);
|
|
|
|
|
2015-03-31 12:51:38 +03:00
|
|
|
if (!indio_dev->pollfunc) {
|
2011-10-14 16:34:15 +01:00
|
|
|
ret = -ENOMEM;
|
|
|
|
goto error_free_buffer;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Notify the core that this device is capable of buffered capture
|
|
|
|
* driven by a trigger.
|
|
|
|
*/
|
|
|
|
indio_dev->modes |= INDIO_BUFFER_TRIGGERED;
|
2012-09-12 12:06:00 +01:00
|
|
|
|
2011-10-14 16:34:15 +01:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
error_free_buffer:
|
|
|
|
iio_kfifo_free(indio_dev->buffer);
|
|
|
|
error_ret:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* iio_simple_dummy_unconfigure_buffer() - release buffer resources
|
|
|
|
* @indo_dev: device instance state
|
|
|
|
*/
|
|
|
|
void iio_simple_dummy_unconfigure_buffer(struct iio_dev *indio_dev)
|
|
|
|
{
|
|
|
|
iio_dealloc_pollfunc(indio_dev->pollfunc);
|
|
|
|
iio_kfifo_free(indio_dev->buffer);
|
|
|
|
}
|