NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
/*
|
|
|
|
* NFS internal definitions
|
|
|
|
*/
|
|
|
|
|
2009-04-01 09:22:41 -04:00
|
|
|
#include "nfs4_fs.h"
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
#include <linux/mount.h>
|
2008-03-05 14:20:18 -05:00
|
|
|
#include <linux/security.h>
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
|
2009-04-03 16:42:42 +01:00
|
|
|
#define NFS_MS_MASK (MS_RDONLY|MS_NOSUID|MS_NODEV|MS_NOEXEC|MS_SYNCHRONOUS)
|
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-22 20:06:13 -04:00
|
|
|
struct nfs_string;
|
|
|
|
|
|
|
|
/* Maximum number of readahead requests
|
|
|
|
* FIXME: this should really be a sysctl so that users may tune it to suit
|
|
|
|
* their needs. People that do NFS over a slow network, might for
|
|
|
|
* instance want to reduce it to something closer to 1 for improved
|
|
|
|
* interactive response.
|
|
|
|
*/
|
|
|
|
#define NFS_MAX_READAHEAD (RPC_DEF_SLOT_TABLE - 1)
|
|
|
|
|
2009-04-01 09:22:41 -04:00
|
|
|
/*
|
|
|
|
* Determine if sessions are in use.
|
|
|
|
*/
|
|
|
|
static inline int nfs4_has_session(const struct nfs_client *clp)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_NFS_V4_1
|
|
|
|
if (clp->cl_session)
|
|
|
|
return 1;
|
|
|
|
#endif /* CONFIG_NFS_V4_1 */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-12-05 13:29:53 -05:00
|
|
|
static inline int nfs4_has_persistent_session(const struct nfs_client *clp)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_NFS_V4_1
|
|
|
|
if (nfs4_has_session(clp))
|
|
|
|
return (clp->cl_session->flags & SESSION4_PERSIST);
|
|
|
|
#endif /* CONFIG_NFS_V4_1 */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
struct nfs_clone_mount {
|
|
|
|
const struct super_block *sb;
|
|
|
|
const struct dentry *dentry;
|
|
|
|
struct nfs_fh *fh;
|
|
|
|
struct nfs_fattr *fattr;
|
|
|
|
char *hostname;
|
|
|
|
char *mnt_path;
|
2007-12-10 14:59:06 -05:00
|
|
|
struct sockaddr *addr;
|
|
|
|
size_t addrlen;
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
rpc_authflavor_t authflavor;
|
|
|
|
};
|
|
|
|
|
2009-06-17 18:02:12 -07:00
|
|
|
/*
|
|
|
|
* Note: RFC 1813 doesn't limit the number of auth flavors that
|
|
|
|
* a server can return, so make something up.
|
|
|
|
*/
|
|
|
|
#define NFS_MAX_SECFLAVORS (12)
|
|
|
|
|
2009-09-08 19:49:47 -04:00
|
|
|
/*
|
|
|
|
* Value used if the user did not specify a port value.
|
|
|
|
*/
|
|
|
|
#define NFS_UNSPEC_PORT (-1)
|
|
|
|
|
2010-10-20 15:44:37 -04:00
|
|
|
/*
|
|
|
|
* Maximum number of pages that readdir can use for creating
|
|
|
|
* a vmapped array of pages.
|
|
|
|
*/
|
|
|
|
#define NFS_MAX_READDIR_PAGES 8
|
|
|
|
|
2007-09-10 13:43:29 -04:00
|
|
|
/*
|
|
|
|
* In-kernel mount arguments
|
|
|
|
*/
|
|
|
|
struct nfs_parsed_mount_data {
|
|
|
|
int flags;
|
|
|
|
int rsize, wsize;
|
|
|
|
int timeo, retrans;
|
|
|
|
int acregmin, acregmax,
|
|
|
|
acdirmin, acdirmax;
|
|
|
|
int namlen;
|
2009-04-03 16:42:48 +01:00
|
|
|
unsigned int options;
|
2007-09-10 13:43:29 -04:00
|
|
|
unsigned int bsize;
|
|
|
|
unsigned int auth_flavor_len;
|
|
|
|
rpc_authflavor_t auth_flavors[1];
|
|
|
|
char *client_address;
|
2009-09-08 19:50:03 -04:00
|
|
|
unsigned int version;
|
2009-04-01 09:21:48 -04:00
|
|
|
unsigned int minorversion;
|
2009-04-03 16:42:42 +01:00
|
|
|
char *fscache_uniq;
|
2007-09-10 13:43:29 -04:00
|
|
|
|
|
|
|
struct {
|
2007-12-10 14:59:28 -05:00
|
|
|
struct sockaddr_storage address;
|
|
|
|
size_t addrlen;
|
2007-09-10 13:43:29 -04:00
|
|
|
char *hostname;
|
2008-03-14 14:10:15 -04:00
|
|
|
u32 version;
|
2009-09-08 19:49:47 -04:00
|
|
|
int port;
|
2008-03-14 14:10:15 -04:00
|
|
|
unsigned short protocol;
|
2007-09-10 13:43:29 -04:00
|
|
|
} mount_server;
|
|
|
|
|
|
|
|
struct {
|
2007-12-10 14:59:28 -05:00
|
|
|
struct sockaddr_storage address;
|
|
|
|
size_t addrlen;
|
2007-09-10 13:43:29 -04:00
|
|
|
char *hostname;
|
|
|
|
char *export_path;
|
2009-09-08 19:49:47 -04:00
|
|
|
int port;
|
2008-03-14 14:10:15 -04:00
|
|
|
unsigned short protocol;
|
2007-09-10 13:43:29 -04:00
|
|
|
} nfs_server;
|
2008-03-05 14:20:18 -05:00
|
|
|
|
|
|
|
struct security_mnt_opts lsm_opts;
|
2007-09-10 13:43:29 -04:00
|
|
|
};
|
|
|
|
|
2008-12-23 15:21:34 -05:00
|
|
|
/* mount_clnt.c */
|
2008-12-23 15:21:35 -05:00
|
|
|
struct nfs_mount_request {
|
|
|
|
struct sockaddr *sap;
|
|
|
|
size_t salen;
|
|
|
|
char *hostname;
|
|
|
|
char *dirpath;
|
|
|
|
u32 version;
|
|
|
|
unsigned short protocol;
|
|
|
|
struct nfs_fh *fh;
|
2008-12-23 15:21:37 -05:00
|
|
|
int noresvport;
|
2009-06-17 18:02:13 -07:00
|
|
|
unsigned int *auth_flav_len;
|
|
|
|
rpc_authflavor_t *auth_flavs;
|
2008-12-23 15:21:35 -05:00
|
|
|
};
|
|
|
|
|
|
|
|
extern int nfs_mount(struct nfs_mount_request *info);
|
2009-08-09 15:09:30 -04:00
|
|
|
extern void nfs_umount(const struct nfs_mount_request *info);
|
2008-12-23 15:21:34 -05:00
|
|
|
|
2006-08-22 20:06:10 -04:00
|
|
|
/* client.c */
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-22 20:06:13 -04:00
|
|
|
extern struct rpc_program nfs_program;
|
|
|
|
|
2011-01-06 02:04:30 +00:00
|
|
|
extern void nfs_cleanup_cb_ident_idr(void);
|
2006-08-22 20:06:10 -04:00
|
|
|
extern void nfs_put_client(struct nfs_client *);
|
2011-01-06 02:04:32 +00:00
|
|
|
extern struct nfs_client *nfs4_find_client_no_ident(const struct sockaddr *);
|
|
|
|
extern struct nfs_client *nfs4_find_client_ident(int);
|
|
|
|
extern struct nfs_client *
|
2011-01-25 15:38:01 +00:00
|
|
|
nfs4_find_client_sessionid(const struct sockaddr *, struct nfs4_sessionid *);
|
2007-09-10 13:43:56 -04:00
|
|
|
extern struct nfs_server *nfs_create_server(
|
|
|
|
const struct nfs_parsed_mount_data *,
|
|
|
|
struct nfs_fh *);
|
2007-09-10 13:44:33 -04:00
|
|
|
extern struct nfs_server *nfs4_create_server(
|
|
|
|
const struct nfs_parsed_mount_data *,
|
|
|
|
struct nfs_fh *);
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-22 20:06:13 -04:00
|
|
|
extern struct nfs_server *nfs4_create_referral_server(struct nfs_clone_mount *,
|
|
|
|
struct nfs_fh *);
|
|
|
|
extern void nfs_free_server(struct nfs_server *server);
|
|
|
|
extern struct nfs_server *nfs_clone_server(struct nfs_server *,
|
|
|
|
struct nfs_fh *,
|
|
|
|
struct nfs_fattr *);
|
2009-04-01 09:22:38 -04:00
|
|
|
extern void nfs_mark_client_ready(struct nfs_client *clp, int state);
|
2009-04-01 09:22:50 -04:00
|
|
|
extern int nfs4_check_client_ready(struct nfs_client *clp);
|
2011-03-01 01:34:17 +00:00
|
|
|
extern struct nfs_client *nfs4_set_ds_client(struct nfs_client* mds_clp,
|
|
|
|
const struct sockaddr *ds_addr,
|
|
|
|
int ds_addrlen, int ds_proto);
|
2006-08-22 20:06:13 -04:00
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
extern int __init nfs_fs_proc_init(void);
|
|
|
|
extern void nfs_fs_proc_exit(void);
|
|
|
|
#else
|
|
|
|
static inline int nfs_fs_proc_init(void)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static inline void nfs_fs_proc_exit(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
2006-08-22 20:06:10 -04:00
|
|
|
|
2006-08-22 20:06:07 -04:00
|
|
|
/* nfs4namespace.c */
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
#ifdef CONFIG_NFS_V4
|
|
|
|
extern struct vfsmount *nfs_do_refmount(const struct vfsmount *mnt_parent, struct dentry *dentry);
|
|
|
|
#else
|
|
|
|
static inline
|
|
|
|
struct vfsmount *nfs_do_refmount(const struct vfsmount *mnt_parent, struct dentry *dentry)
|
|
|
|
{
|
|
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* callback_xdr.c */
|
|
|
|
extern struct svc_version nfs4_callback_version1;
|
2009-12-05 13:19:01 -05:00
|
|
|
extern struct svc_version nfs4_callback_version4;
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
|
|
|
|
/* pagelist.c */
|
|
|
|
extern int __init nfs_init_nfspagecache(void);
|
2006-06-27 12:59:15 -07:00
|
|
|
extern void nfs_destroy_nfspagecache(void);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
extern int __init nfs_init_readpagecache(void);
|
2006-06-27 12:59:15 -07:00
|
|
|
extern void nfs_destroy_readpagecache(void);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
extern int __init nfs_init_writepagecache(void);
|
2006-06-27 12:59:15 -07:00
|
|
|
extern void nfs_destroy_writepagecache(void);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
|
|
|
|
extern int __init nfs_init_directcache(void);
|
2006-06-27 12:59:15 -07:00
|
|
|
extern void nfs_destroy_directcache(void);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
|
|
|
|
/* nfs2xdr.c */
|
2010-12-14 14:55:00 +00:00
|
|
|
extern int nfs_stat_to_errno(enum nfs_stat);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
extern struct rpc_procinfo nfs_procedures[];
|
2010-12-14 14:58:11 +00:00
|
|
|
extern int nfs2_decode_dirent(struct xdr_stream *,
|
|
|
|
struct nfs_entry *, int);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
|
|
|
|
/* nfs3xdr.c */
|
|
|
|
extern struct rpc_procinfo nfs3_procedures[];
|
2010-12-14 14:58:11 +00:00
|
|
|
extern int nfs3_decode_dirent(struct xdr_stream *,
|
|
|
|
struct nfs_entry *, int);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
|
|
|
|
/* nfs4xdr.c */
|
2006-08-22 20:06:07 -04:00
|
|
|
#ifdef CONFIG_NFS_V4
|
2010-12-14 14:58:11 +00:00
|
|
|
extern int nfs4_decode_dirent(struct xdr_stream *,
|
|
|
|
struct nfs_entry *, int);
|
2006-08-22 20:06:07 -04:00
|
|
|
#endif
|
2009-12-05 13:36:55 -05:00
|
|
|
#ifdef CONFIG_NFS_V4_1
|
|
|
|
extern const u32 nfs41_maxread_overhead;
|
|
|
|
extern const u32 nfs41_maxwrite_overhead;
|
|
|
|
#endif
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
|
|
|
|
/* nfs4proc.c */
|
2006-06-25 02:41:26 -07:00
|
|
|
#ifdef CONFIG_NFS_V4
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
extern struct rpc_procinfo nfs4_procedures[];
|
2006-06-25 02:41:26 -07:00
|
|
|
#endif
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
|
2011-03-01 01:34:17 +00:00
|
|
|
extern int nfs4_init_ds_session(struct nfs_client *clp);
|
|
|
|
|
2009-03-19 15:35:50 -04:00
|
|
|
/* proc.c */
|
|
|
|
void nfs_close_context(struct nfs_open_context *ctx, int is_sync);
|
2011-03-01 01:34:08 +00:00
|
|
|
extern int nfs_init_client(struct nfs_client *clp,
|
|
|
|
const struct rpc_timeout *timeparms,
|
|
|
|
const char *ip_addr, rpc_authflavor_t authflavour,
|
|
|
|
int noresvport);
|
2009-03-19 15:35:50 -04:00
|
|
|
|
2006-07-25 11:28:19 -04:00
|
|
|
/* dir.c */
|
2010-07-19 14:56:17 +10:00
|
|
|
extern int nfs_access_cache_shrinker(struct shrinker *shrink,
|
|
|
|
int nr_to_scan, gfp_t gfp_mask);
|
2006-07-25 11:28:19 -04:00
|
|
|
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
/* inode.c */
|
2008-02-19 20:04:22 -05:00
|
|
|
extern struct workqueue_struct *nfsiod_workqueue;
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
extern struct inode *nfs_alloc_inode(struct super_block *sb);
|
|
|
|
extern void nfs_destroy_inode(struct inode *);
|
2010-03-05 09:21:37 +01:00
|
|
|
extern int nfs_write_inode(struct inode *, struct writeback_control *);
|
2010-06-07 14:34:48 -04:00
|
|
|
extern void nfs_evict_inode(struct inode *);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
#ifdef CONFIG_NFS_V4
|
2010-06-07 14:34:48 -04:00
|
|
|
extern void nfs4_evict_inode(struct inode *);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
#endif
|
2008-06-11 17:39:04 -04:00
|
|
|
void nfs_zap_acl_cache(struct inode *inode);
|
2009-03-11 14:10:30 -04:00
|
|
|
extern int nfs_wait_bit_killable(void *word);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
|
|
|
|
/* super.c */
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-22 20:06:13 -04:00
|
|
|
extern struct file_system_type nfs_xdev_fs_type;
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
#ifdef CONFIG_NFS_V4
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-22 20:06:13 -04:00
|
|
|
extern struct file_system_type nfs4_xdev_fs_type;
|
|
|
|
extern struct file_system_type nfs4_referral_fs_type;
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
#endif
|
2006-07-02 17:29:26 +02:00
|
|
|
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
extern struct rpc_stat nfs_rpcstat;
|
2006-07-02 17:29:26 +02:00
|
|
|
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
extern int __init register_nfs_fs(void);
|
|
|
|
extern void __exit unregister_nfs_fs(void);
|
2008-07-27 18:19:01 -04:00
|
|
|
extern void nfs_sb_active(struct super_block *sb);
|
|
|
|
extern void nfs_sb_deactive(struct super_block *sb);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
|
|
|
|
/* namespace.c */
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-22 20:06:13 -04:00
|
|
|
extern char *nfs_path(const char *base,
|
|
|
|
const struct dentry *droot,
|
|
|
|
const struct dentry *dentry,
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
char *buffer, ssize_t buflen);
|
2011-01-14 18:45:42 +00:00
|
|
|
extern struct vfsmount *nfs_d_automount(struct path *path);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-22 20:06:13 -04:00
|
|
|
/* getroot.c */
|
|
|
|
extern struct dentry *nfs_get_root(struct super_block *, struct nfs_fh *);
|
2006-08-22 20:06:07 -04:00
|
|
|
#ifdef CONFIG_NFS_V4
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-22 20:06:13 -04:00
|
|
|
extern struct dentry *nfs4_get_root(struct super_block *, struct nfs_fh *);
|
|
|
|
|
2010-04-16 16:22:46 -04:00
|
|
|
extern int nfs4_get_rootfh(struct nfs_server *server, struct nfs_fh *mntfh);
|
2006-08-22 20:06:07 -04:00
|
|
|
#endif
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
|
2009-04-01 09:22:25 -04:00
|
|
|
/* read.c */
|
2011-03-01 01:34:19 +00:00
|
|
|
extern int nfs_initiate_read(struct nfs_read_data *data, struct rpc_clnt *clnt,
|
|
|
|
const struct rpc_call_ops *call_ops);
|
2009-04-01 09:22:25 -04:00
|
|
|
extern void nfs_read_prepare(struct rpc_task *task, void *calldata);
|
|
|
|
|
2009-04-01 09:22:26 -04:00
|
|
|
/* write.c */
|
|
|
|
extern void nfs_write_prepare(struct rpc_task *task, void *calldata);
|
2009-08-10 08:54:13 -04:00
|
|
|
#ifdef CONFIG_MIGRATION
|
|
|
|
extern int nfs_migrate_page(struct address_space *,
|
|
|
|
struct page *, struct page *);
|
|
|
|
#else
|
|
|
|
#define nfs_migrate_page NULL
|
|
|
|
#endif
|
2009-04-01 09:22:26 -04:00
|
|
|
|
2009-04-01 09:22:03 -04:00
|
|
|
/* nfs4proc.c */
|
2011-03-01 01:34:08 +00:00
|
|
|
extern int nfs4_init_client(struct nfs_client *clp,
|
|
|
|
const struct rpc_timeout *timeparms,
|
|
|
|
const char *ip_addr,
|
|
|
|
rpc_authflavor_t authflavour,
|
|
|
|
int noresvport);
|
2009-04-01 09:22:03 -04:00
|
|
|
extern int _nfs4_call_sync(struct nfs_server *server,
|
|
|
|
struct rpc_message *msg,
|
|
|
|
struct nfs4_sequence_args *args,
|
|
|
|
struct nfs4_sequence_res *res,
|
|
|
|
int cache_reply);
|
|
|
|
extern int _nfs4_call_sync_session(struct nfs_server *server,
|
|
|
|
struct rpc_message *msg,
|
|
|
|
struct nfs4_sequence_args *args,
|
|
|
|
struct nfs4_sequence_res *res,
|
|
|
|
int cache_reply);
|
|
|
|
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
/*
|
|
|
|
* Determine the device name as a string
|
|
|
|
*/
|
|
|
|
static inline char *nfs_devname(const struct vfsmount *mnt_parent,
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-22 20:06:13 -04:00
|
|
|
const struct dentry *dentry,
|
|
|
|
char *buffer, ssize_t buflen)
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
{
|
NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.
It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.
We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.
Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:
(1) The root and intervening nodes may not be accessible to the client.
With NFS2 and NFS3, for instance, mountd is called on the server to get
the filehandle for the tip of a path. mountd won't give us handles for
anything we don't have permission to access, and so we can't set up NFS
inodes for such nodes, and so can't easily set up dentries (we'd have to
have ghost inodes or something).
With this patch we don't actually create dentries until we get handles
from the server that we can use to set up their inodes, and we don't
actually bind them into the tree until we know for sure where they go.
(2) Inaccessible symbolic links.
If we're asked to mount two exports from the server, eg:
mount warthog:/warthog/aaa/xxx /mmm
mount warthog:/warthog/bbb/yyy /nnn
We may not be able to access anything nearer the root than xxx and yyy,
but we may find out later that /mmm/www/yyy, say, is actually the same
directory as the one mounted on /nnn. What we might then find out, for
example, is that /warthog/bbb was actually a symbolic link to
/warthog/aaa/xxx/www, but we can't actually determine that by talking to
the server until /warthog is made available by NFS.
This would lead to having constructed an errneous dentry tree which we
can't easily fix. We can end up with a dentry marked as a directory when
it should actually be a symlink, or we could end up with an apparently
hardlinked directory.
With this patch we need not make assumptions about the type of a dentry
for which we can't retrieve information, nor need we assume we know its
place in the grand scheme of things until we actually see that place.
This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).
This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.
Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.
This patch makes the following changes:
(1) The server record construction/destruction has been abstracted out into
its own set of functions to make things easier to get right. These have
been moved into fs/nfs/client.c.
All the code in fs/nfs/client.c has to do with the management of
connections to servers, and doesn't touch superblocks in any way; the
remaining code in fs/nfs/super.c has to do with VFS superblock management.
(2) The sequence of events undertaken by NFS mount is now reordered:
(a) A volume representation (struct nfs_server) is allocated.
(b) A server representation (struct nfs_client) is acquired. This may be
allocated or shared, and is keyed on server address, port and NFS
version.
(c) If allocated, the client representation is initialised. The state
member variable of nfs_client is used to prevent a race during
initialisation from two mounts.
(d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
are given the root FH in advance.
(e) The volume FSID is probed for on the root FH.
(f) The volume representation is initialised from the FSINFO record
retrieved on the root FH.
(g) sget() is called to acquire a superblock. This may be allocated or
shared, keyed on client pointer and FSID.
(h) If allocated, the superblock is initialised.
(i) If the superblock is shared, then the new nfs_server record is
discarded.
(j) The root dentry for this mount is looked up from the root FH.
(k) The root dentry for this mount is assigned to the vfsmount.
(3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
returns; this function now attaches disconnected trees from alternate
roots that happen to be discovered attached to a directory being read (in
the same way nfs_lookup() is made to do for lookup ops).
The new d_materialise_unique() function is now used to do this, thus
permitting the whole thing to be done under one set of locks, and thus
avoiding any race between mount and lookup operations on the same
directory.
(4) The client management code uses a new debug facility: NFSDBG_CLIENT which
is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.
(5) Clone mounts are now called xdev mounts.
(6) Use the dentry passed to the statfs() op as the handle for retrieving fs
statistics rather than the root dentry of the superblock (which is now a
dummy).
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-08-22 20:06:13 -04:00
|
|
|
return nfs_path(mnt_parent->mnt_devname, mnt_parent->mnt_root,
|
|
|
|
dentry, buffer, buflen);
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine the actual block size (and log2 thereof)
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
unsigned long nfs_block_bits(unsigned long bsize, unsigned char *nrbitsp)
|
|
|
|
{
|
|
|
|
/* make sure blocksize is a power of two */
|
|
|
|
if ((bsize & (bsize - 1)) || nrbitsp) {
|
|
|
|
unsigned char nrbits;
|
|
|
|
|
|
|
|
for (nrbits = 31; nrbits && !(bsize & (1 << nrbits)); nrbits--)
|
|
|
|
;
|
|
|
|
bsize = 1 << nrbits;
|
|
|
|
if (nrbitsp)
|
|
|
|
*nrbitsp = nrbits;
|
|
|
|
}
|
|
|
|
|
|
|
|
return bsize;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Calculate the number of 512byte blocks used.
|
|
|
|
*/
|
2007-07-01 12:12:19 -04:00
|
|
|
static inline blkcnt_t nfs_calc_block_size(u64 tsize)
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
{
|
2007-07-01 12:12:19 -04:00
|
|
|
blkcnt_t used = (tsize + 511) >> 9;
|
NFS: Split fs/nfs/inode.c
As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
patch splits it up into a number of files:
(*) fs/nfs/inode.c
Strictly inode specific functions.
(*) fs/nfs/super.c
Superblock management functions for NFS and NFS4, normal access, clones
and referrals. The NFS4 superblock functions _could_ move out into a
separate conditionally compiled file, but it's probably not worth it as
there're so many common bits.
(*) fs/nfs/namespace.c
Some namespace-specific functions have been moved here.
(*) fs/nfs/nfs4namespace.c
NFS4-specific namespace functions (this could be merged into the previous
file). This file is conditionally compiled.
(*) fs/nfs/internal.h
Inter-file declarations, plus a few simple utility functions moved from
fs/nfs/inode.c.
Additionally, all the in-.c-file externs have been moved here, and those
files they were moved from now includes this file.
For the most part, the functions have not been changed, only some multiplexor
functions have changed significantly.
I've also:
(*) Added some extra banner comments above some functions.
(*) Rearranged the function order within the files to be more logical and
better grouped (IMO), though someone may prefer a different order.
(*) Reduced the number of #ifdefs in .c files.
(*) Added missing __init and __exit directives.
Signed-Off-By: David Howells <dhowells@redhat.com>
2006-06-09 09:34:33 -04:00
|
|
|
return (used > ULONG_MAX) ? ULONG_MAX : used;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Compute and set NFS server blocksize
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
unsigned long nfs_block_size(unsigned long bsize, unsigned char *nrbitsp)
|
|
|
|
{
|
|
|
|
if (bsize < NFS_MIN_FILE_IO_SIZE)
|
|
|
|
bsize = NFS_DEF_FILE_IO_SIZE;
|
|
|
|
else if (bsize >= NFS_MAX_FILE_IO_SIZE)
|
|
|
|
bsize = NFS_MAX_FILE_IO_SIZE;
|
|
|
|
|
|
|
|
return nfs_block_bits(bsize, nrbitsp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine the maximum file size for a superblock
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
void nfs_super_set_maxbytes(struct super_block *sb, __u64 maxfilesize)
|
|
|
|
{
|
|
|
|
sb->s_maxbytes = (loff_t)maxfilesize;
|
|
|
|
if (sb->s_maxbytes > MAX_LFS_FILESIZE || sb->s_maxbytes <= 0)
|
|
|
|
sb->s_maxbytes = MAX_LFS_FILESIZE;
|
|
|
|
}
|
2006-12-05 00:35:38 -05:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine the number of bytes of data the page contains
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
unsigned int nfs_page_length(struct page *page)
|
|
|
|
{
|
|
|
|
loff_t i_size = i_size_read(page->mapping->host);
|
|
|
|
|
|
|
|
if (i_size > 0) {
|
|
|
|
pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
if (page->index < end_index)
|
|
|
|
return PAGE_CACHE_SIZE;
|
|
|
|
if (page->index == end_index)
|
|
|
|
return ((i_size - 1) & ~PAGE_CACHE_MASK) + 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
2007-04-10 09:26:35 -04:00
|
|
|
|
2010-11-20 14:26:44 -05:00
|
|
|
/*
|
|
|
|
* Convert a umode to a dirent->d_type
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
unsigned char nfs_umode_to_dtype(umode_t mode)
|
|
|
|
{
|
|
|
|
return (mode >> 12) & 15;
|
|
|
|
}
|
|
|
|
|
2007-04-10 09:26:35 -04:00
|
|
|
/*
|
|
|
|
* Determine the number of pages in an array of length 'len' and
|
|
|
|
* with a base offset of 'base'
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
unsigned int nfs_page_array_len(unsigned int base, size_t len)
|
|
|
|
{
|
|
|
|
return ((unsigned long)len + (unsigned long)base +
|
|
|
|
PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
|
|
}
|
2009-12-07 09:00:24 -05:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Helper for restarting RPC calls in the possible presence of NFSv4.1
|
|
|
|
* sessions.
|
|
|
|
*/
|
2010-07-31 14:29:07 -04:00
|
|
|
static inline int nfs_restart_rpc(struct rpc_task *task, const struct nfs_client *clp)
|
2009-12-07 09:00:24 -05:00
|
|
|
{
|
|
|
|
if (nfs4_has_session(clp))
|
2010-07-31 14:29:07 -04:00
|
|
|
return rpc_restart_call_prepare(task);
|
|
|
|
return rpc_restart_call(task);
|
2009-12-07 09:00:24 -05:00
|
|
|
}
|