linux-stable/net/bridge/br_netlink.c

536 lines
13 KiB
C
Raw Normal View History

/*
* Bridge netlink control interface
*
* Authors:
* Stephen Hemminger <shemminger@osdl.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/etherdevice.h>
#include <net/rtnetlink.h>
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 18:56:21 +00:00
#include <net/net_namespace.h>
#include <net/sock.h>
#include <uapi/linux/if_bridge.h>
#include "br_private.h"
#include "br_private_stp.h"
static inline size_t br_port_info_size(void)
{
return nla_total_size(1) /* IFLA_BRPORT_STATE */
+ nla_total_size(2) /* IFLA_BRPORT_PRIORITY */
+ nla_total_size(4) /* IFLA_BRPORT_COST */
+ nla_total_size(1) /* IFLA_BRPORT_MODE */
+ nla_total_size(1) /* IFLA_BRPORT_GUARD */
+ nla_total_size(1) /* IFLA_BRPORT_PROTECT */
+ nla_total_size(1) /* IFLA_BRPORT_FAST_LEAVE */
+ nla_total_size(1) /* IFLA_BRPORT_LEARNING */
+ nla_total_size(1) /* IFLA_BRPORT_UNICAST_FLOOD */
+ 0;
}
static inline size_t br_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct ifinfomsg))
+ nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
+ nla_total_size(4) /* IFLA_MASTER */
+ nla_total_size(4) /* IFLA_MTU */
+ nla_total_size(4) /* IFLA_LINK */
+ nla_total_size(1) /* IFLA_OPERSTATE */
+ nla_total_size(br_port_info_size()); /* IFLA_PROTINFO */
}
static int br_port_fill_attrs(struct sk_buff *skb,
const struct net_bridge_port *p)
{
u8 mode = !!(p->flags & BR_HAIRPIN_MODE);
if (nla_put_u8(skb, IFLA_BRPORT_STATE, p->state) ||
nla_put_u16(skb, IFLA_BRPORT_PRIORITY, p->priority) ||
nla_put_u32(skb, IFLA_BRPORT_COST, p->path_cost) ||
nla_put_u8(skb, IFLA_BRPORT_MODE, mode) ||
nla_put_u8(skb, IFLA_BRPORT_GUARD, !!(p->flags & BR_BPDU_GUARD)) ||
nla_put_u8(skb, IFLA_BRPORT_PROTECT, !!(p->flags & BR_ROOT_BLOCK)) ||
nla_put_u8(skb, IFLA_BRPORT_FAST_LEAVE, !!(p->flags & BR_MULTICAST_FAST_LEAVE)) ||
nla_put_u8(skb, IFLA_BRPORT_LEARNING, !!(p->flags & BR_LEARNING)) ||
nla_put_u8(skb, IFLA_BRPORT_UNICAST_FLOOD, !!(p->flags & BR_FLOOD)))
return -EMSGSIZE;
return 0;
}
/*
* Create one netlink message for one interface
* Contains port and master info as well as carrier and bridge state.
*/
static int br_fill_ifinfo(struct sk_buff *skb,
const struct net_bridge_port *port,
u32 pid, u32 seq, int event, unsigned int flags,
u32 filter_mask, const struct net_device *dev)
{
const struct net_bridge *br;
struct ifinfomsg *hdr;
struct nlmsghdr *nlh;
u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
if (port)
br = port->br;
else
br = netdev_priv(dev);
br_debug(br, "br_fill_info event %d port %s master %s\n",
event, dev->name, br->dev->name);
nlh = nlmsg_put(skb, pid, seq, event, sizeof(*hdr), flags);
if (nlh == NULL)
return -EMSGSIZE;
hdr = nlmsg_data(nlh);
hdr->ifi_family = AF_BRIDGE;
hdr->__ifi_pad = 0;
hdr->ifi_type = dev->type;
hdr->ifi_index = dev->ifindex;
hdr->ifi_flags = dev_get_flags(dev);
hdr->ifi_change = 0;
if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
nla_put_u32(skb, IFLA_MASTER, br->dev->ifindex) ||
nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
(dev->addr_len &&
nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
(dev->ifindex != dev->iflink &&
nla_put_u32(skb, IFLA_LINK, dev->iflink)))
goto nla_put_failure;
if (event == RTM_NEWLINK && port) {
struct nlattr *nest
= nla_nest_start(skb, IFLA_PROTINFO | NLA_F_NESTED);
if (nest == NULL || br_port_fill_attrs(skb, port) < 0)
goto nla_put_failure;
nla_nest_end(skb, nest);
}
/* Check if the VID information is requested */
if (filter_mask & RTEXT_FILTER_BRVLAN) {
struct nlattr *af;
const struct net_port_vlans *pv;
struct bridge_vlan_info vinfo;
u16 vid;
u16 pvid;
if (port)
pv = nbp_get_vlan_info(port);
else
pv = br_get_vlan_info(br);
if (!pv || bitmap_empty(pv->vlan_bitmap, VLAN_N_VID))
goto done;
af = nla_nest_start(skb, IFLA_AF_SPEC);
if (!af)
goto nla_put_failure;
pvid = br_get_pvid(pv);
for_each_set_bit(vid, pv->vlan_bitmap, VLAN_N_VID) {
vinfo.vid = vid;
vinfo.flags = 0;
if (vid == pvid)
vinfo.flags |= BRIDGE_VLAN_INFO_PVID;
if (test_bit(vid, pv->untagged_bitmap))
vinfo.flags |= BRIDGE_VLAN_INFO_UNTAGGED;
if (nla_put(skb, IFLA_BRIDGE_VLAN_INFO,
sizeof(vinfo), &vinfo))
goto nla_put_failure;
}
nla_nest_end(skb, af);
}
done:
return nlmsg_end(skb, nlh);
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
/*
* Notify listeners of a change in port information
*/
void br_ifinfo_notify(int event, struct net_bridge_port *port)
{
struct net *net;
struct sk_buff *skb;
int err = -ENOBUFS;
if (!port)
return;
net = dev_net(port->dev);
br_debug(port->br, "port %u(%s) event %d\n",
(unsigned int)port->port_no, port->dev->name, event);
skb = nlmsg_new(br_nlmsg_size(), GFP_ATOMIC);
if (skb == NULL)
goto errout;
err = br_fill_ifinfo(skb, port, 0, 0, event, 0, 0, port->dev);
if (err < 0) {
/* -EMSGSIZE implies BUG in br_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
2009-02-25 07:18:28 +00:00
rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
return;
errout:
rtnl_set_sk_err(net, RTNLGRP_LINK, err);
}
/*
* Dump information about all ports, in response to GETLINK
*/
int br_getlink(struct sk_buff *skb, u32 pid, u32 seq,
struct net_device *dev, u32 filter_mask)
{
int err = 0;
struct net_bridge_port *port = br_port_get_rtnl(dev);
if (!port && !(filter_mask & RTEXT_FILTER_BRVLAN))
goto out;
err = br_fill_ifinfo(skb, port, pid, seq, RTM_NEWLINK, NLM_F_MULTI,
filter_mask, dev);
out:
return err;
}
static const struct nla_policy ifla_br_policy[IFLA_MAX+1] = {
[IFLA_BRIDGE_FLAGS] = { .type = NLA_U16 },
[IFLA_BRIDGE_MODE] = { .type = NLA_U16 },
[IFLA_BRIDGE_VLAN_INFO] = { .type = NLA_BINARY,
.len = sizeof(struct bridge_vlan_info), },
};
static int br_afspec(struct net_bridge *br,
struct net_bridge_port *p,
struct nlattr *af_spec,
int cmd)
{
struct nlattr *tb[IFLA_BRIDGE_MAX+1];
int err = 0;
err = nla_parse_nested(tb, IFLA_BRIDGE_MAX, af_spec, ifla_br_policy);
if (err)
return err;
if (tb[IFLA_BRIDGE_VLAN_INFO]) {
struct bridge_vlan_info *vinfo;
vinfo = nla_data(tb[IFLA_BRIDGE_VLAN_INFO]);
if (!vinfo->vid || vinfo->vid >= VLAN_VID_MASK)
return -EINVAL;
switch (cmd) {
case RTM_SETLINK:
if (p) {
err = nbp_vlan_add(p, vinfo->vid, vinfo->flags);
if (err)
break;
if (vinfo->flags & BRIDGE_VLAN_INFO_MASTER)
err = br_vlan_add(p->br, vinfo->vid,
vinfo->flags);
} else
err = br_vlan_add(br, vinfo->vid, vinfo->flags);
if (err)
break;
break;
case RTM_DELLINK:
if (p) {
nbp_vlan_delete(p, vinfo->vid);
if (vinfo->flags & BRIDGE_VLAN_INFO_MASTER)
br_vlan_delete(p->br, vinfo->vid);
} else
br_vlan_delete(br, vinfo->vid);
break;
}
}
return err;
}
static const struct nla_policy ifla_brport_policy[IFLA_BRPORT_MAX + 1] = {
[IFLA_BRPORT_STATE] = { .type = NLA_U8 },
[IFLA_BRPORT_COST] = { .type = NLA_U32 },
[IFLA_BRPORT_PRIORITY] = { .type = NLA_U16 },
[IFLA_BRPORT_MODE] = { .type = NLA_U8 },
[IFLA_BRPORT_GUARD] = { .type = NLA_U8 },
[IFLA_BRPORT_PROTECT] = { .type = NLA_U8 },
[IFLA_BRPORT_LEARNING] = { .type = NLA_U8 },
[IFLA_BRPORT_UNICAST_FLOOD] = { .type = NLA_U8 },
};
/* Change the state of the port and notify spanning tree */
static int br_set_port_state(struct net_bridge_port *p, u8 state)
{
if (state > BR_STATE_BLOCKING)
return -EINVAL;
/* if kernel STP is running, don't allow changes */
if (p->br->stp_enabled == BR_KERNEL_STP)
return -EBUSY;
/* if device is not up, change is not allowed
* if link is not present, only allowable state is disabled
*/
if (!netif_running(p->dev) ||
(!netif_oper_up(p->dev) && state != BR_STATE_DISABLED))
return -ENETDOWN;
p->state = state;
br_log_state(p);
br_port_state_selection(p->br);
return 0;
}
/* Set/clear or port flags based on attribute */
static void br_set_port_flag(struct net_bridge_port *p, struct nlattr *tb[],
int attrtype, unsigned long mask)
{
if (tb[attrtype]) {
u8 flag = nla_get_u8(tb[attrtype]);
if (flag)
p->flags |= mask;
else
p->flags &= ~mask;
}
}
/* Process bridge protocol info on port */
static int br_setport(struct net_bridge_port *p, struct nlattr *tb[])
{
int err;
unsigned long old_flags = p->flags;
br_set_port_flag(p, tb, IFLA_BRPORT_MODE, BR_HAIRPIN_MODE);
br_set_port_flag(p, tb, IFLA_BRPORT_GUARD, BR_BPDU_GUARD);
br_set_port_flag(p, tb, IFLA_BRPORT_FAST_LEAVE, BR_MULTICAST_FAST_LEAVE);
br_set_port_flag(p, tb, IFLA_BRPORT_PROTECT, BR_ROOT_BLOCK);
br_set_port_flag(p, tb, IFLA_BRPORT_LEARNING, BR_LEARNING);
br_set_port_flag(p, tb, IFLA_BRPORT_UNICAST_FLOOD, BR_FLOOD);
if (tb[IFLA_BRPORT_COST]) {
err = br_stp_set_path_cost(p, nla_get_u32(tb[IFLA_BRPORT_COST]));
if (err)
return err;
}
if (tb[IFLA_BRPORT_PRIORITY]) {
err = br_stp_set_port_priority(p, nla_get_u16(tb[IFLA_BRPORT_PRIORITY]));
if (err)
return err;
}
if (tb[IFLA_BRPORT_STATE]) {
err = br_set_port_state(p, nla_get_u8(tb[IFLA_BRPORT_STATE]));
if (err)
return err;
}
br_port_flags_change(p, old_flags ^ p->flags);
return 0;
}
/* Change state and parameters on port. */
int br_setlink(struct net_device *dev, struct nlmsghdr *nlh)
{
struct nlattr *protinfo;
struct nlattr *afspec;
struct net_bridge_port *p;
struct nlattr *tb[IFLA_BRPORT_MAX + 1];
int err = 0;
protinfo = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_PROTINFO);
afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
if (!protinfo && !afspec)
return 0;
p = br_port_get_rtnl(dev);
/* We want to accept dev as bridge itself if the AF_SPEC
* is set to see if someone is setting vlan info on the bridge
*/
if (!p && !afspec)
return -EINVAL;
if (p && protinfo) {
if (protinfo->nla_type & NLA_F_NESTED) {
err = nla_parse_nested(tb, IFLA_BRPORT_MAX,
protinfo, ifla_brport_policy);
if (err)
return err;
spin_lock_bh(&p->br->lock);
err = br_setport(p, tb);
spin_unlock_bh(&p->br->lock);
} else {
/* Binary compatibility with old RSTP */
if (nla_len(protinfo) < sizeof(u8))
return -EINVAL;
spin_lock_bh(&p->br->lock);
err = br_set_port_state(p, nla_get_u8(protinfo));
spin_unlock_bh(&p->br->lock);
}
if (err)
goto out;
}
if (afspec) {
err = br_afspec((struct net_bridge *)netdev_priv(dev), p,
afspec, RTM_SETLINK);
}
if (err == 0)
br_ifinfo_notify(RTM_NEWLINK, p);
out:
return err;
}
/* Delete port information */
int br_dellink(struct net_device *dev, struct nlmsghdr *nlh)
{
struct nlattr *afspec;
struct net_bridge_port *p;
int err;
afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
if (!afspec)
return 0;
p = br_port_get_rtnl(dev);
/* We want to accept dev as bridge itself as well */
if (!p && !(dev->priv_flags & IFF_EBRIDGE))
return -EINVAL;
err = br_afspec((struct net_bridge *)netdev_priv(dev), p,
afspec, RTM_DELLINK);
return err;
}
static int br_validate(struct nlattr *tb[], struct nlattr *data[])
{
if (tb[IFLA_ADDRESS]) {
if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
return -EINVAL;
if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
return -EADDRNOTAVAIL;
}
return 0;
}
static int br_dev_newlink(struct net *src_net, struct net_device *dev,
struct nlattr *tb[], struct nlattr *data[])
{
struct net_bridge *br = netdev_priv(dev);
if (tb[IFLA_ADDRESS]) {
spin_lock_bh(&br->lock);
br_stp_change_bridge_id(br, nla_data(tb[IFLA_ADDRESS]));
spin_unlock_bh(&br->lock);
}
return register_netdevice(dev);
}
static int br_port_fill_slave_info(struct sk_buff *skb,
const struct net_device *brdev,
const struct net_device *dev)
{
return br_port_fill_attrs(skb, br_port_get_rtnl(dev));
}
static size_t br_port_get_slave_size(const struct net_device *brdev,
const struct net_device *dev)
{
return br_port_info_size();
}
static size_t br_get_link_af_size(const struct net_device *dev)
{
struct net_port_vlans *pv;
if (br_port_exists(dev))
pv = nbp_get_vlan_info(br_port_get_rtnl(dev));
else if (dev->priv_flags & IFF_EBRIDGE)
pv = br_get_vlan_info((struct net_bridge *)netdev_priv(dev));
else
return 0;
if (!pv)
return 0;
/* Each VLAN is returned in bridge_vlan_info along with flags */
return pv->num_vlans * nla_total_size(sizeof(struct bridge_vlan_info));
}
static struct rtnl_af_ops br_af_ops = {
.family = AF_BRIDGE,
.get_link_af_size = br_get_link_af_size,
};
struct rtnl_link_ops br_link_ops __read_mostly = {
.kind = "bridge",
.priv_size = sizeof(struct net_bridge),
.setup = br_dev_setup,
.validate = br_validate,
.newlink = br_dev_newlink,
.dellink = br_dev_delete,
.get_slave_size = br_port_get_slave_size,
.fill_slave_info = br_port_fill_slave_info,
};
int __init br_netlink_init(void)
{
int err;
br_mdb_init();
rtnl_af_register(&br_af_ops);
err = rtnl_link_register(&br_link_ops);
if (err)
goto out_af;
return 0;
out_af:
rtnl_af_unregister(&br_af_ops);
br_mdb_uninit();
return err;
}
void __exit br_netlink_fini(void)
{
br_mdb_uninit();
rtnl_af_unregister(&br_af_ops);
rtnl_link_unregister(&br_link_ops);
}